Supporting Information

Pt-embedded-CeO₂ hollow spheres for enhancing CO oxidation performance

Ke Wu,^a Liang Zhou, ^a Chun-Jiang Jia,^b Ling-Dong Sun^{a,*} and Chun-Hua Yan^{a,*}

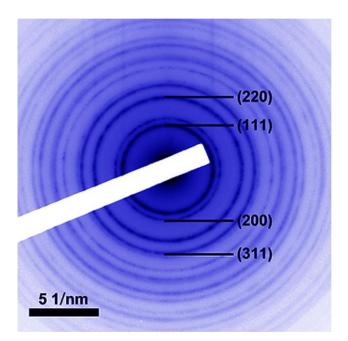
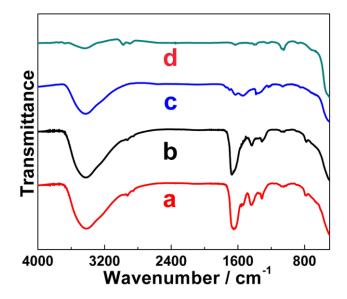
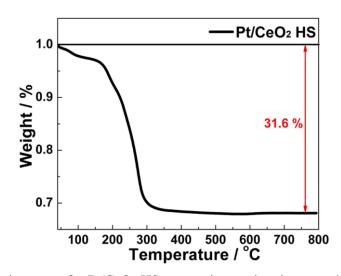
^aBeijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, and College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China

^bKey Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China

*Corresponding author: sun@pku.edu.cn; yan@pku.edu.cn

samples	ICP-OES		XPS		
	Pt content / (wt %)	Ce(III) / (%)	O_{ad} / (%)	Pt(0) / (%)	
Pt/CeO ₂ HS	1.6	41.7	41.2	50.2	
CeO ₂ NS	_	34.7	32.7	_	
Pt/CeO ₂ NS	1.7	34.3	39.6	10.3	

Table S1. Composition characterizations of Pt/CeO_2 HS composites, CeO_2 NS and supported Pt/CeO_2 NS reference catalysts.

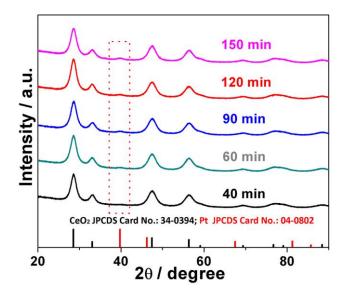

Fig. S1. The corresponding SAED image of Pt/CeO₂ HS composites.

Fig. S2. FT-IR spectra of (a) CeO_2 NS before calcination; (b) as-synthesized Pt/CeO₂ HS composites before calcination; (c) calcined Pt/CeO₂ HS composites; (d) bulk CeO₂ powders.

Fig. S3. Thermogravimetric curves for Pt/CeO₂ HS composites under air atmosphere, at a flow rate of 100 mL min⁻¹.

Fig. S4. XRD patterns of as-synthesized Pt/CeO_2 HS composites obtained at different growth stages from 40 min to 150 min during solvothermal reaction process.

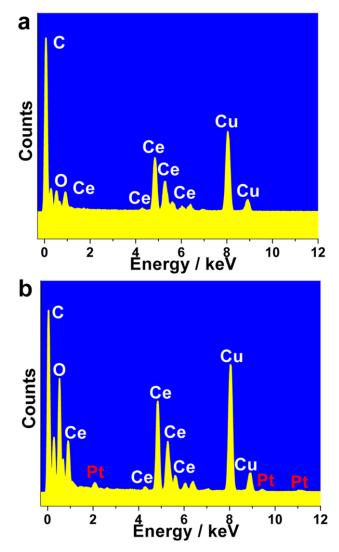
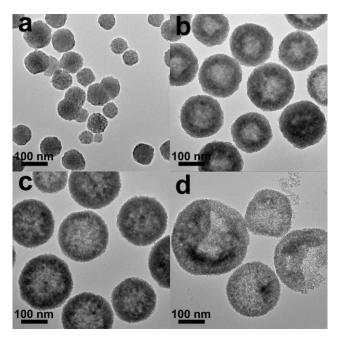
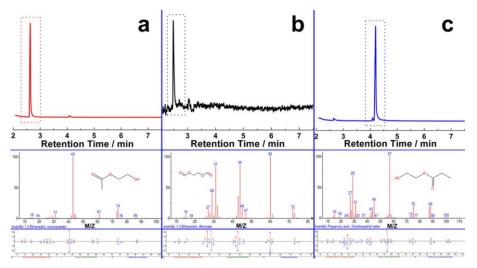
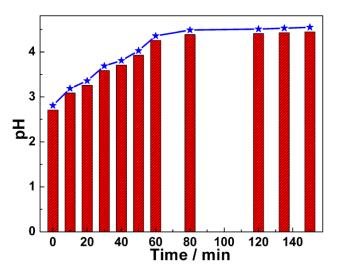
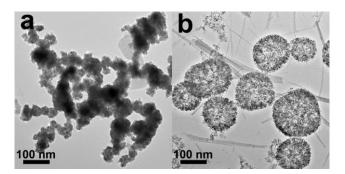




Fig. S5. EDS spectra of as-obtained Pt/CeO_2 HS composites synthesized at different growth stages: (a) 40 min; (b) 120 min.

Fig. S6. TEM images of as-prepared Pt/CeO_2 HS composites obtained at different dosages of the acetic acid: (a) 0 ml; (b) 1.0 ml; (c) 1.5 ml; (d) 3.0 ml. Scale bar: 100 nm.

Fig. S7. GC-MS results of the different reaction media analytes: (a) 1,2 Ethanediol, monoacetate; (a) 1,2 Ethanediol, diformate; (c) Propanoic acid, 2-hydroxyethyl ester;

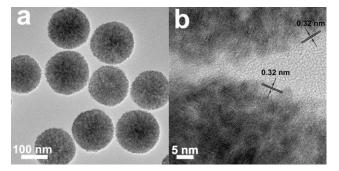
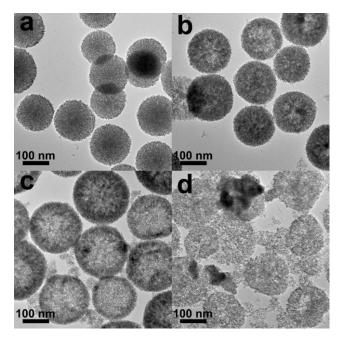
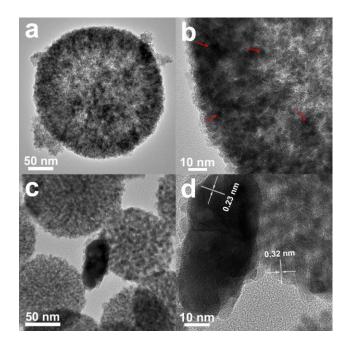


Fig. S8. The measured pH value of as-synthesized Pt/CeO_2 HS composites prepared at different growth stages from 0 min to 150 min during solvothermal reaction process.

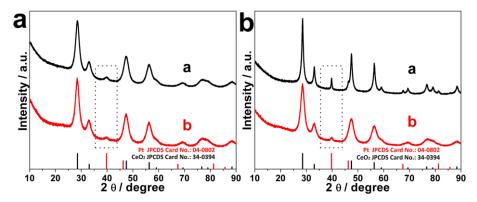
Fig. S9. TEM images of as-prepared Pt/CeO_2 HS composites obtained at different kinds of carboxylic acid: (a) formic acid, scale bar; (b) propionic acid. Scale bar: 100 nm.

Fig. S10. TEM images of as-prepared products synthesized under the same condition for Pt/CeO_2 HS composites, except the use of (a) polyethylene glycol, (b) glycerol, (c) water, and (d) DMF to replace glycol, respectively. Scale bar: 100 nm.

Fig. S11. TEM images of as-prepared CeO₂ NS synthesized under the same condition as for Pt/CeO₂ HS composites, except the exclusion of K_2 PtCl₄: (a) low resolution TEM image with a scale bar of 100 nm. (b) High resolution TEM (HRTEM) image with a scale bar of 5 nm.





Fig. S12. TEM images of as-prepared products obtained at different contents of the K_2PtCl_4 in the raw materials: (a) 0.5 wt%; (b) 1.0 wt%; (c) 2.0 wt%; (d) 3.0 wt%. Scale bar: 100 nm.


Fig. S13. TEM images of the as-prepared products obtained with the other kinds of noble metal precursors: (a) RhCl₃; (b) H₂PdCl₄; (c) HAuCl₄. Scale bar: 100 nm.

Catalyst	T_{100} / °C	Ref	
Pt/CeO ₂ HS	155	this work	
Pt/CeO ₂ NS reference catalysts	186	this work	
CeO ₂ NS	290	this work	
Pt-Cu NPs	158	7	
Au@CeO ₂	155	15	
Pt/ceria cubes	160	65	
Pt/La-Al ₂ O ₃	250	66	
hollow Pd–CeO ₂	160	67	

Table S2. Comparison of the catalytic activities of Pt/CeO_2 HS composites for CO Oxidation with other reported noble metal/CeO₂ catalysts.

Fig. S14. (a-b) TEM images of the Pt/CeO_2 HS nanocomposite catalysts after the long-term stability test; (c-d) TEM images of the Pt/CeO_2 NS reference catalysts after the first cycle of CO oxidation reaction.

Fig. S15. (a) XRD patterns of Pt/CeO_2 HS composites: a) after the long-term stability test, b) before the long-term stability test; (b) XRD patterns of Pt/CeO_2 NS reference catalysts: a) after the first cycle of CO oxidation reaction, b) before the first cycle of CO oxidation reaction.

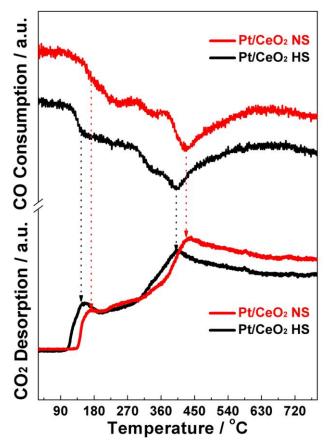


Fig. S16. CO-TPR profiles of Pt/CeO₂ HS composites and Pt/CeO₂ NS reference catalysts.