Electronic Supplementary Information

Solid-State Self-Inclusion Complexation Behaviour of a

Pillar[5]arene-Based Host–Guest Conjugate

Tomoki Ogoshi^{a,b,*}, Takuya Furuta^a, Yukie Hamada^a, Takahiro Kakuta^a and Tada-aki Yamagishi^a

^aGraduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
^bWPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan

Table of Contents

Figs. S1 and S2 ¹ H and ¹³ C NMR spectra of 1d in CDCl ₃	S2
Fig. S3 ¹ H NMR spectra of 1d in various concentrations in $CDCl_3$	S3
Fig. S4 Eyring plots in solid state self-inclusion complexation	S3
Fig. S5 DSC heating curves of a mixture of 1s and 1d $(1s/1d = 85/15)$	S4
Fig. S6 ¹ H NMR spectra of a mixture of 1s and 1d $(1s/1d = 85/15)$ in various	S5
concentrations in CDCl ₃	
Fig. S7 COSY study of a mixture of 1s and 1d $(1s/1d = 85/15)$ in CDCl ₃	S5-S6
Fig. S8 Eyring plots in de-threading process in CDCl ₃	S7
Figs. S9-S11 ¹ H NMR spectra after heating of 1 in the solid state at 100 °C for	S7-S8
48 h, dissolving the solid sample in deuterated solvents, and obtaining the	
spectrum after 3 min and 24 h.	

Fig. S12 Calculated structures of the guest part of 1.S9

Fig. S1 1 H NMR spectrum of 1d in CDCl₃ at 25 $^{\circ}$ C.

Fig. S2 ¹³C NMR spectrum of 1d in CDCl₃ at 25 °C.

Fig. S3 ¹H NMR spectra of 1d in various concentrations in CDCl₃.

Fig. S4 Eyring plots in solid state self-incluson complexation.

Fig. S5 DSC heating curves of a mixture of 1s and 1d (1s/1d = 85/15) in (a) first and (b) second heating processes. Therefore, the endothermic peak observed in the first heating of 1d (Fig. 3c) resulted from formation of 1s.

Fig. S6 ¹H NMR spectra of a mixture of 1s and 1d (1s/1d = 85/15) in various concentrations in CDCl₃.

Fig. S7 COSY study of a mixture of 1s and 1d (1s/1d = 85/15) in CDCl₃.

Fig. S8 Eyring plots in de-threading process in CDCl₃.

Fig. S9 ¹H NMR spectra after heating of 1 in the solid state at 100 °C for 48 h, dissolving the solid sample in CD_2Cl_2 and obtaining the spectrum after (a) 3 min and (b) 24 h. The spectra changed by storing a mixture of 1s and 1d (1s/1d = 85/15) in CD_2Cl_2 at 25 °C, indicationg that 1s was slowly converted to 1d in CD_2Cl_2 .

Fig. S10 ¹H NMR spectra after heating of **1** in the solid state at 100 °C for 48 h, dissolving the solid sample in deuterated 1,1,2,2-tetrachloroethane and obtaining the spectrum after (a) 3 min and (b) 24 h. The spectra did not change by storing a mixture of **1s** and **1d** (**1s/1d** = 85/15) in deuterated 1,1,2,2-tetrachloroethane at 25 °C, indicationg that **1s** was not converted to **1d** in deuterated 1,1,2,2-tetrachloroethane.

Fig. S11 ¹H NMR spectra after heating of **1** in the solid state at 100 °C for 48 h, dissolving the solid sample in deuterated cyclohexane and obtaining the spectrum after (a) 3 min and (b) 24 h. The spectra did not change by storing a mixture of **1s** and **1d** (**1s/1d** = 85/15) in deuterated cyclohexane at 25 °C, indicationg that **1s** was not converted to **1d** in deuterated cyclohexane.

(a) Chemical Structure

Fig. S12 (a) Chemical structures, (b,c) optimized structures and (d) calculated electron potential profiles (DFT calculations, B3LYP/6-31G(d,p)) of the guest part of 1 and alkyl chains as a reference.