Defined functionality and increased luminescence of nanodiamonds for sensoric and diagnostic applications by targeted high temperature reactions and electron beam irradiation

Ch. Laube,^{a,b} Y. M. Riyad,^a A. Lotnyk,^a F.P. Lohmann,^a C. Kranert,^c R. Hermann,^a W. Knolle,^a Th. Oeckinghaus^d, R. Reuter^d, A. Denisenko,^d, A. Kahnt,^e and B. Abel^{a,b}

Supplementary information (SI)

^{*a.*} Leibniz-Institut für Oberflächenmodifizierung (IOM), Permoserstr. 15, D-04303 Leipzig, Germany

^{b.} Wilhelm-Ostwald-Institute for Physical and Theoretical Chemistry, University of Leipzig, Permoserstr. 15, 04318 Leipzig, Germany.

^{c.} Universität Leipzig, Institut für Experimentelle Physik II, Halbleiterphysik, Linnéstr. 5, 04103 Leipzig, Germany.

^{d.} 3rd Institute of Physics, Research Center SCoPE and IQST, University of Stuttgart, 70569 Stuttgart, Germany

^{e.} Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials, Chair of Physical Chemistry I, Friedrich-Alexander-Universitat Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen, Germany.

Fig. S1 Removal of SiO₂ from the OND, ATR-IR spectra of: OND before HF/NH_4F treatment (black) and after the treatment (red).

Fig. S2 Removal of SiO₂ from the OND XPS spectra of: OND before HF/NH₄F treatment (black), after treatment (red).

Fig. S3 Raman spectra observation of degraphitisation and modification a) Duration time dependence for treatment of GND in air atmosphere at 590 °C; b) temperature dependence for treatment of GND in air atmosphere with a duration time of 24 hours; c) Nitrogen termination of OND in NH_{3} - atmosphere at different temperatures with a duration time of 5 h.

Fig. S4 HRTEM image of NND samples a) prepared 700 °C ,7h; b) 600 °C 5 h).

Fig. S5 Representative results of a Kaisertest for NND prepared a 700 °C for 5 h: **left**: NND sample in water, **middle**: positive probe using alanine; **right**: positive result of NND.

Fig. S6 pH-value dependent measurements of the ζ -potential of HND (black) and treated GND sample treated with hydrogen at 700 °C for 5 hours (red).

Fig. S7 Process control of hydrogen and nitrogen termination starting from OND by XPS measurements a) atomic oxygen content of HND as a function of the duration in hydrogen atmosphere at 700 °C; b) atomic nitrogen content of NND as a function of the duration in ammonia atmosphere at 700 °C; c) Atomic oxygen content as a function of the reaction temperature in hydrogen atmosphere; d) atomic nitrogen and oxygen content of NND as a function of the reaction temperature in ammonia atmosphere.

Fig. S8 Fluorescence properties of OND a) Fluorescence spectra of GND upon photoexcitation at 532 nm. The origin of the fluorescence is the non-diamond carbon; b) fluorescence spectra of OND upon excitation at 532 nm, the spectra shape is typical for NV⁰-, NV⁻ -center with zero phonon lines at 575 nm and 639 nm; c) Fluorescence lifetime image (30 μ m x 30 μ m) of OND upon excitation at 513 nm; d) lifetime histogram determined from figure S7c.

Fig. S9 Reactor for gas phase – solid phase reactor for hydrogen (C-H), oxygen and nitrogen termination (-NH2). Upper panel: open reactor; lower panel: reactor in operation with tight gas connections.