Supporting Information for "Imidazole and triazole head group containing polydiacetylenes for colorimetric monitoring of pH and detecting HCl gas"

Woolin Lee,^{a†} Dayoung Lee,^{a†} Ji-Yeong Kim,^a Songyi Lee^{a*}, and Juyoung Yoon^{a*}

^aDepartment of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea; Fax: + 82-2-3277-3419

E-mail: leesongyi22@naver.com; jyoon@ewha.ac.kr

Scheme S1. Preparation of PCDA-Im and PCDA-Ta.	S2 page
Figure S1. ¹ H NMR (300 MHz) of compound PCDA-Im in CDCl ₃	S2 page
Figure S2. ¹ H NMR (300 MHz) of compound PCDA-Ta in CDCl ₃	S3 page
Figure S3. ¹³ C NMR (62.5 MHz) of compound PCDA-Im in CDCl ₃	S3 page
Figure S4. ¹³ C NMR (125 MHz) of compound PCDA-Ta in CDCl ₃	S4 page
Figure S5. SEM and TEM images of PDA-Im	S4 page
Figure S6. Fluorescence spectra of PDA-Im (10 µM) in different pH (2.2-7.8)	S5 page
Figure S7. Fluorescence spectra of PDA-Ta (1 mM) in different pH (9.0-13.0) page	
Figure S8. pH titration curve of PDA-Im (10 μ M), p K_a =4.06	S6 page
Figure S9. pH titration curve of PDA-Ta (1 mM), $pK_a=12.3$	S6 page
Figure S10. UV absorption spectra of PDA-Im-coated glass	S7 page
Figure S11. Raman spectra of PDA-Im-coated glasses and after exposure to HCl gas	S7 page
Figure S12. Images of PDA-Im-coated glasses after exposure to vapor of various organic solvents	
	je

Scheme S1. Preparation of PCDA-Im and PCDA-Ta. (i) *N*,*N*-dimethylethylenediamine, *N*,*N*-dicyclohexylcarbodiimide, CH_2Cl_2 , 24 h. (ii) 1-(3-aminopropyl) imidazole, CH_2Cl_2 , 24 h. (iii) Oxalyl chloride, CH_2Cl_2 , 5 h. (iv) 3-amino-1,2,4-triazole, CH_2Cl_2 , 24 h.

Figure S1. ¹H NMR (300 MHz) spectrum of *N*-(3-(1H-imidazol-1-yl) propyl)pentacosa-10,12-diynamide (**PCDA-Im**) in CDCl₃.

Figure S2. ¹H NMR (300 MHz) spectrum of N-(2H-1,2,3-triazol-4-yl)pentacosa-10,12-diynamide (**PCDA-Ta**) in CDCl₃.

Figure S3. ¹³C NMR (62.5 MHz) spectrum of *N*-(3-(1H-imidazol-1-yl) propyl)pentacosa-10,12-diynamide (**PCDA-Im**) in CDCl₃.

Figure S4. ¹³C NMR (125 MHz) spectrum of N-(2H-1,2,3-triazol-4-yl)pentacosa-10,12-diynamide (**PCDA-Ta**) in CDCl₃.

Figure S5. Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM) images of PDA-Im.

Figure S6. Fluorescence spectra ($\lambda_{ex} = 530$ nm, slit widths: 5 nm/5 nm) of **PDA-Im** (10 μ M) in different pH (2.2-7.8).

Figure S7. Fluorescence spectra ($\lambda_{ex} = 540$ nm, slit widths: 5 nm/5 nm) of **PDA-Ta** (1 mM) in different pH (9.0-13.0).

Figure S8. pH titration curve of **PDA-Im** (10 μ M), p K_a =4.06.

Figure S9. pH titration curve of **PDA-Ta** (1 mM), $pK_a=12.3$.

Figure S10. UV absorption spectra of PDA-Im-coated glass before and after introducing vapor of 4 μ L HCl in 100 mL chamber for 3 sec.

Figure S11. Raman spectra of PDA-Im-coated glasses (bottom) and after exposure to HCl gas for 3 s (top).

Figure S12. Images of PDA-Im-coated glasses after exposure to vapor of various organic solvents (10 μ L in 100 mL chamber) for 30 s.