Electronic Supplementary Information

Metal-free bifunctional carbon electrocatalysts derived from zeolitic imidazolate framework for efficient water splitting

Yaojie Lei^a, Li Wei^{a,*}, Shengli Zhai^{a,b}, Yanqing Wang^c, H. Enis Karahan^b, Xuncai Chen^a, Zheng Zhou^a, Chaojun Wang^a, Sui Xiao^a, and Yuan Chen^{a,*}

- a. The University of Sydney, School of Chemical and Biomolecular Engineering, Sydney, New South Wales, Australia, 2006
- b. Nanyang Technological University, School of Chemical and Biomedical Engineering, 637459, Singapore
- c. The University of Tokyo, Faculty of Engineering, Yayoi, Bunkyo-ku, Tokyo, Japan, 113-0032
- * Corresponding authors.

Email: l.wei@sydney.edu.au (L. Wei), yuan.chen@sydney.edu.au (Y. Chen)

Fig. S1. SEM images of (a–b) ZiF-8-C2, (c–d) ZiF-8-C4, and (e–f) ZiF-8-C8 carbon materials at the different magnifications.

Fig. S2. Contact angle measurement of ZIF-8-C0~C8. (Left) photos and (right) contact angles.

Fig. S3. XPS survey scans of ZIF-8 derived carbon materials upon the cathodic polarization treatment in $0.5 \text{ M H}_2\text{SO}_4$ over the different periods of time.

Fig. S4. Deconvolution of the high-resolution XPS spectra of C in the ZIF-8 derived carbon materials.

Fig. S5. Deconvolution of the high-resolution XPS spectra of N in the ZIF-8-derived carbon materials.

Fig. S6. Deconvolution of the high-resolution XPS spectra of O in the ZIF-8-derived carbon materials.

		DE aV	Relative abundance, %				
	ZIF-8-C	D.L., ev	C0	C2	C4	C6	C8
	C in total		90.7	90.3	85.9	82.7	78.9
С	sp ² -C	283.4	75.65	73.51	72.6	71.19	64.36
	Aryl-C	284.8	12.95	10.82	7.95	6.22	9.81
	С=О	287.7	0.35	1.03	5.72	4.20	2.60
	СN/СО	286.2	8.56	10.82	6.12	4.92	2.60
	0=C- <u>0</u>	289.2	0.22	1.29	4.03	10.98	14.76
	shakeup	290.8	2.26	2.53	3.58	2.50	5.88
	N in total		8.3	7.3	6.4	5.1	1.3
N	Pyridinic-	398.3	15.41	20.50	27.00	18.84	12.36
	Pyrrolic-	399.8	48.36	42.50	14.20	11.4	5.64
	Graphitic-	401.3	35.50	32.44	21.94	22.89	14.61
	Oxidized-	403.1	0.72	4.56	36.85	46.87	67.39
	O in total		1.0	2.4	7.3	12.2	19.8
0	-C=O	530.8	10.25	26.34	47.39	27.06	12.92
	СО/О	532.1	12.63	54.57	9.82	6.23	5.17
	0=C- <u>0</u>	533.3	4.69	11.58	20.84	48.48	72.00
	NO	534.6	2.48	2.04	18.34	13.96	6.34
	Chemisorbed H ₂ O	536.7	69.95	5.47	3.62	4.27	3.58

Table S1. Relative abundance of C, N, and O in different chemical bonds in the ZIF-8derived carbon materials (ZIF-8-C0~C8) calculated from the deconvolution of highresolution XPS spectra.

			Abundance, at.%				
		B.E., ev -	C0	C2	C4	C6	C8
С	sp ² -C	283.4	68.61	66.38	62.36	58.87	50.78
	Aryl-C	284.8	11.75	9.77	6.83	5.14	7.74
	С=О	287.7	0.32	0.93	4.91	3.47	2.05
	СN/СО	286.2	7.76	9.77	5.26	4.07	2.05
	0=C- <u>0</u>	289.2	0.20	1.16	3.46	9.08	11.65
	shakeup	290.8	2.05	2.28	3.08	2.07	4.64
Ν	Pyridinic-	398.3	1.28	1.50	<u>1.73</u>	0.96	0.16
	Pyrrolic-	399.8	4.01	3.10	0.91	0.58	0.07
	Graphitic-	401.3	2.95	2.37	1.40	1.17	0.19
	Oxidized-	403.1	0.06	0.33	2.36	2.39	0.88
0	-C=O	530.8	0.10	0.63	3.46	3.30	2.56
	СО/О	532.1	0.13	1.31	0.72	0.76	1.02
	O=C- <u>O</u>	533.3	0.05	0.28	1.52	<u>5.91</u>	14.26
	NO	534.6	0.02	0.05	1.34	1.70	1.26
	Chemisorb ed H ₂ O	536.7	0.70	0.13	0.26	0.52	0.71

Table S2. Absolute atomic abundance of C, N, and O in different types of chemical bonds inZIF-8-C0~C8 calculated from the high-resolution XPS analysis data in Table S1.

Fig. S7. The relative potentials of ZIF-8-C6 and Pt/C electrocatalysts in the HER tests carried out at 10 mA/cm² in 0.5 M H_2SO_4 electrolyte for 10 hours. The inset shows the chronoamperometric curve of ZIF-8-C6.

Carbon catalyst	Tafel slope, mV/dec	$\eta_{10}, \ \mathrm{mV}$	loading, mg/cm ²	j_0 , mA/cm ²	Ref.
ZIF-8-C6	54.7	155	0.3	6.3×10^{-2}	This work
N,P-graphene	91.0	420	0.2	$2.4 imes 10^{-4}$	ACS Nano 2014 , 8, 5290
N,S-graphene	81	276	N/A	8.4×10^{-3}	Angew. Chem. Int. Ed., 2015 , 54, 2131
C ₃ N ₄ @NG	51.5	240	0.1	$3.5 imes 10^{-4}$	Nat. Commun., 2014 , 5, 3783
C ₃ N ₄ @G	54	207	0.14	$4.0 imes 10^{-2}$	Angew. Chem. Int. Ed., 2014 , 53, 13934
C3N4@N- graphene-750	49.1	80	N/A	4.3×10^{-1}	ACS Nano, 2015 , 9, 931
p-MWCNT-ao- cp	71.3	N/A	N/A	1.6×10^{-3}	Chem. Commun., 2014 , 50, 9340
N,S-carbon	80.5	290	N/A	N/A	Angew. Chem. Int. Ed., 2015 , 54, 2131
C ₆₀ (OH) ₈	78	N/A	0.002	$7 imes 10^{-4}$	Angew. Chem. Int. Ed., 2013 , 52, 10867
N-carbon	109	239	N/A	N/A	Sci. Rep., 2014 , 4, 7557
N,P-bacteria- derived carbon	58.4	204	0.152	1.7×10^{-2}	J. Mater. Chem. A, 2015 , 3, 7210
B-carbon	99	310	N/A	N/A	Catal. Sci. Technol., 2014 , 4, 2023
NSC/MPA-5	99	240	0.25	4.810 ⁻³	Nano Energy, 2017 , 32, 336
N,S-CNT	67.8	120	0.285	N/A	Nano Energy, 2015 , 16, 357
N,S-carbon	57.4	97	0.285	N/A	J. Mater. Chem. A, 2015 , 3, 8840
N,P-carbon	79	213	0.2	2.43×10^{-2}	J. Mater. Chem. A, 2015 , 3, 12642
N-rich holey	157	510	0.216	6.38×10^{-3}	Nano Energy, 2015,

Table S3. Comparison of HER performance of recently reported metal-free carbonelectrocatalysts in $0.5 \text{ M H}_2\text{SO}_4$.

graphene (N-G)					15, 567
C ₃ N ₄ @S,Se-G	86	300	0.283	6.27×10^{-3}	J. Mater. Chem. A, 2015 , 3, 12810

Table S3. Comparison of HER performance of recently reported metal-free carbonelectrocatalysts in 0.1 M KOH.

Carbon catalyst	Tafel slope, mV/dec	η_{10},mV	Ref.
C6	97.4	336	This work
SHG	112	310	Adv. Mater., 2017 , 29, 1604942
N-rich holey graphene (N-G)	157	510	Nano Energy, 2015 , 15, 567
N,P-G	N/A	>600	ACS Nano, 2014 , 8, 5290
N,P-C	N/A	470	Angew. Chem. Int. Ed., 2016 , 128, 2270
N,O,P-G	154	450	Energy Environ. Sci., 2016 , 9, 1210
C ₃ N ₄ @N-G	N/A	>600	Nat. Commun., 2014 , 5, 3783
C ₃ N ₄ @S,Se-G	93	1100	J. Mater. Chem. A, 2015 , 3, 12810
C ₃ N ₄ @N,P-G	129	580	ChemCatChem, 2015 , 7, 3873

Fig. S8. EIS Nyquist plots of the ZIF-8-derived electrocarbocatalysts for OER in 0.1 M KOH electrolyte. All plots are recorded with the overpotential of 0.3 V. The insert shows the polarization resistance (R_P).

Table S5. Comparison of OER performance of recently reported metal-free carbonelectrocatalysts in 0.1 M KOH.

Catalyst	Electrolyte	Tafel slope, mV/dec	$\eta_{10},\ { m mV}$	Ref.
ZIF-8-C4	0.1 M KOH	78.5	476	This work
N, S co-doped graphitic sheets with holes	0.1 M KOH	71	370	Adv. Mater., 2017 , 29, 1604942
N-carbon film	0.1 M KOH	128	190	Adv. Sci., 2015 , 2, 1400015
N-doped CNT	0.1 M KOH	383	450	ACS Appl. Mater. Interfaces, 2015 , 7, 11991
N-doped graphite	0.1 M KOH	N/A	380	Nat. Commun., 2013 , 4, 2390
N-doped carbon	0.1 M KOH	N/A	390	Carbon, 2013 , 53, 130
Oxidized carbon cloth	0.1 M KOH	82	490	Chem. Comm., 2015 , 51, 1616
N,P-graphene	0.1 M KOH	70	340	ACS Catal., 2015 , 5, 4133
N,O-carbon hydrogel	0.1 M KOH	141	400	Adv. Mater., 2014 , 26, 2925
N,P-G	0.1 M KOH	59	420	Nano Energy, 2016 , 19, 373
N,O,P-G	0.1 M KOH	84	400	Energy Environ. Sci., 2016 , 9, 1210
g-C ₃ N ₄ /G	0.1 M KOH	68.5	580	ChemSusChem, 2014 , 7, 2125
N-G/CNT	0.1 M KOH	97	510	Small, 2014 , 10, 2251
N-GRW	0.1 M KOH	62	440	Sci. Adv., 2016 , 2, e1501122
Surface oxidized MWCNT	0.1 M KOH	72	450	J. Am. Chem. Soc, 2015 , 137, 2901
P-C ₃ N ₄	0.1 M KOH	61.6	400	Angew. Chem, Int. Ed., 2015 , 54, 4650
g-C ₃ N ₄ -CNT	0.1 M KOH	83	350	Angew. Chem. Int. Ed., 2014 , 53, 7281
N-Carbon nanocable	0.1 M KOH		520	Adv. Funct. Mater., 2014 , 24, 5956

Fig. S9. OER LSV curve of ZiF-8-C4 obtained at the different scan rates (from 5 to 100 mV/s) in 0.1 M KOH electrolyte.

Fig. S10. The relative potentials of ZIF-8-C4 and IrO_2 catalysts in the OER tests carried out at 10 mA/cm² in 0.1 M KOH electrolyte for 10 hours. The inset shows the chronoamperometric curve of ZIF-8-C4.

Fig. S11. Cyclic voltammetry (CV) scan curves of ZIF-8-C0~C8. The scan rates vary from 5 to 50 mV/s. (f) The calculated ECSA values for ZIF-8-C0~C8.

Electrochemical active surface area (ECSA) of ZIF-8-C0~C8 is determined by measuring the double layer capacitance (C_{dl}) of ZIF-8-C0~C8 in a non-Faradaic region (-0.1 to 0 V *vs*. SCE) and normalized by the specific capacitance of carbon surface, which is 20 mF/cm². C_{dl} value is calculated from the cyclic voltammetry scans performed from 5 to 50 mV/s.

Fig. S12. SEM images of (a) ZiF-8-C4 and (b) ZiF-8-C6 after the 8-hour electrolysis test in 0.1 M KOH.

Fig. S13. ECSA measurements of (a) ZiF-8-C4 and (b) ZiF-8-C6 after the 8-hour electrolysis

test in 0.1 M KOH.