Autologous growth of Nickel Oxyhydroxides with In Situ Electrochemical Iron Doping for Efficient Oxygen Evolution Reactions

Majid Asnavandi and Chuan Zhao*

School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia. Email address: <u>chuan.zhao@unsw.edu.au</u>

OER Electrode	Onset potentials (V vs. RHE)	Tafel Slope (mV.dec ⁻¹)	Current density (mA cm ⁻²) @ overpotential (mV)	Reference
Autologous r-NiFe/NF	1.42	34.7	400 @ 310	This work
Autologous NiFe/NF	1.42	48.1	250 @ 310	This work
NiFe/roughened NF	1.47	50.1	500 @ 329	1
Electrodeposited NiFe/NF	1.44	28	80 @ 270	2
r-NiCo ₂ O ₄ *	1.46	63.4	10 @ 379	3
Autologous Fe:Ni(OH) ₂ /NF	-	48.5	511 @ 300	4
Ni _x Fe _{1-x} Se ₂ /NF	-	28	10 @ 195	5
Autologous Ni:Pi-Fe/NF	-	37	500 @ 290	6
NiFe-LDH/NF	1.46	43	200 @ 270	7
NiFe/NiCo ₂ O ₄ /NF	1.47	38.8	1200 @ 340	8
NiO-Fe/FTO	1.48	30	10 @ 480	9
Ni_3S_2 nanorods/NF*	1.387	159.3	10 @ 187	10

 Table S1. OER activities of some benchmark NiFe electrocatalysts in 1 M KOH

* In 0.1 M KOH

Figure S1. Several cycles of Ni in 6 M KOH at the potential of 0.7 and -0.8 V at 25°C and scan rate of 200 mV s⁻¹

Figure S2. Optical image of the a) NF, b) roughened NF with graphite counter electrode, c) roughened NF with iron counter electrode

Figure S3. Double-layer capacitance measurements for determining ECSA of reduced NiFe-OOH/NF electrode in 1 M KOH, a) cyclic voltammetry in a non-Faradaic region of the voltammogram at scan rates of 0.005, 0.01, 0.02, 0.025, 0.05, 0.1, 0.2, 0.4, and 0.8 V s⁻¹, b) cathodic and anodic currents at 0.09 V vs. Ag/AgCl versus scan rate, c) comparison of the double layer capacitance of NF before and after roughening

Figure S4. Energy-dispersive X-ray spectroscopy of fabricated NiFe electrode

Figure S5. a) High resolution Fe 2*p* and b) Ni 2*p* XPS spectrum of roughened nickel foams

Figure S6. TEM images of the nanostructured Ni-Fe oxyhydroxide formed on the roughened NF by iron counter electrode

Figure S7. a) XRD, b) SEM, c) TEM images of the roughened NF (with iron counter electrode) after NaBH₄ reduction treatment

Figure S8. High resolution Ni 2*p* XPS spectrum of roughened nickel with iron counter electrode, before and after the NaBH₄ treatment

Figure S9. EPR spectra of Ni, roughened Ni, and reduced roughened Ni by NaBH₄

Figure S10. EIS response at potentials of 1.55 V vs. RHE of roughened NiFe-OOH/NF and electrodeposited NiFe-OOH/NF

Figure S11. OER polarizations obtained with the roughened NFs and pristine NF at scan rate of 5 mV s⁻¹ in 1 M KOH

Figure S12. Tafel slopes of the prepared electrodes in 1 M KOH

Figure S13. Electrochemical stability of reduced NiFe-OOH/NF electrode at potential of 1.6 V vs. RHE in 30 wt.% KOH

Figure S14. a) High resolution Fe 2*p* and b) Ni 2*p* XPS spectrum, c) SEM images of the reduced roughened nickel with iron counter electrode after stability test in Figure S13

References:

- Guo, D.; Qi, J.; Zhang, W.; Cao, R. Surface Electrochemical Modification of a Nickel Substrate to Prepare a NiFe-Based Electrode for Water Oxidation. *ChemSusChem* 2017, 10 (2), 394–400.
- (2) Lu, X.; Zhao, C. Electrodeposition of Hierarchically Structured Three-Dimensional Nickel–iron Electrodes for Efficient Oxygen Evolution at High Current Densities. *Nat. Commun.* 2015, *6*, 6616.
- (3) Zhu, C.; Fu, S.; Du, D.; Lin, Y. Facilely Tuning Porous NiCo2O4 Nanosheets with Metal Valence-State Alteration and Abundant Oxygen Vacancies as Robust Electrocatalysts Towards Water Splitting. *Chem. - A Eur. J.* 2016, *22*, 4000–4007.
- (4) Zhang, W.; Qi, J.; Liu, K.; Cao, R. A Nickel-Based Integrated Electrode from an Autologous Growth Strategy for Highly Efficient Water Oxidation. Adv. Energy Mater. 2016, 6 (12), 1–6.
- (5) Xu, X.; Song, F.; Hu, X. A Nickel Iron Diselenide-Derived Efficient Oxygen-Evolution Catalyst. *Nat. Commun.* 2016, 7, 12324.
- Li, Y.; Zhao, C. Iron-Doped Nickel Phosphate as Synergistic Electrocatalyst for Water Oxidation. *Chem. Mater.* 2016, 28, 5659–5666.
- (7) Lu, Z.; Xu, W.; Zhu, W.; Yang, Q.; Lei, X.; Liu, J.; Li, Y.; Sun, X.; Duan, X. Three-Dimensional NiFe Layered Double Hydroxide Film for High-Efficiency Oxygen Evolution Reaction. *Chem. Commun.* **2014**, *50* (49), 6479–6482.
- (8) Xiao, C.; Li, Y.; Lu, X.; Zhao, C. Bifunctional Porous NiFe/NiCo2O4/Ni Foam Electrodes with Triple Hierarchy and Double Synergies for Efficient Whole Cell Water Splitting. *Adv. Funct. Mater.* 2016, *26*, 3515–3523.
- (9) Nardi, K. L.; Yang, N.; Dickens, C. F.; Strickler, A. L.; Bent, S. F. Creating Highly Active Atomic Layer Deposited NiO Electrocatalysts for the Oxygen Evolution Reaction. *Adv. Energy Mater.* 2015, 5 (17), 1–10.
- (10) Zhou, W.; Wu, X.-J.; Cao, X.; Huang, X.; Tan, C.; Tian, J.; Liu, H.; Wang, J.; Zhang, H. Ni3S2 nanorods/Ni Foam Composite Electrode with Low Overpotential for Electrocatalytic Oxygen Evolution. *Energy Environ. Sci.* 2013, 6 (10), 2921.