Electronic Supplementary Material (ESI) for Materials Chemistry Frontiers. This journal is © the Partner Organisations 2017

## **Supporting Information**

## Charge mobility enhancement for diketopyrrolopyrrole-based

# conjugated polymers by partial replacement of branching alkyl

### chains with linear ones

Jing Ma,<sup>ab</sup> Zitong Liu,\* <sup>a</sup> Zhijie Wang, <sup>ab</sup> Yizhou Yang, <sup>ab</sup> Guanxin Zhang, <sup>a</sup> Xisha Zhang, <sup>ab</sup> Deqing Zhang\*<sup>ab</sup> <sup>a</sup> Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids Institute of Chemistry, Chinese Academy of Sciences Beijing 100190, P. R. China. <sup>b</sup> University of Chinese Academy of Sciences, Beijing 100049, P. R. China

### **Table of Contents**

| 1. Characterization techniques S2                                 |
|-------------------------------------------------------------------|
| 2. Differential scanning calorimetry (DSC) curves S3              |
| <b>3. TGA analysis</b> S3                                         |
| 4. Cyclic voltammograms S4                                        |
| 5. OFET device fabrication and measurements S4- S5                |
| 6. Transfer and output curves of BGBC devices with thin films of  |
| PDPP4T-1/NMe4I, PDPP4T-2/NMe4I, PDPP4T-3/NMe4I and                |
| PDPP4T/NMe4I S6                                                   |
| 7. <sup>1</sup> H NMR and solid-state <sup>13</sup> C NMR spectra |

#### **1.** Characterization techniques

<sup>1</sup>H NMR and <sup>13</sup>C NMR spectra were recorded on Bruker AVANCE III 500, 400, and 100 MHz spectrometers. Elemental analysis was measured with a Carlo Erba model 1160 elemental analyzer. UV-vis absorption spectra were measured with JASCO V-570 UV-vis spectrophotometer. Gel permeation chromatography (GPC) analysis was performed on an PL-GPC 220 high-temperature chromatograph at 150°C equipped with a IR5 detector; polystyrene was used as the calibration standard and 1,2,4-trichlorobenzene as eluent (the flow rate was 1.0 mL/min). Thermogravimetric analysis (TGA) were performed on a Shimadzu DTG-60 instruments under a dry nitrogen flow with the temperature from room temperature to 550 °C (10 °C/min). For differential scanning calorimetry (DSC) measurements ~5 mg of the sample was used and the measurement was conducted under nitrogen at a scan rate of 10 °C/min with a DSC-Q2000 instrument. Cyclic voltammetric measurements were carried out in a conventional three-electrode cell using a glassy carbon working electrode, a Pt counter electrode, and a Ag/AgCl (saturated KCl) reference electrode on a computer-controlled CHI660C instruments at ambient temperature; n-Bu<sub>4</sub>NPF<sub>6</sub> (0.1 M) was used as the supporting electrolyte. The onset oxidation and reduction potentials were presented by reference to the redox potential of ferrocene/ferrocenium  $(Fc/Fc^{+})$ . Atomic-force microscopy images of thin films of polymers were taken by using a Digital Instruments Nanoscope V atomic force microscope operated in tapping mode with a Nanoscope V instrument in air. The GIXRD data of thin films of polymers were obtained at Beijing Synchrotron Raidation Facility, 1W1A.

### 2. Differential scanning calorimetry (DSC) curves



**Figure S1** DSC curves of **PDPP4T-1**, **PDPP4T-2**, **PDPP4T-3**, and **PDPP4T** recorded at a heating and cooling rate (25-250 °C) of 10 °C/min under nitrogen.

## 3. TGA analysis



**Figure S2** TGA curves of **PDPP4T-1**, **PDPP4T-2**, **PDPP4T-3** and **PDPP4T**; heating rate: 10 °C/min. from 20 °C to 550 °C under nitrogen atmosphere.

#### 4. Cyclic voltammograms



Figure S3 Cyclic voltammograms of PDPP4T-1, PDPP4T-2, PDPP4T-3 and PDPP4T (in the form of thin films) at a scan rate of 100 mVs<sup>-1</sup>, with Pt as the working and counter electrodes and an Ag/AgCl electrode (saturated KCl) as the reference electrode, and n-Bu<sub>4</sub>NPF<sub>6</sub> (0.1 M) in CH<sub>3</sub>CN as supporting electrolyte.

#### 5. OFET device fabrication and measurements

A heavily doped *n*-type Si wafer with a dry oxidized SiO<sub>2</sub> layer of 300 nm and a capacitance of 11 nF cm<sup>-2</sup> was employed as the gate electrode and dielectric layer. The drain-source (D-S) gold contacts were fabricated by photo-lithography. The substrates were first cleaned by sonication in acetone and water for 5.0 min., and immersed in Piranha solution (2:1 mixture of sulfuric acid and 30% hydrogen peroxide) for 20 min. The substrates were further rinsed with deionized water and isopropyl alcohol for times. After the substrate surfaces modified with several were n-octadecyltrichlorosilane (OTS), they were washed with CHCl<sub>3</sub>, n-hexane and isopropyl alcohol sequentially. Next, thin films of PDPP4T-1, PDPP4T-2,

**PDPP4T-3** and **PDPP4T** were prepared by spin-coating of their hot *o*-1,2-dichlorobenzene solutions (5.0 mg/mL) onto the modified substrates at 2500 rpm for 60 s. Thin films of **PDPP4T/NMe4I** were prepared by adding a dimethyl sulfoxide (DMSO) solution of **NMe4I** to the hot *o*-1,2-dichlorobenzene (*o*-DCB) solution of **PDPP4T**, where the **PDPP4T/NMe4I** thin films were at a molar ratio of 30:1. The annealing process was performed in vacuum for 1.0 hr at 160 °C and 200 °C. The transfer and output curves of FETs were measured at room temperature in air using a Keithley 4200 SCS semiconductor parameter analyzer.

The mobilities were determined in the saturation regime by using the equation:

$$I_{DS} = \frac{W}{2L} \mu C_i (V_{GS} - V_{th})^2$$

Where  $I_{DS}$  is the drain electrode collected current; L and W are the channel length and width, respectively;  $\mu$  is the charge mobility of the device;  $C_i$  is the capacitance per unit area of the gate dielectric layer;  $V_{GS}$  and  $V_{th}$  are the gate and the threshold voltages, respectively. The  $V_{th}$  of the device was obtained by extrapolating the  $(I_{DS,sat})^{1/2}$  vs.  $V_{GS}$  plot to  $I_{DS} = 0$ . 6. Transfer and output curves of BGBC devices with thin films of PDPP4T-1/NMe<sub>4</sub>I, PDPP4T-2/NMe<sub>4</sub>I, PDPP4T-3/NMe<sub>4</sub>I and PDPP4T/NMe<sub>4</sub>I.



Figure S4 The transfer and output curves of BGBC FETs with thin films of PDPP4T-1/ NMe4I (A, B), PDPP4T-2/ NMe4I (C, D), PDPP4T-3/ NMe4I (E, F) and PDPP4T/ NMe4I (G, H); the channel width (W) and length (L) were 1440  $\mu$ m and 50  $\mu$ m, respectively.

# PDPP4T-1











# <sup>1</sup>H NMR

