## **Supporting Information**

## Electrophoretically Deposited Ni(OH)<sub>2</sub> Decorated Stainless Steel Nanoparticles for High Performance Oxygen Evolution Reaction Catalysis

By Anirudh Balram, Hanfei Zhang, and Sunand Santhanagopalan\*

Multi-Scale Energy Systems (MuSES) Laboratory Mechanical & Aerospace Engineering Department, The University of Texas at Arlington 500 W. First Street, Arlington, TX 76019 \*E-mail: ssanthan@uta.edu



Figure S1. Representative TGA curve of electrodeposited  $\alpha$ -Ni(OH)<sub>2</sub>



**Figure S2.** Schematic sketch of electrophoretic co-deposition of Ni(OH)<sub>2</sub> nanoparticle decorated stainless steel nanoparticles.



**Figure S3.** Representative X-ray diffraction (XRD) data of as-purchased stainless steel nanoparticles (SSNP) and electrophoretically deposited SSNP/Ni(OH)<sub>2</sub> nanocomposite. No  $\alpha$ -Ni(OH)<sub>2</sub> peaks are apparent owing to disordered structure or small particle size.



**Figure S4.** Cyclic voltammograms (CV) of samples carried out in non-faradaic potential window: (a) Ni foam; (b) Ni(OH)<sub>2</sub>; (c) SSNP; (d) SSNP/Ni(OH)<sub>2</sub>; (e) Difference between anodic and cathodic currents,  $j_a$  and  $j_c$  respectively at 0.05 V plotted versus scan rate. Double-layer capacitance of the electrode can be calculated as half of the slope.