Supporting Information

pH-sensitive multifunctional fluorescent probe based on N-annulated

perylene for the sensitive and selective detection of hypochlorous acid

Xiao Zhang,^a Yongchao Yan,^a Qing Peng,^b Jian Wang,^a Yandi Hang,^a and Jianli Hua*^a

^a Key Laboratory for Advanced Materials, Institute of Fine Chemicals, College of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China. E-mail: jlhua@ecust.edu.cn; Fax:+86-21-64250940; Tel: +86-21-64250940

^bQingdao Entry Exit Inspection and Quarantine Bureau, 2 Zhongshan Road, Qingdao, 266001, China.

Table of Contents

1.	The absorption responses of PNPM towards HOCl at different pH	1
2.	The selectivity of probe PNPM (10 μ M) to HOCl at pH 7.4	1
3.	Long-term photostability of probe PNPM	2
4.	Detecting HOCl in real water samples	3
5.	Characterization of new compounds	4

1. The absorption responses of PNPM towards HOCl at different pH

Figure S1. The absorption spectra of PNPM before and after reacting with HOCl under neutral (pH 7.4) or weak acidic (pH 5.0) conditions.

2. The selectivity of probe PNPM (10 µM) to HOCl at pH 7.4

Figure S2. (A) The selectivity of probe **PNPM** (10 μ M) to HOCl at pH 7.4 in the presence of a variety of different biomolecules (ATP, ADP, GSH, Cys, Fe³⁺, Zn²⁺, Cu²⁺, 1 mM) and ROS (H₂O₂, t-BuOOH, ONOO⁻, O₂⁻, •OH).

3. Long-term photostability of probe PNPM

Figure S3. The long-term photostability of **PNPM** (10 μ M) and its oxidative product at different pH were studied under 200 W/m² light irradiation for 0-300 minutes. I₀ was the initial fluorescent intensity and I was the fluorescent intensity of the sample after the light irradiation at certain time intervals.

4. Detecting HOCl in real water samples

Figure S4. (A) Plotting the fluorescent intensity at 535 nm as a function of low HOCl concentration (0-9 μ M) for **PNPM** (10 μ M) in the drinking water samples. (B) The spiked (1.7, 2.3, 3.8, 4.7, 6.2 and 8.1 μ M) and measured concentrations (1.61, 2.08, 3.66, 4.61, 6.19 and 8.29 μ M) of HOCl in in the drinking water samples. (C) Plotting the ratiometric fluorescent changes (I_{545 nm}/I_{650 nm}) at 535 nm as a function of low HOCl concentration (0-10 μ M) for **PNPM** (10 μ M) in the pool water samples. (B) The spiked (1.7, 2.3, 3.8, 4.7, 6.2 and 8.1 μ M) and measured concentrations (1.61, 2.08, 3.66, 4.61, 6.19 and 8.29 μ M) of HOCl in the drinking water samples. (C) Plotting the ratiometric fluorescent changes (I_{545 nm}/I_{650 nm}) at 535 nm as a function of low HOCl concentration (0-10 μ M) for **PNPM** (10 μ M) in the pool water samples. (B) The spiked (1.7, 2.3, 3.8, 4.7, 6.2 and 8.1 μ M) and measured concentrations (1.62, 2.20, 3.70, 4.66, 6.31 and 7.96 μ M) of HOCl in in the pool water samples.

5. Characterization of new compounds

Figure S5. ¹H NMR spectrum of intermediate compound 2 in CDCl₃

Figure S6. ¹³C NMR spectrum of intermediate compound 2 in CDCl₃

Elemental Composition Report

Single Mass Analysis Tolerance = 50.0 PPM / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Figure S7. HRMS of intermediate compound 2

Page 1

Figure S10. HRMS of intermediate compound 3

Figure S11. ¹H NMR spectrum of intermediate compound 5

Figure S12. ¹³C NMR spectrum of intermediate compound 5

Figure S13. HRMS of intermediate compound 5

Figure S16. HRMS of probe PNPM