Electronic Supplementary Material (ESI) for Materials Chemistry Frontiers. This journal is © the Partner Organisations 2017

Electronic Supplementary Information

Improving the Moisture Stability of Perovskite Solar Cells by Using PMMA/P3HT Based Hole-transport Layers

Soumya Kundu and Timothy L. Kelly*

Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada.

Experimental section

Materials

ITO-coated glass ($R_s = 20 \ \Omega \cdot \text{sq}^{-1}$) substrates were purchased from Delta Technologies. Poly(3hexylthiophene) (P3HT, electronic grade, $M_{\rm w} \sim 50$ kDa) and zinc acetate dihydrate were purchased from Rieke Metals Inc., and Alfa Aesar, respectively. Ag (99.99%) and Au pellets (99.99%) were purchased from Kurt J. Lesker. PMMA ($M_{\rm W} \sim 350$ kDa), lead(II) iodide (99%), methylamine (37% in absolute (57% in $H_2O)$, 4-*tert*-butylpyridine ethanol), hydriodic acid (96%) and lithium bis(trifluoromethanesulfonyl)imide (Li-TFSI, 99%) were purchased from Sigma-Aldrich. All solvents were purchased from Fisher Scientific. All chemicals were used without any further purification.

Characterization

A Cary 6000i spectrophotometer was used to record UV-vis spectra. Powder X-ray diffraction measurements were carried out on a PANalytical Empyrean diffractometer configured using a cobalt X-ray source (Co K_{α} , $\lambda = 1.79$ Å). The data were collected with a 0.0469° step size (20). Scanning electron microscopy was carried out on a Hitachi SU8010 microscope operating at a 1.0–5.0 kV landing voltage. AFM measurements were performed using a Dimensions Hybrid Nanoscope system (Veeco Metrology Group) under tapping mode in air.

Synthesis of ZnO nanoparticles

ZnO nanoparticles were synthesized by previously reported procedures. 1,2 Zinc acetate dihydrate (2.95 g, 13.4 mmol) was first dissolved in methanol (125 mL) at 70 °C followed by the addition of a solution of KOH (1.48 g, 23 mmol) in methanol (65 mL) over a period of 10-15 minutes. The reaction mixture was allowed to stir continuously at 65 °C for an additional 2.5 h. The reaction mixture was allowed to cool down to room temperature and the precipitate was washed twice with methanol (2 × 50 mL). Finally, chloroform (10 mL), n-butanol (50 ml) and methanol (5 ml) were added to prepare a translucent dispersion of ZnO nanoparticles (~ 6 mg/mL). The solution was filtered using a 0.45 μ m PVDF syringe filter prior to use.

Synthesis of methylammonium iodide

Methylammonium iodide was synthesized according to literature procedures.^{3, 4} First, a solution of methylamine (30 mL, 37% in EtOH) was added to 200 mL of ethanol and cooled to 0 °C, followed by the dropwise addition of hydriodic acid (30 mL). The reaction mixture was allowed to stir continually at 0 °C for 2 h. The product was recovered by removing the solvent on a rotary evaporator at 50 °C for 1 h. It was washed with diethyl ether (3 \times 50 mL), dissolved in ethanol (50 mL), and reprecipitated in diethyl ether to obtain crystalline methylammonium iodide. The powder was dried under high vacuum for 1 day at 65 °C.

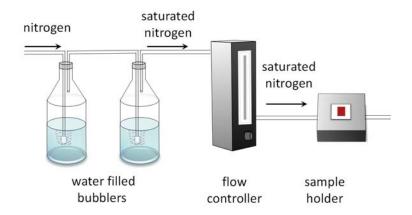
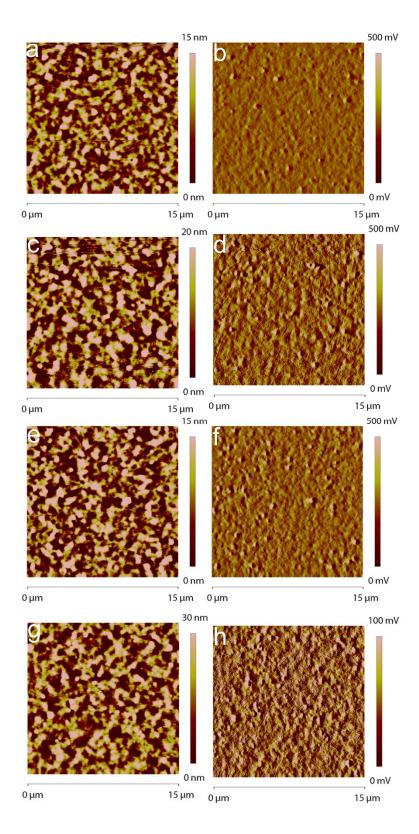



Fig. S1. Schematic illustration of the RH control setup for in situ UV/vis spectroscopy.

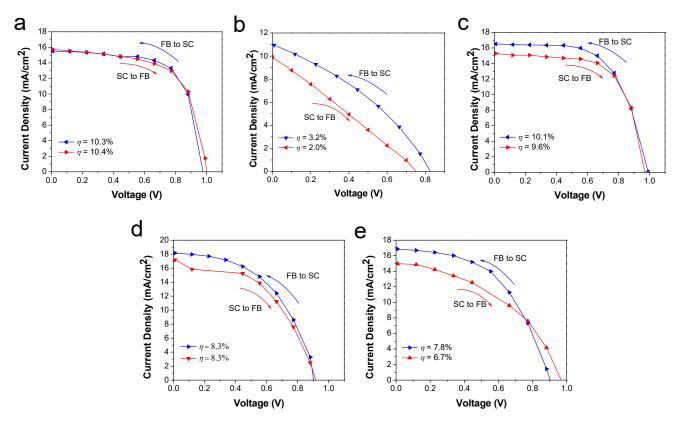
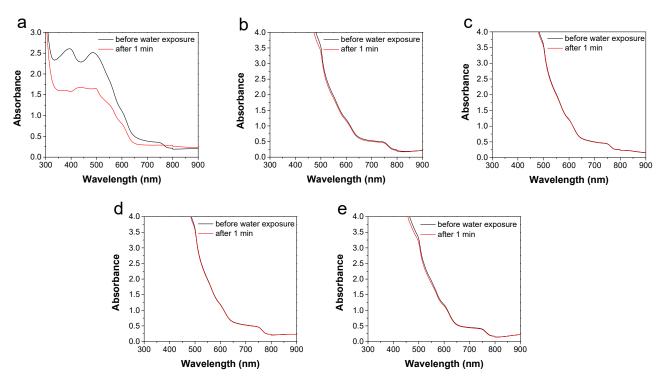
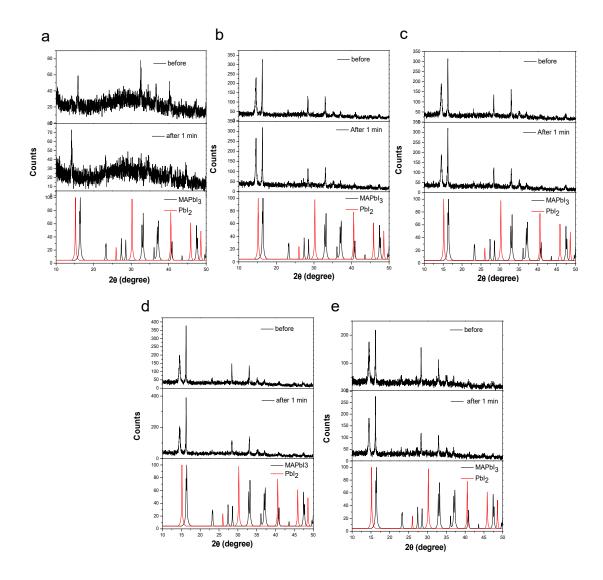
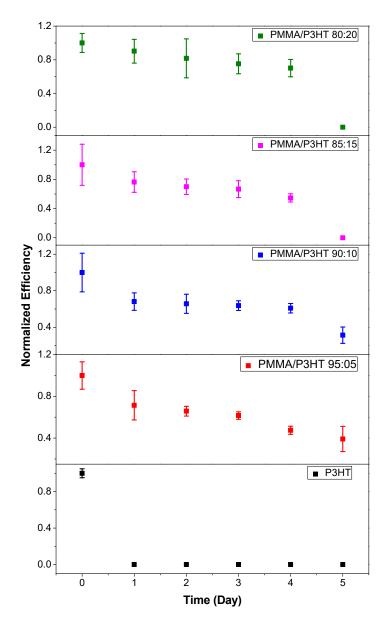

Fig. S2. Schematic illustration of the RH control setup for measuring device lifetime.

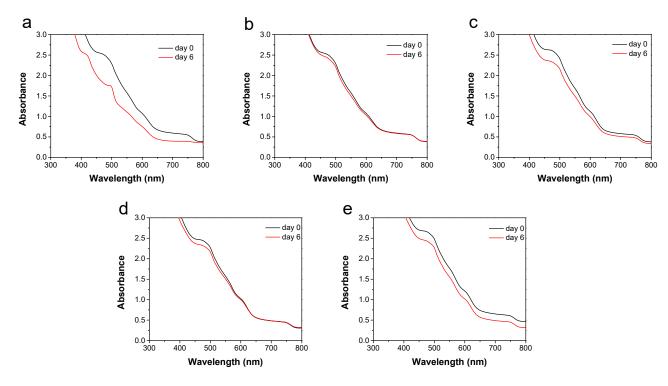

Fig. S3. AFM images of PMMA/P3HT thin films on SiO₂/ZnO/CH₃NH₃PbI₃/P3HT substrates with different PMMA/P3HT ratios: (a) 95:5, height image; (b) 95:5, phase image; (c) 90:10, height image; (d) 90:10, phase image; (e) 85:15, height image; (f) 85:15, phase image; (g) 80:20, height image; (h) 80:20, phase image.

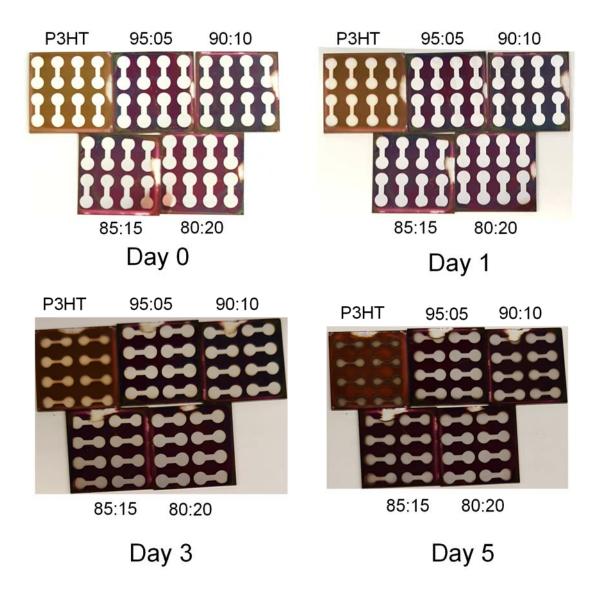
Table S1. Average device performance parameters for ITO/ZnO/CH₃NH₃PbI₃/HTLs/Ag devices. The associated uncertainties represent plus-or-minus one standard deviation from the mean.

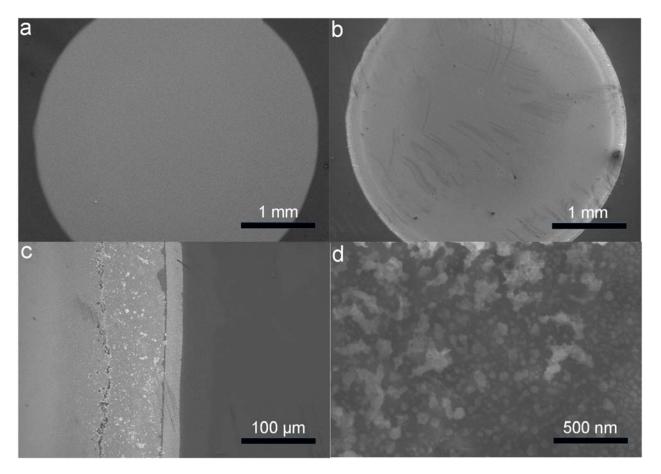

HTLs	# of devices	V _{oc} (V)	J _{sc} (mA/cm ²)	Fill Factor	PCE (%)	Best Efficiency (%)
PMMA/P3HT 80:20	60	0.89 ± 0.06	16 ± 1	48 ± 5	6.8 ± 0.7	8.4
PMMA/P3HT 85:15	60	0.92 ± 0.04	16 ± 1	49 ± 5	7.5 ± 0.9	9.3
PMMA/P3HT 90:10	60	0.92 ± 0.06	16 ± 1	53 ± 6	8.1 ± 0.9	10.6
PMMA/P3HT 95:5	40	0.89 ± 0.04	11 ± 2	41 ± 5	4.2 ± 0.6	5.4
РЗНТ	30	0.97 ± 0.03	15.8 ± 0.8	62 ± 5	9.1 ± 0.9	11.0

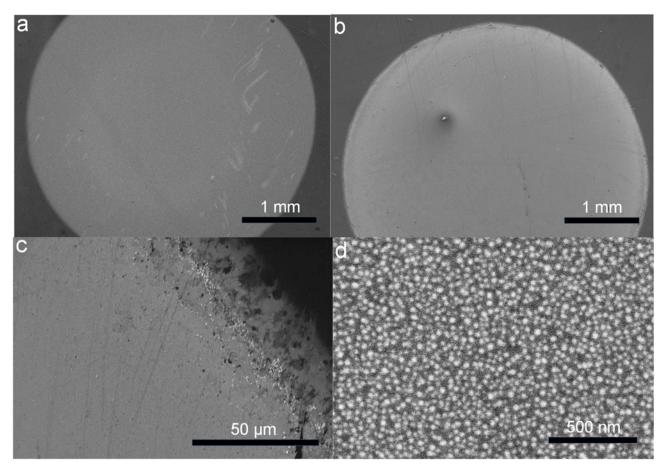

Fig. S4. *J-V* curves in both scan directions for devices with various HTLs: (a) P3HT; (b) 95:5 (c) 90:10, (d) 85:15, (e) 80:20 PMMA/P3HT. *J-V* curves were measured at a scan rate of $0.1 \text{ V} \cdot \text{s}^{-1}$.


Fig. S5. Photographs of polymer-coated perovskite films exposed to liquid water for 1 minute: (a) 90:10 PMMA/P3HT-coated, before; (b) 90:10 PMMA/P3HT-coated, after; (c) P3HT-coated, before; (d) P3HT-coated, after.


Fig. S6. Absorption spectra of polymer-coated perovskite films, before and after exposure to liquid water for 1 minute: (a) P3HT; (b) 95:5, (c) 90:10, (d) 85:15, and (e) 80:20 PMMA/P3HT.


Fig. S7. pXRD patterns of polymer-coated perovskite films, before and after exposure to liquid water for 1 minute: (a) P3HT; (b) 95:5, (c) 90:10, (d) 85:15, and (e) 80:20 PMMA/P3HT.


Fig. S8. Normalized power conversion efficiency as a function of time for perovskite solar cells with silver electrodes, stored in a 35-45% RH environment. Error bars denote plus-or-minus one standard deviation from the mean.


Fig. S9. Absorption spectra of perovskite solar cells with various HTLs before and after aging in air (RH = 35 – 45%): (a) P3HT; (b) 95:5, (c) 90:10, (d) 85:15, and (e) 80:20 PMMA/P3HT.

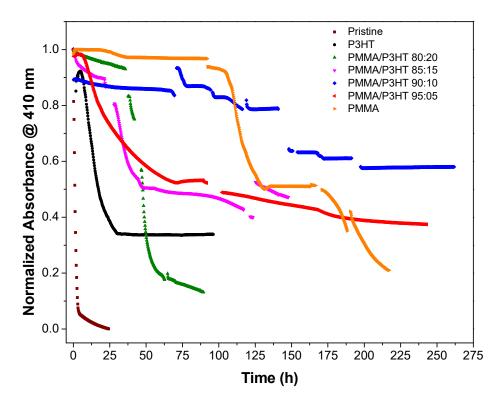

Fig. S10. Photographs of the ITO/ZnO/CH₃NH₃PbI₃/HTLs/Ag devices after aging in air; the corrosion of the silver electrode in the P3HT control samples is easily apparent.

Fig. S11. SEM images of the silver electrode of a P3HT control device: (a) as prepared, and (b-d) after 6 days of aging in air; (c) and (d) are higher magnification images of the electrode edge.

Fig. S12. SEM images of the silver electrode of a 95:5 PMMA/P3HT device: (a) as prepared, (b-d) after 6 days of aging in air; (c) and (d) are higher magnification images of the electrode edge.

Fig. S13. Normalized absorbance at 410 nm as a function of time for polymer-coated perovskite films exposed to a $99 \pm 1\%$ RH environment.

References

- 1. W. J. E. Beek, M. M. Wienk, M. Kemerink, X. Yang and R. A. J. Janssen, *J. Phys. Chem. B*, 2005, **109**, 9505-9516.
- 2. D. Liu and T. L. Kelly, *Nat. Photonics*, 2014, **8**, 133-138.
- 3. M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami and H. J. Snaith, *Science*, 2012, **338**, 643-647.
- 4. H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Grätzel and N.-G. Park, *Sci. Rep.*, 2012, **2**, 591.