Electronic Supplementary Material (ESI) for Materials Chemistry Frontiers. This journal is © the Partner Organisations 2017

Supporting Information

Design of Bond-Cleavage-Induced Intramolecular Charge Transfer Emission with Dibenzoboroles and Their Application to Ratiometric Sensors for Discriminating Chain Lengths of Alkanes

Takuya Matsumoto, Hirofumi Takamine, Kazuo Tanaka* and Yoshiki Chujo*

Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan

Page Contents

Measurements,	Materials,	Synthesis	and	Computational
Details	S3			
NMR Spectra				S5
Crystallographic Da	ta			S13
UV-vis Absorption	and Photolumines	cence (PL) Data		S15
Cartesian Coordinat	es of the Optimize	d Structures by Th	eoretical Ca	lculationsS22
The Optimized Stru	ctures and Molecu	lar Orbitals		
TD-DFT Calculation	n Results			S44

Experimental Section

¹H (400 MHz), ¹³C (100 MHz) and ¹¹B (128 MHz) NMR spectra were recorded on Measurements a JEOL JNM-EX400 and JNM-AL400 spectrometers. ¹H, ¹³C and ¹¹B NMR spectra were obtained with CD₂Cl₂. ¹¹B NMR spectra were measured with BF₃·Et₂O as an external reference. Highresolution mass spectra (HRMS) were obtained on a Thermo Fisher Scientific EXACTIVE for atomic pressure chemical ionization (APCI) and electrospray ionization (ESI). UV-vis absorption spectra were recorded on a Shimadzu UV-3600 spectrophotometer. Fluorescence emission spectra were recorded on a HORIBA JOBIN YVON Fluoromax-4 spectrofluorometer, and the absolute quantum yield was calculated by the integrating sphere method on the HORIBA JOBIN YVON Fluoromax-4 spectrofluorometer. Photoluminescence lifetime measurement was performed on a Horiba FluoreCube spectrofluorometer system; excitation was carried out using a UV diode laser (NanoLED 290 or 375 nm). Viscosity measurement wascarried out with a KYOTO ELECTRONICS MANIFACTURING CO., LTD. EMS-1000 viscometer. X-ray crystallographic analysis was carried out by a Rigaku R-AXIS RAPID-F graphite-monochromated Mo K α radiation diffractometer with an imaging plate. A symmetry related absorption correction was carried out by using the program ABSCOR¹. The analysis was carried out with direct methods (SHELX-97² or SIR97³) using Yadokari-XG⁴. All reactions were performed under argon atmosphere

Materials. All reagents were obtained from commercial sources and used without further purification. Tetrahydrofuran (THF), diethyl ether (Et₂O), and triethylamine (NEt₃) were purified using a twocolumn solid-state purification system (Glass Contour Solvent System, Joerg Meyer, Irvine, CA). Dibenzoborole (1) was prepared according to the literature⁵.

Synthesis of 3,7-dibromodibenzoborole (2). The mixture of 1 (0.81 g, 2.0 mmol) and *N*-bromosuccinimide (0.93 g, 5.2 mmol) in *N*,*N*-dimethylformamide (12 mL) was stirred overnight at room temperature. The mixture was washed with NaHSO₃ (10 mL) and brine (30 mL) and dried over MgSO₄. Then, the solution was filtered and evaporated to remove the solvent. The crude product was purified by silica gel column chromatography (hexane/ ethyl acetate = 10 : 1) to give the **2** as a white solid (0.95 g, 84%). ¹H NMR (CDCl₃, δ , ppm): 7.53 (d, *J* = 8.1 Hz, 2H), 7.39–7.37 (m, 3H), 7.33 (d, *J* = 2.0 Hz, 2H), 7.14 (d, *J* = 1.4 Hz, 1H), 4.20 (s, 2H), 2.41 (s, 6H), 1.37 (s, 9H), 0.92 (s, 9H). ¹³C NMR (CD₂Cl₂, δ , ppm): 154.9, 149.5, 147.8, 141.0, 135.6, 130.6, 123.0, 121.7, 121.4, 117.8, 68.9, 48.4, 37.4, 35.0, 31.9, 31.7. ¹¹B NMR (CD₂Cl₂, δ , ppm): 5.57. HRMS (APCI): m/z calcd. for C₂₉H₃₄BBr₂N [M+H]⁺: 566.1224; found: 566.1217.

General procedure. 2 (113 mg, 0.20 mmol), aryldiboronic acid (0.44 mmol), $Pd_2(dba)_3$ (4.6 mg, 5.0 μ mol), X-Phos (9.5 mg, 20 μ mol), and Cs₂CO₃ (390 mg, 1.2 mmol) were dissolved in tetrahydrofuran (1.5 mL) and H₂O (1.5 mL) under an inert atmosphere. After stirring at 60 °C for 10 h, the mixture was diluted with chloroform, washed with brine, and dried over Na₂SO₄, and then the solvent was removed under reduced pressure. The crude products were purified by silica gel column chromatography (hexane/ ethyl acetate = 10 : 1) to give a white solid.

3a

A white solid, 83% yield. ¹H NMR (CD₂Cl₂, δ , ppm): 7.83 (d, J = 7.8 Hz, 2H), 7.68 (ddd, J = 10.5 Hz, 8H), 7.59 (d, J = 2.0 Hz, 1H), 7.57 (d, J = 2.0 Hz, 1H), 7.54 (d, J = 1.5 Hz, 2H), 7.40 (d, J = 1.7 Hz, 1H), 7.19 (d, J = 1.7 Hz, 1H), 4.30 (s, 2H), 2.48 (s, 6H), 1.38 (s, 9H), 0.99 (s, 9H). ¹³C NMR (CD₂Cl₂, δ , ppm): 155.0, 149.9, 149.2, 146.42, 146.40, 141.3, 137.6, 131.8, 129.3, 129.1, 129.0, 128.7, 128.3, 127.7, 127.1, 126.4, 126.0 (q, J = 4.1 Hz), 123.7, 122.9, 121.0, 120.6, 117.8, 68.9, 48.5, 37.6, 35.0, 32.0, 31.8. ¹¹B NMR (CD₂Cl₂, δ , ppm): 6.25.; HRMS (ESI): m/z calcd. for C₄₃H₄₂BF₆NCl [M+Cl]⁻: 732.3009; found: 732.3023.

3b

A white solid, 95% yield. ¹H NMR (CD₂Cl₂, δ , ppm): 7.80 (d, J = 7.8 Hz, 2H), 7.60–7.52 (m, 8H), 7.41–7.37 (m, 5H), 7.32–7.28 (m, 2H), 7.18 (d, J = 1.2 Hz, 1H), 4.29 (s, 2H), 2.48 (s, 6H), 1.39 (s, 9H), 1.01 (s, 9H). ¹³C NMR (CD₂Cl₂, δ , ppm): 155.0, 149.2, 149.0, 142.8, 161.3, 138.9, 131.6, 129.0, 127.3, 127.0, 126.8, 126.00, 12122.7, 120.2, 117.7, 68.8, 48.4, 37.5, 35.0, 32.0, 31.8. ¹¹B NMR (CD₂Cl₂, δ , ppm): 6.35.; HRMS (ESI): m/z calcd. for C₄₁H₄₄BNNa [M+Na]⁺: 584.3459; found: 584.3462.

3c

A white solid, 85% yield. ¹H NMR (CD₂Cl₂, δ , ppm): 7.73 (d, J = 7.8 Hz, 2H), 7.51–7.45 (m, 8H), 7.38 (d, J = 1.9 Hz, 1H), 7.16 (d, J = 1.9 Hz, 1H), 6.92 (m, 4H), 4.27 (s, 2H), 3.81 (s, 6H), 2.46 (s, 6H), 1.37 (s, 9H), 0.98 (s, 9H). ¹³C NMR (CD₂Cl₂, δ , ppm): 159.3, 154.9, 148.9, 148.7, 141.3, 138.4, 135.3, 131.2, 128.3, 126.2, 122.7, 120.1, 117.7, 114.4, 68.8, 55.7, 48.4, 37.5, 35.0, 32.0, 31.8. ¹¹B NMR (CD₂Cl₂, δ , ppm): 6.16.; HRMS (ESI): m/z calcd. for C₄₃H₄₈BNO₂Na [M+Na]⁺: 644.3670; found: 644.3680.

Figure S2. ¹³C NMR spectrum of 2 in CD₂Cl₂.

Figure S3. ¹¹B NMR spectrum of 2 in CD_2Cl_2 .

Figure S4. ¹H NMR spectrum of **3a** in CD₂Cl₂.

Figure S5. ¹³C NMR spectrum of **3a** in CD₂Cl₂.

Figure S6. ¹¹B NMR spectrum of **3a** in CD₂Cl₂.

Figure S8. ¹³C NMR spectrum of **3b** in CD₂Cl₂.

Figure S9. ¹¹B NMR spectrum of **3b** in CD₂Cl₂.

Figure S10. ¹H NMR spectrum of 3c in CD₂Cl₂.

Figure S11. ¹³C NMR spectrum of 3c in CD₂Cl₂.

Figure S12. ¹¹B NMR spectrum of 3c in CD₂Cl₂.

Preparation of Single Crystal. The single crystal of **2** was prepared by recrystallization from chloroform and methanol solution in the two-layer method.

X-ray Crystal Structure Analyses. Intensity data were collected on a Rigaku R-AXIS RAPID imaging plate area detector with graphite monochromated Mo $K\alpha$ radiation at – 180 °C. The structures were solved by direct method (SIR97)⁹ and refined by full-matrix least-squares procedures based on F^2 (SHELX-97)¹⁰.

5 6 1	
Empirical formula	C ₂₉ H ₃₄ BBr ₂ N
Formula weight	567.20
Temperature (K)	93(2) Br Br
Wavelength (Å)	0.71075
Crystal system, space group	triclinic, <i>P-1</i>
Unit cell dimensions	a = 7.9955(14)
	b = 11.139(2) t -Bu 2
	c = 14.735(3)
	$\alpha = 87.095(6)$
	$\beta = 78.445(6)$
	$\gamma = 81.208(6)$
$V(Å^3)$	1270.4(4)
Z, calculated density (Mg m^{-3})	2, 1.483
Absorption coefficient	3.209
<i>F</i> (000)	580
Crystal size (mm)	$0.30 \times 0.10 \times 0.10$
θ range for data collection	3.06–27.48
Limiting indices	–10≤ <i>h</i> ≤10, –14≤ <i>k</i> ≤14, –19≤ <i>l</i> ≤19
Reflections collected (unique)	12232 / 5793 [R(int) = 0.1390]
Completeness to theta $= 27.49$	0.992
Max. and min. transmission	0.7397 and 0.4461
Goodness-of-fit on F ²	0.960
Final <i>R</i> indices $[I > 2\sigma(I)]^a$	$R_1 = 0.0840 \text{ w} R_2 = 0.1671$
<i>R</i> indices (all data)	$R_1 = 0.1758, wR_2 = 0.2049$
$\overline{aR_1 = \Sigma(F_0 - F_c)/\Sigma F_0 }, WR_2 = [\Sigma$	$\sum w(F_0^2 - F_0^2)^2 / \sum w(F_0^2)^2]^{1/2}, w = 1/[\sigma^2(F_0^2) + [(ap)^2 + bp])^2$

 Table S1. Crystallographic data of 2

 $\overline{{}^{a}R_{1}} = \Sigma(|F_{0}| - |F_{c}|)/\Sigma|F_{0}|. \ wR_{2} = [\Sigma w(F_{0}^{2} - F_{c}^{2})^{2}/\Sigma w(F_{0}^{2})^{2}]^{1/2}. \ w = 1/[\sigma^{2}(F_{0}^{2}) + [(ap)^{2} + bp]],$ where $p = [\max(F_{0}^{2}, 0) + 2F_{c}^{2}]/3.$

Figure S13. ORTEP drawings of (a) **2** and (b) side view (50% probability for thermal ellipsoids). Hydrogen atoms are omitted for clarity.

Figure S14. Absorption and emission spectra of dibenzoborole derivative 3a-c (1.0×10⁻⁵ M) excited at $\lambda_{max,abs}$. (a) : Absorption spectra of 3a. (b) : Emission spectra of 3a excited at $\lambda_{max,abs}$. (c) : Absorption spectra of 3b. (d) : Emission spectra of 3b excited at $\lambda_{max,abs}$. (e) : Absorption spectra of 3c. (f) : Emission spectra of 3c excited at $\lambda_{max,abs}$. (g) : Expanded emission spectra of 3b. (h) : E Expanded emission spectra of 3c.

Figure S15. Lippert-Mataga plots of emission bands of 3a–c.

Figure S16. Excitation spectra of dibenzoboroles in cyclohexane solutions collected at $\lambda_{max,FL}$ (1.0×10⁻⁵ M).

Figure S17. Stevens–Ban plots of the ratio of dual emission bands (I_3 and I_4) of **3b** in *n*-octane (a) and in *n*-decane (b) and **3c** in *n*-octane (c) and in *n*-decane (d).

Figure S18. Emission spectra of dibenzoborole derivatives **3a–c** excited at $\lambda_{max,abs}$. (a) : **3a**, (b) : **3b**, and (c) : **3c**. (solid line : in the 2-methylbutane/3-methylpentane (1 : 1, 1.0×10^{-5} M) at room temperature ; diluted line : in the 2-methylbutane/3-methylpentane (1 : 1, 1.0×10^{-5} M) at 77 K; dashed line : in polystyrene film at room temperature).

Figure S19. Emission spectra of dibenzoborole derivatives $3\mathbf{a}$ -c. (a) : $3\mathbf{a}$ in *n*-octane $(1.0 \times 10^{-5} \text{ M})$ excited at $\lambda_{\max,abs}$. (b) : $3\mathbf{a}$ in *n*-decane $(1.0 \times 10^{-5} \text{ M})$ excited at $\lambda_{\max,abs}$. (c) : $3\mathbf{b}$ in *n*-octane $(1.0 \times 10^{-5} \text{ M})$ excited at $\lambda_{\max,abs}$. (d) : $3\mathbf{b}$ in *n*-decane $(1.0 \times 10^{-5} \text{ M})$ excited at $\lambda_{\max,abs}$. (e) : $3\mathbf{c}$ in *n*-octane $(1.0 \times 10^{-5} \text{ M})$ excited at $\lambda_{\max,abs}$. (f) : $3\mathbf{a}$ in *n*-decane $(1.0 \times 10^{-5} \text{ M})$ excited at $\lambda_{\max,abs}$. (f) : $3\mathbf{a}$ in *n*-decane $(1.0 \times 10^{-5} \text{ M})$ excited at $\lambda_{\max,abs}$.

Figure S20. Emission spectra of dibenzoborole derivatives **3a** (a) and **3b** (b) in *n*-alkane solvents $(1.0 \times 10^{-5} \text{ M})$ and **3b** in the mixed solvents of hexane and liquid paraffin $(1.0 \times 10^{-5} \text{ M})$ (c). (a) : the number of carbon atoms of *n*-alkane solvents was from 5 to 16. Förster-Hoffmann plots of the ratio of dual emission bands (I₃ and I₄) of **3c** in *n*-alkane solvents (d) and in the mixed solvents of hexane and liquid paraffin (e). (d) and (e) : Emission spectra were collected at $\lambda_{max,abs}$.

DFT Calculation by Gaussian 09 Program⁶

The optimized structures of **3a–c** were obtained by DFT calculation at the B3LYP/6-31G(d,p) level in the ground states and at the TD-B3LYP/6-31G(d,p) level in the excited states. TD-DFT calculation was carried out at the TD-B3LYP/6-31G(d,p) level in the ground states and the TD-CAM-B3LYP/6-31G(d,p) level in the excited states.

 Table S2. Cartesian coordinates of optimized structure of 3a in the ground state

 calculated at the B3LYP/6-31G(d,p) level

Constan Consult of		Coordinates (Angstroms)	
Center Symbol -	Х	Y	Z
С	1.0326284	-2.335271	-0.1212723
С	-0.4389243	-2.4236046	-0.1337621
С	1.4683263	-1.0335088	0.2477378
С	1.9483974	-3.339275	-0.4458182
С	3.3136538	-3.064631	-0.4135078
С	2.8430497	-0.7935089	0.2735652
С	3.785692	-1.7901036	-0.0584249
С	-1.0173544	-1.1885322	0.2437616
С	-1.2392131	-3.51032	-0.4940915
С	-2.6265234	-3.3716508	-0.4880579
С	-2.4041047	-1.0676116	0.2164809
С	-3.2334307	-2.151605	-0.1419661
В	0.1631507	-0.1267503	0.6195056
Н	1.608109	-4.3345386	-0.7193424
Н	4.0238918	-3.8532205	-0.6438064
Н	3.2163188	0.1985662	0.5148595
С	5.2404031	-1.4997795	-0.0407419
Н	-0.7967532	-4.4553149	-0.7986806
Н	-3.247122	-4.2074324	-0.7973822
Н	-2.8685507	-0.1201165	0.4812107
С	-4.7095963	-2.006641	-0.1607129
С	-0.1778777	1.4287032	0.2440309
С	-0.7966137	2.0149584	1.3675628
С	-0.1038058	2.2378341	-0.9270516
С	-0.6006816	3.5496797	-0.8540442
С	-1.2851004	3.318731	1.4149862
С	-1.1870599	4.125811	0.2833231
С	0.5144985	1.7729821	-2.272399
Н	-0.5323389	4.1703303	-1.7368782
С	-0.9195026	1.0805756	2.5434421
Н	-1.7341548	3.6868949	2.3319209
С	-1.6895589	5.5805856	0.2379436
С	2.0565859	1.7834057	-2.1588008
С	0.0267608	0.3606186	-2.6566932

С	0.1375765	2.6993679	-3.452387
Н	2.4212513	2.7863132	-1.9111902
Н	2.4078474	1.0924367	-1.3928289
Н	2.5109706	1.4846064	-3.1108703
Н	0.3451013	-0.3970604	-1.9442604
Н	-1.0652646	0.3254704	-2.7247542
Н	0.4356299	0.081282	-3.6341882
Н	-0.9471186	2.8018657	-3.5629616
Н	0.5708615	3.7002371	-3.3614448
Н	0.5268755	2.2689437	-4.3804531
С	-0.5154529	6.5264046	-0.1083774
С	-2.7891933	5.7143399	-0.8423929
С	-2.2854325	6.0316601	1.5849825
Н	-3.1487814	5.4230221	1.8736164
Н	-1.5475785	5.9839416	2.3927975
Н	-2.625501	7.0696194	1.5104342
Н	0.2745325	6.4621386	0.6470976
Н	-0.0698906	6.2849557	-1.0776582
Н	-0.8613325	7.5654891	-0.1502815
Н	-2.4182604	5.446374	-1.8357898
Н	-3.6400119	5.0629408	-0.6171426
Н	-3.1546056	6.7464741	-0.8898484
Н	-0.8164404	1.5715007	3.5187072
Н	-1.8757349	0.5469676	2.5363236
Ν	0.1587191	0.0602711	2.3533821
С	1.4468639	0.6306589	2.8428773
С	-0.1207317	-1.1840756	3.1165368
Н	1.6748024	1.5357837	2.2806525
Н	1.3587044	0.8727391	3.9070979
Н	2.2398984	-0.1002464	2.6977786
Н	-0.1273055	-0.96975	4.1903459
Н	-1.0848755	-1.5873666	2.8126244
Н	0.6571067	-1.9162316	2.894988
С	6.1026377	-2.0584666	-1.0007157
С	5.8040189	-0.6604543	0.9370951
С	7.1678218	-0.3887253	0.9561141
С	7.4683201	-1.7925535	-0.9859471
С	8.0074435	-0.9557748	-0.0062179
Н	5.1684118	-0.2367779	1.7080347
Н	7.5861457	0.2484328	1.7281035
Н	5.6927914	-2.6904307	-1.7819673
Н	8.117023	-2.2320959	-1.7357659
С	-5.5489535	-3.0626854	0.2369085
С	-5.3148184	-0.8075107	-0.5779722
С	-6.6986373	-0.6664108	-0.5924599
С	-6.9335619	-2.9287354	0.2209412

С	-7.5149278	-1.727657	-0.1929139
Н	-4.6929519	0.0123878	-0.9222951
Н	-7.1481244	0.2605926	-0.9318569
Н	-5.1088926	-3.9926137	0.582767
Н	-7.5648781	-3.7545475	0.5309619
С	-9.0069185	-1.5569063	-0.1507317
F	-9.4256154	-1.0786199	1.0468783
F	-9.4426241	-0.6862814	-1.0894818
F	-9.6564392	-2.7265787	-0.3491776
С	9.4713055	-0.6172616	-0.0166642
F	9.7189946	0.5299102	-0.6940346
F	9.9551732	-0.4392501	1.2345641
F	10.2111061	-1.5846295	-0.603734

Conton Symphol		Coordinates (Angstroms)	
Center Symbol -	Х	Y	Z
С	-1.4481131	-2.3583282	-0.1578762
С	-0.0067046	-2.6698707	-0.1730473
С	-2.5104802	-3.2126427	-0.4636007
С	-1.6778108	-1.0027744	0.2011411
С	-2.9990682	-0.554302	0.2335761
С	-3.8180214	-2.7322329	-0.4195049
С	-4.0878582	-1.3975835	-0.0745332
Н	-3.217311	0.4726679	0.5157909
Н	-2.3280535	-4.2458488	-0.748042
Н	-4.6396616	-3.3906638	-0.6857922
С	-5.4822411	-0.8893086	-0.0342701
С	0.6182663	-3.86355	-0.5406701
С	0.7555483	-1.5405428	0.2109199
С	2.1451791	-1.6347945	0.1851952
С	2.0106248	-3.9395262	-0.5341583
С	2.7994816	-2.8308199	-0.1807558
В	-0.2502877	-0.3109305	0.5803421
Н	2.7505866	-0.7579251	0.405658
Н	0.0351599	-4.733515	-0.8324277
Н	2.4955598	-4.8759279	-0.7941516
С	4.2814031	-2.916681	-0.2022975
С	-5.7931068	0.4112754	-0.4686712
С	-6.5331959	-1.6939418	0.4403309
С	-7.8427238	-1.2182466	0.4781148
С	-7.1021835	0.8884323	-0.4284018
С	-8.1341491	0.0762143	0.0446729
Н	-6.3148262	-2.6934346	0.8046542
Н	-8.6359927	-1.8576438	0.8553545
Н	-5.0045406	1.0424291	-0.8670773
Н	-7.3179157	1.8941635	-0.7781461
Н	-9.1543049	0.4475566	0.0744489
С	5.0604134	-2.2644898	0.7693773
С	4.9512278	-3.6525145	-1.1958726
С	6.3422398	-3.7360559	-1.214493
С	6.4517157	-2.3446177	0.7500423
С	7.1002891	-3.082362	-0.2416036
Н	4.3740991	-4.140511	-1.9754627
Н	6.8356829	-4.3048625	-1.9976375
Н	4.5662047	-1.7083425	1.5602963
Н	7.0302878	-1.8369151	1.5168324
Н	8.1843556	-3.1460618	-0.2567785

 Table S3. Cartesian coordinates of optimized structure of 3b in the ground state

 calculated at the B3LYP/6-31G(d,p) level

С	0.3173633	1.1805213	0.2190881
С	0.3680245	1.9997338	-0.94625
С	1.0012948	1.6680982	1.3515389
С	1.6648353	2.891188	1.4139042
С	1.0413224	3.2294354	-0.8592015
С	1.6901615	3.7117151	0.2878924
С	0.9862216	0.7160453	2.518897
Н	2.151306	3.1867424	2.3381171
С	-0.2958526	1.6330696	-2.3000861
Н	1.0696143	3.8591041	-1.7379951
С	2.3880333	5.0837676	0.2591473
С	0.228514	2.4945573	-3.4729537
С	-0.0212974	0.1640547	-2.6820223
С	-1.8202397	1.8741409	-2.2008807
С	3.0294725	5.4374488	1.6142029
С	3.5029728	5.0758512	-0.8133625
С	1.3563385	6.1843144	-0.0843152
Н	0.8938179	6.018155	-1.0613616
Н	0.5558397	6.2167327	0.6621509
Н	1.8395909	7.1678218	-0.1075589
Н	4.2534353	4.3101759	-0.5913584
Н	3.1051355	4.8718492	-1.8115458
Н	4.0082944	6.047945	-0.8476708
Н	2.2853507	5.4857698	2.4162428
Н	3.7969136	4.7118009	1.9032652
Н	3.5108715	6.4187492	1.5512906
Н	-2.2725222	1.2455944	-1.4337154
Н	-2.0317352	2.9217481	-1.9592623
Н	-2.3066978	1.6411778	-3.1555537
Н	-0.0570718	3.5477341	-3.3873964
Н	1.3181603	2.4392225	-3.5664205
Н	-0.2046499	2.1239881	-4.4074906
Н	1.0536586	-0.0346149	-2.73653
Н	-0.4594249	-0.5372364	-1.9754535
Н	-0.4557295	-0.0500729	-3.6651257
Ν	-0.2272895	-0.135801	2.3215677
Н	1.8555148	0.0500004	2.5032095
Н	0.9572229	1.2080138	3.4988775
С	-0.1321665	-1.4124711	3.0752279
С	-1.4213622	0.6102257	2.8123965
Н	-1.2995508	0.8358284	3.8771136
Н	-1.5185121	1.5393306	2.2516443
Н	-2.3109353	0.0011431	2.6656515
Н	0.765526	-1.9477472	2.7714117
Н	-0.1010613	-1.2096055	4.1510617
H	-1.0054371	-2.023852	2.8431732

Conton Symbol		Coordinates (Angstroms)	
Center Symbol	Х	Y	Ζ
С	-2.8837685	-0.8766197	0.2342589
С	-3.8308125	-1.8776393	-0.0723073
С	-3.3575116	-3.1618779	-0.3897092
С	-1.9922334	-3.4414322	-0.4074921
С	-1.0736874	-2.4330358	-0.1056851
С	-1.5096541	-1.1211829	0.225195
С	0.3977292	-2.5266237	-0.0955232
С	0.9764394	-1.2911356	0.2807092
В	-0.2074973	-0.2205492	0.6164936
С	1.2016245	-3.6172512	-0.4347786
С	2.5894525	-3.4829769	-0.4059223
С	3.1985585	-2.2630356	-0.0620594
С	2.3645031	-1.1746361	0.2741824
С	0.152275	1.3319156	0.2461896
С	0.7507477	1.9181374	1.3803741
С	1.248549	3.218193	1.4326489
С	1.1824883	4.0209131	0.2955624
С	0.6152702	3.4452268	-0.8517585
С	0.1092689	2.1372122	-0.9287289
С	-0.4848181	1.6675785	-2.2828509
С	0.0127923	0.2546354	-2.6528292
С	-0.0909342	2.5910867	-3.4591944
С	-2.0287337	1.6745456	-2.1938305
С	1.7005714	5.4703426	0.2542639
С	0.5435784	6.4271202	-0.1184882
С	2.8225589	5.5883415	-0.804706
С	2.2750006	5.9210723	1.6107227
С	0.8415007	0.9863813	2.5613615
Ν	-0.2416722	-0.02347	2.3545853
С	0.0099645	-1.2668148	3.1279145
С	-1.5347111	0.5601711	2.8140843
Н	-3.2583071	0.1101575	0.495502
С	-5.2847877	-1.5837951	-0.056097
Н	-4.0666481	-3.941106	-0.6539282
Н	-1.6530926	-4.4406816	-0.6688619
Н	0.7610972	-4.5692947	-0.7207486
Н	3.2129878	-4.3407811	-0.6410472
С	4.6752676	-2.1230499	-0.0623854
Н	2.825709	-0.2123775	0.4875803
Н	1.6808667	3.5864566	2.3576461
Н	0.5716673	4.0623037	-1.7388273

 Table S4. Cartesian coordinates of optimized structure of 3c in the ground state calculated

 at the B3LYP/6-31G(d,p) level

Н	1.1059127	0.2226613	-2.7002263
Н	-0.3157929	-0.5009008	-1.9426252
Н	-0.3779059	-0.0297544	-3.6364941
Н	0.995352	2.6914751	-3.5548415
Н	-0.4679299	2.1591912	-4.3917851
Н	-0.5236805	3.593045	-3.3756352
Н	-2.3865752	0.9859186	-1.4285679
Н	-2.3991358	2.6783221	-1.9571877
Н	-2.4671144	1.368686	-3.1513523
Н	0.1135087	6.1847769	-1.0945499
Н	-0.261043	6.3748862	0.622427
Н	0.9011106	7.4624466	-0.1593614
Н	2.4675945	5.322333	-1.8044149
Н	3.2018117	6.6158549	-0.8473961
Н	3.6601036	4.9262936	-0.5618948
Н	1.5212751	5.8842118	2.4043536
Н	3.1258731	5.304178	1.9181392
Н	2.627533	6.9551757	1.5386952
Н	0.7263493	1.4819069	3.5332178
Н	1.7925964	0.4435266	2.5710943
Н	-0.0002422	-1.0476325	4.2009661
Н	-0.7721971	-1.9907587	2.8951662
Н	0.9741761	-1.6825315	2.8414549
Н	-1.4668042	0.8055221	3.8793221
Н	-2.332483	-0.1621586	2.6536124
Н	-1.7422937	1.4655819	2.2444868
С	-5.7880199	-0.3529303	-0.5003665
С	-6.2178202	-2.5310953	0.409854
С	-7.578443	-2.2612557	0.4311451
С	-7.153929	-0.0639276	-0.4838877
С	-8.0593258	-1.0220249	-0.0154592
Н	-5.8643389	-3.4870993	0.784494
Н	-8.291565	-2.9911514	0.8003259
Н	-5.1032331	0.39156	-0.8951541
Н	-7.4961106	0.8974477	-0.8482543
0	-9.4137541	-0.8514067	0.0478188
С	5.4728628	-2.7732205	-1.0146728
С	5.3365398	-1.3284771	0.8946984
С	6.7171663	-1.1927588	0.8996698
С	6.8634709	-2.6501706	-1.0234973
С	7.4946597	-1.8550236	-0.0609052
Н	4.7556924	-0.826352	1.6624876
Н	7.2210102	-0.5866704	1.6455844
Н	4.9981096	-3.3708571	-1.7869262
Н	7.4358806	-3.1643002	-1.7864824
0	8.8444997	-1.6609139	0.0287484

С	9.6784606	-2.3170099	-0.9120759
Н	9.5776361	-3.4084426	-0.8522259
Н	9.4644491	-1.9949453	-1.9394349
Н	10.7013697	-2.0371766	-0.6556207
С	-9.9531861	0.3868059	-0.3844786
Н	-9.568832	1.2266059	0.2088611
Н	-9.7423341	0.573854	-1.4453707
Н	-11.0323342	0.3121247	-0.242177

Conton Compleal		Coordinates (Angstroms)	
Center Symbol –	Х	Y	Z
С	1.000493	-2.39064	0.003163
С	-0.41669	-2.47453	-0.00638
С	1.45268	-1.03861	0.307267
С	1.948649	-3.41211	-0.27923
С	3.290389	-3.11791	-0.28912
С	2.812633	-0.78797	0.279095
С	3.777822	-1.79473	-0.01318
С	-1.01444	-1.18641	0.297393
С	-1.25053	-3.58613	-0.30864
С	-2.61524	-3.42292	-0.34072
С	-2.38529	-1.05023	0.205607
С	-3.23678	-2.14963	-0.09718
В	0.158253	-0.12475	0.662409
Н	1.616228	-4.42536	-0.48805
Н	4.001767	-3.91445	-0.47598
Н	3.168531	0.221685	0.459014
С	5.205165	-1.50373	-0.02559
Н	-0.81621	-4.55303	-0.54749
Н	-3.23805	-4.26761	-0.61413
Н	-2.83254	-0.08112	0.407912
С	-4.68565	-1.99974	-0.14938
С	-0.1781	1.42437	0.274529
С	-0.79205	2.030067	1.391891
С	-0.10297	2.215671	-0.90983
С	-0.58795	3.532795	-0.85164
С	-1.27135	3.336775	1.42171
С	-1.16735	4.128617	0.27888
С	0.50995	1.73816	-2.25421
Н	-0.51586	4.141402	-1.7424
С	-0.92136	1.113015	2.58132
Н	-1.71748	3.720731	2.333464
С	-1.65682	5.5869	0.21572
С	2.051594	1.835928	-2.17279
С	0.097386	0.290877	-2.59407
С	0.056293	2.608692	-3.45112
Н	2.365675	2.864007	-1.96253
Н	2.453551	1.18939	-1.39216
Н	2.504496	1.531754	-3.12373
Н	0.488332	-0.43168	-1.88101
Н	-0.99181	0.185406	-2.6236
Н	0.49035	0.018338	-3.57979

 Table S5. Cartesian coordinates of optimized structure of 3a in the excited state

 calculated at the TD-B3LYP/6-31G(d,p) level

Н	-1.03485	2.664879	-3.52494
Н	0.451787	3.628041	-3.41089
Н	0.430528	2.16247	-4.37772
С	-0.47282	6.517162	-0.13957
С	-2.75315	5.718049	-0.8684
С	-2.25108	6.059099	1.556321
Н	-3.11988	5.461111	1.850771
Н	-1.51509	6.015821	2.366083
Н	-2.58273	7.098649	1.46827
Н	0.315372	6.454216	0.617857
Н	-0.02834	6.260423	-1.10538
Н	-0.80894	7.558777	-0.19382
Н	-2.38322	5.435485	-1.85807
Н	-3.61078	5.077722	-0.63733
Н	-3.10841	6.75299	-0.92804
Н	-0.82381	1.619438	3.549189
Н	-1.87995	0.582864	2.575588
Ν	0.15321	0.08792	2.413884
С	1.444593	0.657636	2.892019
С	-0.13452	-1.14504	3.189364
Н	1.663705	1.567025	2.332789
Н	1.369934	0.892815	3.95888
Н	2.238473	-0.06973	2.730588
Н	-0.17132	-0.91623	4.259651
Н	-1.08856	-1.56034	2.86728
Н	0.654363	-1.87455	3.000031
С	6.127578	-2.33344	-0.72
С	5.74713	-0.37895	0.654607
С	7.103654	-0.1041	0.639378
С	7.48409	-2.05368	-0.74111
С	7.990628	-0.93833	-0.05898
Н	5.095089	0.263884	1.235613
Н	7.489309	0.750304	1.185843
Н	5.766166	-3.18649	-1.28334
Н	8.161622	-2.70062	-1.28808
С	-5.55764	-3.10771	0.023776
С	-5.29225	-0.73633	-0.38236
С	-6.66846	-0.59188	-0.43498
С	-6.93474	-2.96141	-0.02286
С	-7.50629	-1.70257	-0.25434
Н	-4.66935	0.131983	-0.56648
Н	-7.10427	0.380867	-0.63671
Н	-5.1459	-4.08884	0.233124
Н	-7.57678	-3.82416	0.120002
С	-8.99479	-1.53329	-0.24678
F	-9.47161	-1.26082	0.995688

F	-9.39305	-0.51295	-1.04202
F	-9.63462	-2.6497	-0.66629
С	9.447945	-0.60275	-0.12235
F	9.733493	0.264053	-1.12874
F	9.882134	-0.01538	1.018927
F	10.21399	-1.699	-0.33121

Conton Sounds al		Coordinates (Angstroms)	
Center Symbol –	Х	Y	Ζ
С	-1.43436	-2.4247	-0.03949
С	-0.05159	-2.73223	-0.03559
С	-2.53816	-3.28492	-0.29606
С	-1.66187	-1.0036	0.227392
С	-2.9654	-0.53949	0.182464
С	-3.81589	-2.78073	-0.3025
С	-4.07937	-1.38539	-0.07041
Н	-3.16016	0.507702	0.394589
Н	-2.37207	-4.33783	-0.50899
Н	-4.64318	-3.44094	-0.53922
С	-5.44363	-0.86828	-0.07862
С	0.602215	-3.96381	-0.31761
С	0.741549	-1.54402	0.255105
С	2.118267	-1.62872	0.167135
С	1.974502	-4.01122	-0.36668
С	2.788259	-2.84414	-0.13945
В	-0.24758	-0.3102	0.581863
Н	2.707216	-0.72444	0.297844
Н	0.023303	-4.86434	-0.50571
Н	2.460506	-4.96211	-0.55569
С	4.24292	-2.92046	-0.21893
С	-5.71888	0.500742	-0.33555
С	-6.55914	-1.71244	0.164118
С	-7.85708	-1.21781	0.155566
С	-7.01853	0.987984	-0.34656
С	-8.10198	0.13559	-0.10023
Н	-6.39685	-2.75894	0.399577
Н	-8.68636	-1.89038	0.357491
Н	-4.90242	1.175862	-0.56915
Н	-7.19315	2.038709	-0.56151
Н	-9.11772	0.519051	-0.11092
С	5.076309	-1.95999	0.412779
С	4.894306	-3.95876	-0.93655
С	6.2791	-4.02405	-1.02005
С	6.459693	-2.03308	0.329372
С	7.077425	-3.0651	-0.3878
Н	4.302548	-4.69554	-1.46888
Н	6.7421	-4.82488	-1.5902
Н	4.627086	-1.16765	1.001809
Н	7.065534	-1.28591	0.834803
Н	8.159895	-3.12043	-0.45123

 Table S6. Cartesian coordinates of optimized structure of 3b in the excited state

 calculated at the TD-B3LYP/6-31G(d,p) level

С	0.322975	1.178525	0.233488
С	0.388378	1.979513	-0.94549
С	0.990167	1.686822	1.368077
С	1.644062	2.915254	1.419309
С	1.050061	3.21628	-0.86654
С	1.677777	3.720732	0.282353
С	0.973971	0.757179	2.555371
Н	2.116092	3.227922	2.345494
С	-0.24929	1.594071	-2.30848
Н	1.086079	3.833731	-1.75362
С	2.362265	5.099154	0.244448
С	0.332221	2.413081	-3.48599
С	-0.01217	0.10947	-2.65559
С	-1.76827	1.880454	-2.25752
С	2.98537	5.475943	1.601884
С	3.488933	5.09077	-0.81573
С	1.322619	6.184337	-0.12332
Н	0.871293	6.000434	-1.10249
Н	0.514596	6.217916	0.614943
Н	1.795728	7.172555	-0.15477
Н	4.244541	4.335194	-0.57704
Н	3.104518	4.872129	-1.81604
Н	3.984898	6.067473	-0.85493
Н	2.232355	5.526445	2.395394
Н	3.75696	4.76182	1.908154
Н	3.45736	6.461334	1.531886
Н	-2.25925	1.276164	-1.49444
Н	-1.95679	2.936984	-2.03718
Н	-2.23458	1.646064	-3.22183
Н	0.066058	3.473658	-3.43945
Н	1.423036	2.333628	-3.53994
Н	-0.07695	2.026458	-4.42472
Н	1.056022	-0.12901	-2.66795
Н	-0.5003	-0.56344	-1.95374
Н	-0.41892	-0.10512	-3.65035
Ν	-0.23397	-0.09745	2.387096
Н	1.845413	0.092974	2.548099
Н	0.955432	1.274019	3.523482
С	-0.13198	-1.36133	3.152826
С	-1.43411	0.648313	2.84773
Н	-1.3466	0.870053	3.917442
Н	-1.51275	1.580967	2.289051
Н	-2.32256	0.044484	2.66942
Н	0.750674	-1.91094	2.82706
Н	-0.06428	-1.15194	4.226572
Н	-1.01852	-1.96644	2.955875

Center Symbol —	Coordinates (Angstroms)			
	Х	Y	Z	
С	-2.49244	-1.1739	-0.16134	
С	-3.35048	-2.28529	-0.10697	
С	-2.78109	-3.60187	-0.04497	
С	-1.41686	-3.78928	-0.04044	
С	-0.55943	-2.667	-0.09237	
С	-1.10218	-1.30991	-0.16694	
С	0.859728	-2.62131	-0.06544	
С	1.312988	-1.23104	-0.11067	
В	0.075408	-0.297	-0.2031	
С	1.7889	-3.68233	-0.00023	
С	3.139363	-3.4051	0.022711	
С	3.621896	-2.05463	-0.00697	
С	2.691127	-1.00107	-0.07162	
С	0.060547	1.291431	-0.1322	
С	0.146463	1.856214	1.167	
С	0.164198	3.241203	1.37222	
С	0.091893	4.137069	0.308832	
С	0.012612	3.581441	-0.97425	
С	0.000654	2.203128	-1.23108	
С	-0.06868	1.731512	-2.71135	
С	1.149936	0.844381	-3.05445	
С	-0.05804	2.903283	-3.71794	
С	-1.37301	0.940516	-2.96365	
С	0.097033	5.666581	0.490225	
С	-1.20908	6.260758	-0.08829	
С	1.307414	6.276798	-0.25551	
С	0.19287	6.078271	1.971484	
С	0.236054	0.975055	2.404589	
Ν	-1.02492	0.314116	2.759097	
С	-0.82349	-0.71514	3.76538	
С	-2.06616	1.249564	3.152884	
Н	-2.91907	-0.17579	-0.15956	
С	-4.80999	-2.12057	-0.1173	
Н	-3.43967	-4.46378	-0.04295	
Н	-1.00764	-4.79546	-0.00245	
Н	1.447681	-4.7135	0.044431	
Н	3.849685	-4.21964	0.113542	
С	5.066567	-1.7926	0.02845	
Н	3.05181	0.021593	-0.1361	
Н	0.235648	3.602826	2.392789	
Н	-0.03658	4.26606	-1.81031	
Н	2.085249	1.39561	-2.90697	

 Table S7. Cartesian coordinates of optimized structure of 3c in the excited state

 calculated at the TD-B3LYP/6-31G(d,p) level

Н	1.187576	-0.05342	-2.43552
Н	1.105042	0.529341	-4.10386
Н	0.848303	3.511956	-3.63496
Н	-0.08958	2.499663	-4.73527
Н	-0.92622	3.56039	-3.60175
Н	-1.42548	0.038557	-2.35358
Н	-2.24946	1.558802	-2.73774
Н	-1.43583	0.638832	-4.01623
Н	-1.32184	6.033511	-1.15235
Н	-2.08431	5.8586	0.432719
Н	-1.21804	7.351328	0.023581
Н	1.275863	6.060449	-1.32729
Н	1.322597	7.366531	-0.13544
Н	2.248902	5.878574	0.136968
Н	-0.65381	5.700661	2.553938
Н	1.114743	5.713378	2.435978
Н	0.190753	7.170352	2.053985
Н	0.612795	1.584073	3.251535
Н	0.972152	0.18191	2.236519
Н	-0.45515	-0.31822	4.73301
Н	-1.76812	-1.23503	3.95619
Н	-0.09819	-1.45035	3.403349
Н	-1.82359	1.804786	4.082088
Н	-3.00243	0.707115	3.320808
Н	-2.23059	1.981372	2.358653
С	-5.4183	-1.01693	-0.7481
С	-5.66877	-3.05761	0.504445
С	-7.0426	-2.89389	0.506235
С	-6.79803	-0.84276	-0.76242
С	-7.62366	-1.78349	-0.12924
Н	-5.24422	-3.90817	1.027075
Н	-7.69462	-3.60657	1.000124
Н	-4.79791	-0.29432	-1.26707
Н	-7.21906	0.014288	-1.27404
0	-8.97981	-1.71484	-0.07726
С	5.997765	-2.72004	-0.47956
С	5.586749	-0.5926	0.569597
С	6.94559	-0.33906	0.598346
С	7.367832	-2.476	-0.46552
С	7.853147	-1.27833	0.077654
Н	4.908121	0.134926	1.001015
Н	7.338724	0.576265	1.027885
Н	5.642717	-3.6394	-0.9329
Н	8.042643	-3.21296	-0.88388
0	9.165923	-0.93488	0.149801
С	10.13435	-1.84333	-0.35786

Н	10.1069	-2.80084	0.176581
Н	9.992585	-2.02417	-1.43039
Н	11.10295	-1.36878	-0.1975
С	-9.62806	-0.60731	-0.68965
Н	-9.31218	0.342028	-0.24047
Н	-9.43843	-0.57676	-1.76954
Н	-10.6948	-0.75149	-0.5155

Figure S21. (a) Overall, front and side views of the optimized structure and (b) selected molecular orbitals and energy levels of **3a** in the ground state calculated at the B3LYP/6-31G(d,p) level. Hydrogen atoms are omitted for clarity.

Figure S22. (a) Overall, front and side views of the optimized structure and (b) selected molecular orbitals and energy levels of **3b** in the ground state calculated at the B3LYP/6-31G(d,p) level. Hydrogen atoms are omitted for clarity.

Figure S23. (a) Overall, front and side views of the optimized structure and (b) selected molecular orbitals and energy levels of **3c** in the ground state calculated at the B3LYP/6-31G(d,p) level. Hydrogen atoms are omitted for clarity.

Figure S24. (a) Overall, front and side views of the optimized structure of **3a** in the excited state and (b) selected molecular orbitals and energy levels of **3a** with the optimized structure in the excited state calculated at the TD-B3LYP/6-31G(d,p) level. Hydrogen atoms are omitted for clarity.

Figure S25. (a) Overall, front and side views of the optimized structure of **3b** in the excited state and (b) selected molecular orbitals and energy levels of **3b** with the optimized structure in the excited state calculated at the TD-B3LYP/6-31G(d,p) level. Hydrogen atoms are omitted for clarity.

Figure S26. (a) Overall, front and side views of the optimized structure of 3c in the excited state and (b) selected molecular orbitals and energy levels of 3c with the optimized structure in the excited state calculated at the TD-B3LYP/6-31G(d,p) level. Hydrogen atoms are omitted for clarity.

Table S8. TD-DFT calculation result of **3a** with optimized structure in the ground statecalculated at the TD-B3LYP/6-31G(d,p) level

Transition Energy (Wave Length)	Assignment with Contribution	Oscillator Strength f
3.5822 eV	HOMO→LUMO (100%)	1.0350
(346.11 nm)		
3.9560 eV	HOMO−1→LUMO (94.76%)	0.0632
(313.41 nm)	HOMO→LUMO+2 (5.24%)	
4.1478 eV	HOMO−4→LUMO (19.20%)	0.0494
(298.92 nm)	HOMO−1→LUMO (6.01%)	
	HOMO→LUMO+2 (74.78%)	
4.2712 eV	HOMO−3→LUMO (3.28%)	0.0001
(290.28 nm)	HOMO→LUMO+1 (96.72%)	
4.3522 eV	HOMO−2→LUMO (100%)	0.0009
(284.88 nm)		
4.5013 eV	HOMO−5→LUMO (59.32%)	0.0146
(275.44 nm)	HOMO−4→LUMO (5.61%)	
	HOMO−3→LUMO (4.93%)	
	HOMO-3→LUMO+2 (2.69%)	
	HOMO→LUMO+3 (6.15%)	
	HOMO→LUMO+4 (3.89%)	
	HOMO→LUMO+5 (7.62%)	
	HOMO→LUMO+8 (9.79%)	

Table S9. TD-DFT calculation result of **3b** with optimized structure in the ground state calculated at the TD-B3LYP/6-31G(d,p) level

Transition Energy (Wave Length)	Assignment with Contribution	Oscillator Strength f
3.6867 eV	HOMO→LUMO (100%)	0.9302
(336.30 nm)		
4 0824 eV	HOMO-4 \rightarrow LUMO (10.20%)	0.0169
(303.70 nm)	HOMO $+$ \rightarrow LUMO (10.2070)	0.0109
(505.70 mil)	HOMO→LUMO+1 (68.23%)	
4 2 2 7 1 1 1		0.1100
4.22/1 eV	HOMO-4 \rightarrow LUMO (3.85%)	0.1102
(293.31 nm)	HOMO- $1 \rightarrow$ LUMO (79.01%)	
	HOMO→LUMO+1 (17.14%)	
4.5342 eV	HOMO−5→LUMO (10.34%)	0.0004
(273.44 nm)	HOMO−3→LUMO (14.96%)	
	HOMO→LUMO+2 (74.70%)	
4.5769 eV	HOMO−5→LUMO (42.84%)	0.0051
(270.89 nm)	HOMO−3→LUMO (7.41%)	
· · · · ·	HOMO-3→LUMO+1 (2.71%)	
	HOMO→LUMO+2 (7.02%)	
	HOMO→LUMO+3 (17.35%)	
	HOMO→LUMO+4 (4.00%)	
	HOMO→LUMO+5 (8.32%)	
	HOMO→LUMO+7 (10.34%)	
4 6265 eV	HOMO−3→LUMO (6 18%)	0.0009
(267.99 nm)	HOMO-2 \rightarrow LUMO (93.8%)	0.0007
(207.)) iiii)	1101010 2 (101010 (75.070)	

Table S10. TD-DFT calculation result of **3c** with optimized structure in the ground state calculated at the TD-B3LYP/6-31G(d,p) level

Transition Energy (Wave Length)	Assignment with Contribution	Oscillator Strength f
3.5975 eV	HOMO→LUMO (100%)	1.1195
(344.64 nm)		
399.45 eV	HOMO−6→LUMO (6.13%)	0.0830
(310.39 nm)	HOMO−2→LUMO (4.45%)	
	HOMO→LUMO+1 (89.42%)	
4.2374 eV	HOMO−2→LUMO (25.22%)	0.0412
(292.59 nm)	HOMO−1→LUMO (72.04%)	
	HOMO→LUMO+1 (2.74%)	
4.3650 eV	HOMO−2→LUMO (67.29%)	0.0368
(284.04 nm)	HOMO−1→LUMO (23.93%)	
	HOMO→LUMO+3 (5.05%)	
	HOMO→LUMO+4 (3.73%)	
4.4519 eV	HOMO−5→LUMO (6.21%)	0.0071
(278.50 nm)	HOMO−2→LUMO (2.30%)	
	HOMO−1→LUMO+1 (2.45%)	
	HOMO→LUMO+2 (35.53%)	
	HOMO→LUMO+3 (50.86%)	
	HOMO→LUMO+5 (2.65%)	
4.4827 eV	HOMO−7→LUMO (34.59%)	0.0088
(276.59 nm)	HOMO−1→LUMO+3 (2.96%)	
	HOMO→LUMO+2 (5.12%)	
	HOMO→LUMO+3 (3.51%)	
	HOMO→LUMO+4 (13.99%)	
	HOMO→LUMO+5 (5.13%)	

Transition Energy (Wave Length)	Assignment with Contribution	Oscillator Strength f
3.3350 eV	HOMO−3→LUMO+1 (2.56%)	1.2475
(371.77 nm)	HOMO→LUMO (97.44%)	
4.2652 eV	HOMO−5→LUMO (2.80%)	0.0201
(290.69 nm)	HOMO−4→LUMO (17.93%)	
	HOMO−1→LUMO (6.24%)	
	HOMO→LUMO+2 (70.29%)	
	HOMO→LUMO+4 (2.74%)	
4.5506 eV	HOMO−10→LUMO (2.89%)	0.0882
(272.46 nm)	HOMO−5→LUMO (16.86%)	
	HOMO−4→LUMO (3.71%)	
	HOMO−3→LUMO (4.24%)	
	HOMO−1→LUMO (44.97%)	
	HOMO→LUMO+1 (18.56%)	
	HOMO→LUMO+2 (6.19%)	
	HOMO→LUMO+3 (2.58%)	
	HOMO→LUMO+8 (5.62%)	
4.6038 eV	HOMO−3→LUMO (16.92%)	0.0530
(269.31 nm)	HOMO−1→LUMO (20.43%)	
	HOMO→LUMO+1 (62.65%)	
4.7164 eV	HOMO-5→LUMO (39.17%)	0.0677
(262.88 nm)	HOMO-4→LUMO+1 (2.54%)	
	HOMO−3→LUMO+2 (5.26%)	
	HOMO−1→LUMO (20.58%)	
	HOMO→LUMO+1 (4.37%)	
	HOMO→LUMO+2 (3.25%)	
	HOMO→LUMO+3 (12.48%)	
	HOMO→LUMO+8 (12.34%)	
4.9651 eV	HOMO-8→LUMO+3 (5.14%)	0.0259
(249.71 nm)	HOMO−7→LUMO (34.01%)	
	HOMO−7→LUMO+1 (17.76%)	
	HOMO−5→LUMO (5.07%)	
	HOMO−4→LUMO (10.39%)	
	HOMO−3→LUMO+3 (12.18%)	
	HOMO−3→LUMO+4 (11.39%)	
	HOMO→LUMO+2 (4.06%)	
	HOMO→LUMO+3 (10.08%)	

Table S11. TD-DFT calculation result of **3a** with optimized structure in the excited state calculated at the TD-CAM-B3LYP/6-31G(d,p) level

HOMO→LUMO+4 (5.42%) HOMO→LUMO+5 (48.14%)

Transition Energy (Wave Length)	Assignment with Contribution	Oscillator Strength f
3.3445 eV	HOMO→LUMO (100%)	1.0160
(370.71 nm)		
4.1904 eV	HOMO−4→LUMO (13.54%)	0.0907
(295.88 nm)	HOMO−1→LUMO (2.57%)	
	HOMO→LUMO+1 (78.71%)	
	HOMO→LUMO+2 (5.18%)	
4.6115 eV	HOMO-5→LUMO (33 55%)	0.0621
(268.86 nm)	$HOMO = 4 \rightarrow U I MO (3.03\%)$	0.0021
(200.00 mil)	HOMO-4 \rightarrow LUMO+2 (2.74%)	
	HOMO = 2 - UIMO (2.95%)	
	$HOMO-2 \rightarrow I UMO+1 (3.12\%)$	
	$HOMO = 1 \longrightarrow UMO (38.94\%)$	
	HOMO-1 \rightarrow LUMO+1 (2 79%)	
	$HOMO \rightarrow I UMO + 2 (12.89\%)$	
	HOMO \rightarrow LUMO+2 (12.3976)	
	HOMO \rightarrow LUMO+8 (13 72%)	
	Home (15.72/0)	
4.7790 eV	HOMO−5→LUMO (17.55%)	0.0143
(259.44 nm)	HOMO−2→LUMO (19.20%)	
	HOMO−2→LUMO+1 (3.80%)	
	HOMO−1→LUMO (10.32%)	
	HOMO→LUMO+2 (34.13%)	
	HOMO→LUMO+3 (8.13%)	
	HOMO→LUMO+8 (6.87%)	
4 7865 eV	HOMO-10→LUMO (2 72%)	0 1926
(259.03 nm)	HOMO-9 \rightarrow LUMO (3.06%)	0.1720
(25).05 mil)	HOMO-5 \rightarrow LUMO (6.62%)	
	HOMO- $4 \rightarrow I \cup MO$ (4.66%)	
	HOMO-2 \rightarrow LUMO (16 39%)	
	HOMO-1 \rightarrow LUMO (37.40%)	
	HOMO \rightarrow LUMO+1 (11 90%)	
	HOMO→LUMO+2 (17.25%)	
	<pre></pre>	
5.0194 eV	HOMO−8→LUMO+6 (5.14%)	0.0024
(247.01 nm)	HOMO−7→LUMO (34.01%)	
	HOMO−7→LUMO+2 (17.76%)	
	HOMO−7→LUMO+7 (5.07%)	
	HOMO-6→LUMO (10.39%)	

 Table S12. TD-DFT calculation result of 3b with optimized structure in the excited state

 calculated at the TD-CAM-B3LYP/6-31G(d,p) level

HOMO-2→LUMO+3 (12.18%) HOMO-2→LUMO+4 (11.39%) HOMO-2→LUMO+6 (4.06%) HOMO→LUMO+3 (10.08%) HOMO→LUMO+5 (5.42%) HOMO→LUMO+6 (48.14%)

Table S13. TD-DFT	calculation res	ult of 3c with	optimized	structure	in the	excited	state
calculated at the TD-0	CAM-B3LYP/	6-31G(d,p) le	evel				

(Wave Length)	ransition Energy (Wave Length) Assignment with Contribution	
2.2736 eV	HOMO−5→LUMO (7.62%)	0.0821
(545.33 nm)	HOMO→LUMO (92.38%)	
3.5365 eV	HOMO−6→LUMO (3.34%)	0.0180
(350.58 nm)	HOMO−2→LUMO (57.85%)	
	HOMO−1→LUMO (34.55%)	
	HOMO→LUMO+1 (4.26%)	
3.6494 eV	HOMO−12→LUMO (4.69%)	0.0034
(339.74 nm)	HOMO−3→LUMO (86.53%)	
	HOMO−3→LUMO+1 (2.58%)	
	HOMO−2→LUMO (4.07%)	
	HOMO−1→LUMO (2.12%)	
3.8288 eV	HOMO−6→LUMO (17.93%)	0.4399
(323.82 nm)	HOMO−5→LUMO (8.00%)	
	HOMO−2→LUMO (2.57%)	
	HOMO−1→LUMO (6.06%)	
	HOMO→LUMO+1 (65.45%)	
4.0016 eV	HOMO−10→LUMO (3.86%)	0.0281
(309.84 nm)	HOMO−9→LUMO (4.46%)	
	HOMO−3→LUMO (6.21%)	
	HOMO−2→LUMO (34.75%)	
	HOMO−1→LUMO (50.73%)	
4.2232 eV	HOMO−6→LUMO (19.28%)	1.1657
(293.58 nm)	HOMO−5→LUMO (48.15%)	
	HOMO−1→LUMO+2 (3.74%)	
	HOMO→LUMO (5.35%)	
	HOMO→LUMO+1 (23.48%)	

Figure S27. Potential energy surfaces of S_0 and S_1 of (a) **3a**, (b) **3b**, (c) **3c** in the ground and excited states calculated at the CAM-B3LYP/6-31G(d,p) and TD-CAM-B3LYP/6-31G(d,p) levels.

	$\lambda_{\max,abs}$ (nm) ^a	$arepsilon_{ m max,abs}$ (×10 ⁴ M ⁻¹ cm ⁻¹) ^a	$\lambda_{\max,FL}$ $(nm)^b$	$arPhi_{ m F}$ (%) ^c	$\tau_{1/2}$ (ns) ^d	$ au_{1/2}$ (ns) ^e	ratio (I ₃ /I ₄)
3 a	335	4.25	373, 390	81	$\frac{1.14 (100\%)}{\chi^2 = 1.01}$		0
3b	327	5.31	365, 382, 511	56	12.6 (87%) 1.09 (13%) $\chi^2 = 1.03$	13.1 (95%) 0.03 (5%) $\chi^2 = 1.26$	0.11
3c	334	4.42	374, 390, 535	55	22.2 (86%) 0.91 (13%) $\chi^2 = 1.10$	22.1 (100%) $\chi^2 = 1.07$	0.54

Table S14. Photophysical data of **3a–c** in cyclohexane $(1.0 \times 10^{-5} \text{ M})$

^{*a*}Absorption maxima.

^{*b*}Fluorescence maxima excited at $\lambda_{max,abs}$.

^{*c*}Absolute quantum yields calculated by an integrating sphere method.

^dEmission life times excited at 292 nm and detected around 390 nm.

^eEmission life times excited at 375 nm and detected at 511 nm and 535 nm.

^fRelative emission intensity. I₃ and I₄ were the intensities at $\lambda_{max,FL}$ and at 511 nm for **3b**

and 535 nm for **3c**, respectively.

References

(1) T. Higashi, *ABSCOR. Program for Absorption Correction*.; Rigaku Corporation: Japan, **1995**.

(2) G. M. Sheldrick, SHELX-97. Programs for Crystal Structure Analysis.; University of Göttingen: Germany, **1997**.

(3) Altomare, A.; Burla, M. C.; Camalli, M.; Cascarano, G. L.; Giacovazzo, C.;

Guagliardi, A.; Moliterni, A. G. G.; Polidori, G.; Spagna, R. J. Appl. Cryst. 1999, 32, 115.

(4) Yadokari-XG, Software for Crystal Structure Analyses, Wakita, K. (**2001**); Release of Software (Yadokari-XG 2009) for Crystal Structure Analyses, Kabuto, C.; Akine, S.; Nemoto, T.; Kwon, E. *J. Cryst. Soc. Jpn.*, **2009**, *51*, 218.

(5) Matsumoto, T.; Tanaka, K.; Tanaka, K.; Chujo, Y. *Dalton Trans.* 2015, *44*, 8697.
(6) Gaussian 09, Revision D.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, M. J.; Klene, M.; Knox, J. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009. (b) NBO Version 3.1, Glendening, E. D.; Reed, A. E.; Carpenter, J. E.; Weinhold, F. Gaussian, Inc., Wallingford CT, 2009.