A Family of ssa-Type Copper-Based MOFs Constructed from Unsymmetrical Diisophthalates: Synthesis, Characterization and Selective Gas Adsorption

Fengli Chen, Dongjie Bai, Yao Wang, Donghao Jiang, Yabing He*

College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China. E-mail: heyabing@zjnu.cn.

Fig. S1 Comparison of the experimental (red) and simulated (black) PXRD patterns for (a) **ZJNU-74**, (b) **ZJNU-75** and (c) **ZJNU-76**.

Fig. S2 TGA curves of the as-synthesized and activated (a) **ZJNU-74**, (b) **ZJNU-75** and (c) **ZJNU-76** under nitrogen atmosphere.

Fig. S3 Comparison of the FTIR spectra of the as-synthesized MOFs of (a) ZJNU-74,(b) ZJNU-75 and (c) ZJNU-76 and their corresponding organic ligands.

 $S_{\text{BET}} = \frac{1}{(6.28574 \times 10^{-7} + 0.00194)}{22414 \times 6.023 \times 10^{23} \times 0.162 \times 10^{-18}} = 2243 \text{ m}^2 \text{ g}^{-1}$ $S_{\text{Langmuir}} = \frac{(1/0.00175)}{22414 \times 6.023 \times 10^{23} \times 0.162 \times 10^{-18}} = 2488 \text{ m}^2 \text{ g}^{-1}$ BET constant = 1 + 0.00194/6.28574 ×10⁻⁷ = 3087

Fig. S4 The consistency plot (a), BET plot (b) and Langmuir plot (c) for ZJNU-74.

 $S_{\text{BET}} = \frac{1}{(5.79356 \times 10^{-7} + 0.00211)} \times 2414 \times 6.023 \times 10^{23} \times 0.162 \times 10^{-18} = 2063 \text{ m}^2 \text{ g}^{-1}$ $S_{\text{Langmuir}} = \frac{(1/0.00191)}{22414} \times 6.023 \times 10^{23} \times 0.162 \times 10^{-18} = 2279 \text{ m}^2 \text{ g}^{-1}$ BET constant C = 1 + 0.00211/5.79356 × 10⁻⁷ = 3643

Fig. S5 The consistency plot (a), BET plot (b) and Langmuir plot (c) for ZJNU-75.

 $S_{\text{BET}} = \frac{1}{(8.16426 \times 10^{-7} + 0.00218)} + \frac{22414 \times 6.023 \times 10^{23} \times 0.162 \times 10^{-18} = 1996 \text{ m}^2 \text{ g}^{-1}}{S_{\text{Langmuir}}} = \frac{(1/0.00193)}{22414 \times 6.023 \times 10^{23} \times 0.162 \times 10^{-18}} = 2256 \text{ m}^2 \text{ g}^{-1}}$ BET constant C = 1 + 0.00218/8.16426 × 10^{-7} = 2671

Fig. S6 The consistency plot (a), BET plot (b) and Langmuir plot (c) for ZJNU-76.

Fig. S7 Comparison of the pure-component isotherm data for (a) C_2H_2 , (b) CO_2 , and (c) CH_4 in **ZJNU-74** with the fitted isotherms (shown by continuous solid lines) at 278 K, 288 K and 298 K.

Fig. S8 Comparison of the pure-component isotherm data for (a) C_2H_2 , (b) CO_2 , and (c) CH_4 in **ZJNU-75** with the fitted isotherms (shown by continuous solid lines) at 278 K, 288 K and 298 K.

Fig. S9 Comparison of the pure-component isotherm data for (a) C_2H_2 , (b) CO_2 , and (c) CH_4 in **ZJNU-76** with the fitted isotherms (shown by continuous solid lines) at 278 K, 288 K and 298 K.

Fig. S10 IAST selectivities for the equimolar (a) C_2H_2/CH_4 , (b) CO_2/CH_4 and (c) C_2H_2/CO_2 gas mixtures in ZJNU-74 at three different temperatures

Fig. S11 IAST selectivities for the equimolar (a) C_2H_2/CH_4 , (b) CO_2/CH_4 and (c) C_2H_2/CO_2 gas mixtures in **ZJNU-75** at three different temperatures

Fig. S12 IAST selectivities for the equimolar (a) C_2H_2/CH_4 , (b) CO_2/CH_4 and (c) C_2H_2/CO_2 gas mixtures in **ZJNU-76** at three different temperatures

Fig. S13 ¹H and ¹³C NMR spectra

Table S1 Langmuir-Freundich parameters for adsorption of C₂H₂, CO₂, and CH₄ in **ZJNU-74**.

	$q_{ m sat}$	b_0	E	
	$(\text{mmol } g^{-1})$	$(kPa)^{-\nu}$	(kJ mol ⁻¹)	V
C ₂ H ₂	20.91231	8.40333×10 ⁻⁶	19.17	0.74571
CO ₂	28.25702	2.3211×10 ⁻⁷	21.76	1
CH ₄	13.79579	1.4927×10 ⁻⁶	15.16	1

Table S2 Langmuir-Freundich parameters for adsorption of C_2H_2 , CO_2 , and CH_4 in **ZJNU-75**.

	$q_{ m sat}$	b_0	E	.,
	(mmol g^{-1})	$(kPa)^{-\nu}$	(kJ mol ⁻¹)	V
C_2H_2	15.77432	4.93489×10 ⁻⁶	21.33	0.80314
CO ₂	25.69717	2.02268×10 ⁻⁷	22.72	1
CH ₄	13.63143	1.191×10 ⁻⁶	15.83	1

Table S3 Langmuir-Freundich parameters for adsorption of C₂H₂, CO₂, and CH₄ in **ZJNU-76**.

	$q_{ m sat}$	b_0	E	
	$(\text{mmol } g^{-1})$	$(kPa)^{-\nu}$	(kJ mol ⁻¹)	V
C_2H_2	14.73308	6.35303×10 ⁻⁶	21.12	0.77478
CO ₂	22.70595	1.71438×10 ⁻⁷	23.40	1
CH ₄	13.14488	1.33364×10 ⁻⁶	15.59	1

MOFs	ZJNU-74	ZJNU-75	ZJNU-76
Empirical formula	$C_{26}H_{16}O_{10}$ Cu ₂	$C_{27}H_{18}O_{11}Cu_2$	$C_{28}H_{20}O_{11}Cu_2$
Formula weight	615.47	645.49	659.52
λ (Å)	1.54184	1.54184	1.54178
Crystal system	Hexagonal	Hexagonal	Hexagonal
Space group	P6 ₃ /mmc	P6 ₃ /mmc	P6 ₃ /mmc
	<i>a</i> = 18.3150(7) Å	<i>a</i> = 18.4455(6) Å	a = 18.2664(5) Å
	b = 18.3150(7) Å	b = 18.4455(6) Å	b = 18.2664(5) Å
Unit call dimensions	c = 26.7665(14) Å	c = 26.4268(5) Å	c = 26.5488(6) Å
Unit cen dimensions	$\alpha = 90^{\circ}$	$\alpha = 90^{\circ}$	$\alpha = 90^{\circ}$
	$\beta = 90^{\circ}$	$\beta = 90^{\circ}$	$\beta = 90^{\circ}$
	$\gamma = 120^{\circ}$	$\gamma = 120^{\circ}$	$\gamma = 120^{\circ}$
$V(\text{\AA}^3)$	7775.6(6)	7786.7(4)	7671.5(3)
Ζ	6	6	6
$D_{\rm c} ({\rm g}{\rm cm}^{-3})$	0.789	0.826	0.857
$\mu (\mathrm{mm}^{-1})$	1.260	1.289	1.315
<i>F</i> (000)	1860	1956	2004
Crystal size (mm)	$0.23 \times 0.15 \times 0.10$	$0.23 \times 0.18 \times 0.17$	$0.23\times 0.12\times 0.10$
θ range for data collection (°)	4.32 to 74.00	3.34 to 73.91	4.35 to 73.86
	$-20 \le h \le 13$	$-22 \le h \le 16$	$-8 \le h \le 22$
Limiting indices	$-15 \le k \le 22$	$-16 \le k \le 22$	$-17 \le k \le 15$
	$-32 \le l \le 27$	$-32 \le l \le 28$	$-31 \le l \le 32$
Reflections collected / unique	23259 / 2907	28201 / 2942	17309 / 2848
R _{int}	0.0574	0.0382	0.0459
Max. and min. transmission	0.8844 and 0.7604	0.8107 and 0.7559	0.8797 and 0.7519
Definement method	Full-matrix	Full-matrix	Full-matrix
Kennement method	least-squares on F^2	least-squares on F^2	least-squares on F^2
Data/restraints/parameters	2907 / 103 / 119	2942 / 145 / 143	2848 / 265 / 161
Goodness-of-fit on F^2	1.044	1.030	1.643
Einel Dindiggs [I > 2-(D)]	$R_1 = 0.1425$	$R_1 = 0.1593$	$R_1 = 0.1510$
Final K indices $[I > 20(I)]$	$wR_2 = 0.4061$	$wR_2 = 0.5094$	$wR_2 = 0.4674$
Dindiana (all data)	$R_1 = 0.2137$	$R_1 = 0.1875$	$R_1 = 0.1928$
	$wR_2 = 0.4543$	$wR_2 = 0.5563$	$wR_2 = 0.4955$
Largest diff. peak and hole (e.Å ⁻³)	0.545 and -0.604	0.859 and -0.670	0.581 and -0.487
CCDC	1558048	1558537	1543094

Table S4 Crystal data and structure refinement for ZJNU-74, ZJNU-75 andZJNU-76.

(1) Fitting of Pure-Component Isotherms

The pure-component C_2H_2 , CO_2 and CH_4 adsorption isotherms measured at 278 K, 288 K and 298 K were fitted with the single-site Langmuir-Freundlich model

$$q = \frac{q_{sat}bp^{\nu}}{1+bp^{\nu}}$$
, with *T*-dependent parameter $b = b_o \exp(\frac{E_a}{RT})$

where *q* is the adsorbed amount (mmol g⁻¹), q_{sat} is the monolayer adsorption capacity (mmol g⁻¹), *p* is the equilibrium pressure (kPa), and *b* and *v* is the Langmuir and Freundlich constants. The corresponding fitting parameters are provided in Table S1-3. Fig. S7 provides a comparison of the experimental isotherm data for C₂H₂, CO₂ and CH₄ in **ZJNU-74** with the isotherm fits. Fig. S8 provides a comparison of the experimental isotherm data for C₂H₂, CO₂ and CH₄ in **ZJNU-75** with the isotherm fits. Fig. S9 provides a comparison of the experimental isotherm data for C₂H₂, CO₂ and CH₄ in **ZJNU-75** with the isotherm fits. Fig. S9 provides a comparison of the experimental isotherm data for C₂H₂, CO₂ and CH₄ in **ZJNU-76** with the isotherm fits.

(2) IAST calculations of adsorption selectivities

The selectivity of preferential adsorption of component 1 over component 2 in a mixture containing 1 and 2 can be formally defined as

$$S_{\rm ads} = \frac{q_1 / q_2}{p_1 / p_2}$$

 q_1 and q_2 are the absolute component loadings of the adsorbed phase in the mixture. These component loadings are also termed the uptake capacities. We calculated the values of q_1 and q_2 using the IAST of Myers and Prausnitz (Ref. A. L. Myers and J. M. Prausnitz, *A.I.Ch.E.J.*, **1965**, *11*, 121-127).

(3) Calculation of Isosteric Heats of Adsorption

The isosteric heats of adsorption (Q_{st}) were calculated using the Clausius-Clapeyron equation based on pure-component isotherms collected at three different temperatures of 278 K, 288 K and 298 K. The Q_{st} was defined as

$$Q_{st} = -R \left(\frac{\partial Inp}{\partial (1/T)} \right)_q$$

where p is the pressure, T is the temperature, R is the gas constant, and q is the adsorption amount. These calculations were done through the "Heat of Adsorption" function embedded in the software supplied by Micromeritics ASAP 2020 HD88 surface-area and pore-size analyzer machine.