Electronic Supporting Information

Pyridine coupled mono and bisbenzimidazoles as supramolecular gelators: Selective metal ion sensing and ion conductivity

Santanu Panja,^a Subhratanu Bhattacharya,^b Kumaresh Ghosh^a*

^aDepartment of Chemistry, University of Kalyani, Kalyani-741235, India, Email: ghosh_k2003@yahoo.co.in ^aDepartment of Physics, University of Kalyani, Kalyani-741235, India.

Table of contents

- 1. Results of gelation test for 1-6 (Table S1).
- 2. Temperature dependency of the gels of 1 and 2 (Fig. S1, S2).
- 3. Comparison of FTIR and emission spectra of 1 and 2 in sol and gel states (Fig. S3, S4).
- 4. Chemical responsiveness of the gel of 1 (Fig. S5).
- 5. Photograph showing the pH dependency of the DMSO: H₂O gels of 1 and 2 (Fig. S6).
- 6. Temperature dependency and chemical responsiveness of the gels of 3 and 4 (Fig. S7, S8, S9).
- 7. Suggested modes of interaction of 3 and 4 in gel states with FTIR comparisons (Fig. S10, S11).
- 8. Comparison of absorption and emission spectra of 3 and 4 in the sol and gel states (Fig. S12, S13).
- 9. MMX calculations (Fig. S14)
- 10. Change in fluorescence ratio of 1 upon addition of 10 equiv. amounts of different metal ions (Fig. S15)
- 11. Change in emission of 1 upon addition of 10 equiv. amount of different metal ions (Fig. S16).
- Job plots, non-linear binding constant curves and detection limits (from fluorescence) of 1 with Ag⁺ and Cu²⁺ ions (Fig. S17-S19).
- **13.** Selectivity study of **1** for Ag⁺ ions (Fig. S20).
- 14. Change in fluorescence ratio of 2 upon addition of 20 equiv. amounts of different metal ions (Fig. S21).
- 15. Change in emission of 2 upon addition of 20 equiv. amount of different metal ions (Fig. S22).
- **16.** Job plots, non-linear binding constant curves and detection limits (from fluorescence) of **2** with Ag⁺, Cu²⁺ and Hg²⁺ ions (Fig. S23-S25).
- 17. Job plots, non linear binding constant curves and detection limits of 3 and 4 for Ag⁺ (Fig. S26-S31).
- 18. Change in absorbance of 1 upon addition of 6 equiv. amount of different metal ions (Fig. S32).
- **19.** Job plots and nonlinear binding constant curves (from UV) of **1** for Ag^+ and Cu^{2+} (Fig. S33-S34).
- 20. Change in absorbance of 2 upon addition of 10 equiv. amount of different metal ions (Fig. S35).
- 21. Job plots and nonlinear binding constant curves (from UV) of 2 for Ag⁺, Cu²⁺ and Hg²⁺ (Fig. S36, S37).
- 22. Non liner binding constant data for 1-4 with respective metal ions (Table S2).
- 23. Comparison of ¹H NMR of compounds 1-4 with AgClO₄ (Fig. S38-S39).
- 24. Comparative view (Table S3)
- 25. Selected Spectra.

Table 1S. Results of gelation test for 1-6.

Solvent	1	2	3	4	5	6
CHCl ₃	Ι	PS	Ι	S	Ι	PS
DCM	Ι	Ι	Ι	S	Ι	Ι
CHCl ₃ : MeOH (100:2,v/v)	Ι	S	PS	S	Ι	S
CHCl ₃ : MeOH (1:1,v/v)	S	S	S	S	S	S
MeOH	S	S	S	S	S	S
Acetonitrile	Ι	PS	Ι	PS	Ι	Ι
n-Hexane	Ι	Ι	Ι	Ι	Ι	Ι
Diethyl ether	Ι	Ι	Ι	Ι	Ι	Ι
Cyclohexane	Ι	Ι	Ι	Ι	Ι	Ι
Ethylacetate	PS	S	S	S	S	S
THF	PS	S	S	S	S	S
DMF	S	S	S	S	S	S
DMSO	S	S	S	S	S	S
THF: H ₂ O (1:1, v/v)	Р	S	Р	S	Р	S
DMF: H ₂ O (1:1, v/v)	S	S	Р	S	PG	S
MeOH: H ₂ O (1:1, v/v) + Ag^+	Р	Р	G	S	PG	Р
MeOH: H ₂ O (1:2, v/v)	S	S	Р	S	Р	S
MeOH: H ₂ O (1:2, v/v) + Ag ⁺	Р	Р	Р	G	Р	Р
MeOH: H ₂ O (1:3, v/v)	G	S	Р	S	Р	S
MeOH: H ₂ O (1:6, v/v)	Р	G	Р	Р	Р	Р
DMSO: H ₂ O (1:1, v/v) + Ag^+	Р	Р	G	S	PG	Р
DMSO: H ₂ O (1:2, v/v)	S	S	Р	S	Р	S
DMSO: H ₂ O (1:2, v/v) + Ag^+	Р	Р	Р	G	Р	Р
DMSO: H ₂ O (1:3, v/v)	G	S	Р	S	Р	S
DMSO: H ₂ O (1:6, v/v)	Р	G	Р	Р	Р	Р
S = solution; I = insoluble; G = gel (minimum gelatination concentration for 1 = 3.8 mg/mL, 2 = 5 mg/mL, $3 = 4.9$ g/mL, $4 = 4.5$ g/mL); P = precipitation; PS = partially soluble.						

Fig. S1. Pictorial representation of the thermo reversibility of the DMSO: H₂O gels of (a) 1 and (b) 2.

Fig. S2. Variation of gel melting temperature (Tg) with increasing concentration of gelators from DMSO: H_2O solvent system.

Fig. S3. Comparison of FTIR spectra of (A) 1 and (B) 2 in amorphous (a) and gel (b) states.

Fig. S4. Comparison of emission spectra of 1 (a) and 2 (b) in sol and gel states.

Fig. S5. Chemical responsiveness of the gel of **1** [8 mg/ mL in DMSO: H₂O (1:3, v/v)] on successive addition of (a) Ag⁺ (c = 0.2 M) and Cl⁻ (b) Cu²⁺ (c = 0.2 M) and ethylene diamine.

Fig. S6. Photograph showing the pH dependency of the DMSO: H₂O gels of 1 (a) and 2 (b).

Fig. S7. Pictorial representation of thermo reversibility of the Ag^+ -induced gel of (a) 3 and (b) 4 in DMSO: H_2O .

Fig. S8. Variation of gel melting temperature (T_g) with increasing concentration of gelators **3** and **4** in DMSO: H₂O solvent in presence of 2 equiv. amounts of Ag⁺.

Fig. S9. Chemical responsiveness of the gels of (a) **3** [4.9 mg/ mL] and (b) **4** [4.5 mg/ mL] in DMSO: H₂O on successive addition of 2 equiv. amounts of Cl⁻ (c = 0.2 M) and Ag⁺ (c = 0.2 M) ions, respectively. The Cl⁻-induced disrupted gel was recovered by adding Ag⁺ solution after 4h and 2h for **3** and **4**, respectively.

Fig. S10. Suggested modes of interaction of (a) 3 and (b) 4 involving Ag^+ ions to form the networks responsible for gelation.

Fig. S11. FTIR spectra representing the change in stretching frequency in amorphous and gel states for (a) **3** and (b) **4**.

Fig. S12. Comparison of absorption spectra of 3 (a) and 4 (b) in the sol and gel states.

Fig. S13. Comparison of emission spectra of 3 (a) and 4 (b) in the sol and gel states.

Fig. S14. MMX calculations: (A) Hydrogen bonded dimmers of **4** (E = 78.76 kcal/mol, a = b = 2.00Å), **2** (E = 62.90 kcal/mol; Hydrogen bond: distance: 2.19 Å) and **6** (E = 67.77 kcal/mol; Hydrogen bond distance: 1.97 Å); (B) water assembled dimmers of **2** (E = 49.12 kcal/mol; a = 2.08, b = 1.93, c = 1.97, d = 1.72; all are in Å) and **6** (E = 51.83 kcal/mol; a = 1.94, b = 1.82, c = 1.74; all are in Å) [Calculation was done using PC model, version 9.2, serena software].

Change in emission of 1 with metal ions

Fig. S15. Change in fluorescence ratio ($\lambda_{ex} = 330 \text{ nm}$) of **1** ($c = 2.5 \times 10^{-5} \text{ M}$) at 442 nm upon addition of 10 equiv. amounts of metal ions ($c = 1.0 \times 10^{-3} \text{ M}$) in DMSO: H₂O (1:9, v/v).

Change in emission of 1 in DMSO: H₂O (1:9, v/v).

Fig. S16. Change in emission of 1 ($c = 2.5 \times 10^{-5}$ M) upon addition of 10 equiv. amount of (a) Pb²⁺, (b) Mg²⁺, (c) Co²⁺, (d) Ni²⁺, (e) Zn²⁺, (f) Cd²⁺, (g) Fe²⁺ and (h) Hg²⁺ ($c = 1.0 \times 10^{-3}$ M)) in DMSO: H₂O (1:9, v/v).

Fig. S17. Job plots of receptor 1 ($c = 2.5 \times 10^{-5} \text{ M}$) with (a) Ag⁺ and (b) Cu²⁺ from fluorescence.

Fig. S18. Non liner binding constant curves for 1 ($c = 2.5 \times 10^{-5} \text{ M}$) with (a) Ag⁺ and (b) Cu²⁺ ($c = 1.0 \times 10^{-3} \text{ M}$) in DMSO: H₂O (1:9, v/v) from fluorescence.

Fig. S19. Detection limits of **1** ($c = 2.5 \times 10^{-5} \text{ M}$) with (a) Ag⁺ and (b) Cu²⁺ ($c = 1.0 \times 10^{-3} \text{ M}$) in DMSO: H₂O (1:9, v/v) from fluorescence.

Fig. S20. Fluorescence response of **1** (c = $2.50 \times 10^{-5} \text{ M}$) upon addition of 10 equiv. amounts of Ag⁺ ions to the solution of **1** containing other metal ions in 10 equiv. amounts in DMSO: H₂O (1:9, v/v).

Change in emission of 2 with metal ions

Fig. S21. Change in fluorescence ratio ($\lambda_{ex} = 300 \text{ nm}$) of **2** ($c = 2.5 \text{ x } 10^{-5} \text{ M}$) at 382 nm upon addition of 20 equiv. amounts of metal ions ($c = 1.0 \text{ x } 10^{-3} \text{ M}$) in DMSO: H₂O (1:9, v/v).

Change in emission of 2 in DMSO: H₂O (1:9, v/v).

Fig. S22. Change in emission of **2** ($c = 2.5 \times 10^{-5}$ M) upon addition of 20 equiv. amount of (a) Pb²⁺, (b) Mg²⁺, (c) Co²⁺, (d) Ni²⁺, (e) Zn²⁺, (f) Cd²⁺, (g) Fe²⁺, (h) Hg²⁺, (i) Cu²⁺, (j) Ag⁺ ($c = 1.0 \times 10^{-3}$ M)) in DMSO: H₂O (1:9, v/v).

Fig. S23. Job plots of receptor **2** ($c = 2.5 \times 10^{-5}$ M) with (a) Ag²⁺, (b) Cu²⁺ and (c) Hg²⁺ from fluorescence.

Fig. S24. Non liner binding constant curves for **2** ($c = 2.5 \times 10^{-5} \text{ M}$) with (a) Ag²⁺, (b) Cu²⁺ and (c) Hg²⁺ ($c = 1.0 \times 10^{-3} \text{ M}$) in DMSO: H₂O (1:9, v/v) from fluorescence.

Fig. S25. Detection limits of **2** ($c = 2.5 \times 10^{-5} \text{ M}$) with (a) Ag²⁺, (b) Cu²⁺ and (c) Hg²⁺ ($c = 1.0 \times 10^{-3} \text{ M}$) in DMSO: H₂O(1:9, v/v) from fluorescence.

Fig. S26. Job plot of receptors **3** ($c = 2.5 \times 10^{-5} \text{ M}$) with Ag⁺ from (a) fluorescence and (b) UV.

Fig. S27. Non liner binding constant curves for **3** ($c = 2.5 \times 10^{-5} \text{ M}$) with Ag⁺ ($c = 1.0 \times 10^{-3} \text{ M}$) in DMSO: H₂O (1:9, v/v) from (a) fluorescence and (b) UV.

Fig. S28. Job plots of receptor 4 ($c = 2.5 \times 10^{-5} \text{ M}$) with Ag⁺ from (a) fluorescence and (b) UV.

Fig. S29. Non liner binding constant curves for 4 ($c = 2.5 \times 10^{-5} \text{ M}$) with Ag⁺ ($c = 1.0 \times 10^{-3} \text{ M}$) in DMSO: H₂O (1:9, v/v) from (a) fluorescence and (b) UV.

Fig. S30. Detection limit of **3** ($c = 2.5 \times 10^{-5}$ M) with Ag⁺ ($c = 1.0 \times 10^{-3}$ M) in DMSO: H₂O (1:9, v/v) from fluorescence.

Fig. S31. Detection limit of **4** ($c = 2.5 \times 10^{-5} \text{ M}$) with Ag⁺ ($c = 1.0 \times 10^{-3} \text{ M}$) in DMSO: H₂O (1:9, v/v) from fluorescence.

Fig. S32. Change in absorbance of **1** ($c = 2.5 \times 10^{-5} \text{ M}$) upon addition of 6 equiv. amount of (a) Pb²⁺, (b) Mg²⁺, (c) Co²⁺, (d) Ni²⁺, (e) Zn²⁺, (f) Cd²⁺, (g) Fe²⁺, (h) Hg²⁺ ($c = 1.0 \times 10^{-3} \text{ M}$) in DMSO: H₂O (1:9, v/v).

Fig. S33. Job plots of receptor 1 ($c = 2.5 \times 10^{-5} \text{ M}$) with (a) Ag⁺ and (b) Cu²⁺ from UV.

Fig. S34. Non liner binding constant curve for 1 ($c = 2.5 \times 10^{-5} \text{ M}$) with (a) Ag⁺ and (b) Cu²⁺ ($c = 1.0 \times 10^{-3} \text{ M}$) in DMSO: H₂O (1:9, v/v) from UV.

Fig. S35. Change in absorbance of **2** ($c = 2.5 \times 10^{-5}$ M) upon addition of 10 equiv. amount of (a) Pb²⁺, (b) Mg²⁺, (c) Co²⁺, (d) Ni²⁺, (e) Zn²⁺, (f) Cd²⁺, (g) Fe²⁺, (h) Hg²⁺, (i) Cu²⁺, (j) Ag⁺ ($c = 1.0 \times 10^{-3}$ M) in DMSO: H₂O (1:9, v/v).

Fig. S36. Job plots of receptor 2 ($c = 2.5 \times 10^{-5} \text{ M}$) with (a) Ag⁺, (b) Cu²⁺ and (c) Hg²⁺ from UV.

Fig. S37. Non liner binding constant curves for **2** ($c = 2.5 \times 10^{-5} \text{ M}$) with (a) Ag²⁺, (b) Cu²⁺ and (c) Hg²⁺ ($c = 1.0 \times 10^{-3} \text{ M}$) in DMSO: H₂O (1:9, v/v) from UV.

Table S2. Non liner binding constant data for 1-4 ($c = 2.5 \times 10^{-5} \text{ M}$) with respective metal ions ($c = 1.0 \times 10^{-3} \text{ M}$) in DMSO: H₂O (1:9, v/v).

Metal- ligand	Binding constant	Binding constant values (M ⁻¹)			
complex	From florescence titration data	From UV titration data			
1 - Ag ⁺	$\mathbf{K} = (2.78 \pm 0.45) \ge 10^4$	$\mathbf{K} = (2.13 \pm 0.48) \ge 10^3$			
1 - Cu ²⁺	$K = (1.88 \pm 0.28) \times 10^4$	$K = (1.04 \pm 0.15) \text{ x } 10^4$			
2 - Ag ⁺	$K_1 = (1.05 \pm 0.15) \; x \; 10^4$	$K = (3.60 \pm 0.57) \ge 10^3$			
	$K_2 = (9.75 \pm 4.01) \; x \; 10^2$				
2 - Cu ²⁺	$K_1 = (9.02 \pm 2.44) \; x \; 10^3$	$\mathbf{K} = (4.67 \pm 0.25) \ge 10^3$			
	$K_2 = (6.57 \pm 1.58) \; x \; 10^3$				
2 - Hg ⁺	$K_1 = (6.01 \pm 0.28) \ x \ 10^3$	$\mathbf{K} = (9.25 \pm 2.53) \ge 10^3$			
	$K_2 = (2.07 \pm 0.04) \ x \ 10^3$				
3 - Ag ⁺	$K = (1.30 \pm 0.31) \ x \ 10^6$	$K = (9.47 \pm 1.07) \ x \ 10^4$			
4 - Ag ⁺	$K = (4.98 \pm 0.98) \ x \ 10^4$	$K = (2.46 \pm 0.66) \ge 10^4$			

Fig. S38. ¹H NMR (400 MHz, d_6 -DMSO) of (a) compound **1** (c = 1.50 x 10⁻² M) and (b) **1** with equiv. amount of AgClO₄.

Fig. S39. ¹H NMR (400 MHz, d_6 -DMSO) of (a) compound **3** (c = 1.07 x 10⁻² M) and (b) **3** with equiv. amount of AgClO₄.

Table S3: List of metal ion responsive pyridine tied benzimidazoles as supramolecular gelators

Structure	Solvent	Metal ion (phase transformation)	Ref.
	МеОН	Ag ⁺ (Sol to gel)	<i>Chem. Commun.</i> 2013, 49, 4181
-0,О HOОН	MeOH:H ₂ O (1:1, v/v)	Ag ⁺ (Sol to gel)	Supramol. Chem. 2014, 26, 39
	MeOH	Cu^{2+} , Cd^{2+} (Sol to gel)	Chem. Mater., 2012, 24, 1165
	МеОН	Cu ²⁺ (Sol to gel)	<i>CrystEngComm</i> , 2013, 15, 9769
	CH3CN	Co ²⁺ , Zn ²⁺ , La ³⁺ , Eu ³⁺ (Sol to gel)	J. Am. Chem. Soc., 2003, 125, 13922
	DMF	Zn ²⁺ , Ni ²⁺ (Sol to gel)	J Porous Mater, 2016, 23, 663
$R = C_{6}H_{2} \cdot (OC_{12}H_{23})_{1} \cdot 3.4.5$	CHCl ₃	Sol to gel	<i>Chem. Eur. J.</i> , 2014, 20, 9930
$\left[\overbrace{\begin{matrix} & & \\ & & $	CH3CN	Sol to gel	Chem. Eur. J., 2009, 15, 1853
a; $R = n-C_{16}H_{33}$; X=Br b; $R = n-C_{16}H_{33}$; X=I			

Mass spectrum of 1.

Mass spectrum of 2.

¹³C NMR (*d*₆-DMSO, 100 MHz)

Mass spectrum of 3.

Mass spectrum of 4.

G Bernental Composition	- 0 X
Re Edit View Process Help	
Single Mass Analysis Telescore 10.0 PPM / DEC min = 1.5, max = 50.0 Element preficience 0.0 Element p	
Mana Cate Mana — Ang PMM2 (2015) Ferminals — 14917 1-071 Norm / 24 Canof %. C 14 N 196-0479 - 196-0479 = 0.3 - 1.3 - 9.3 - C(2 1-09 NU - 54.6 - n/a - n/a - 1.2 - 1.9 - 3 	
KLYNS, 51 153 17 877, 442 (44 30000 0.555 28.0 00 LS 10); Cm (151 153) 190	10F MD E5- 3.07#-04
s-	
	4 197.0010
192 4190 468.0718 1/6 9766 178.0691 191.0443 192.0870 199.0651 192.4564 195.0870 192.5 195.0 197.5 170.0 172.5 175.0 177.5 190.0 192.5 195.0 197.5 190.0 192.5 1	198.0948 202.0831 206.0869 210.1924 216.8845 221.8965 224.0424 228.9552 230.1919 234.9860.215.9450 6.0 1975 200.0 2025 205.0 2075 210.0 212.5 215.0 217.5 220.0 222.5 225.0 227.5 220.0 212.5 235.0 217.5

Mass spectrum of 5.

Mass spectrum of 6.

