Electronic Supplementary Material (ESI) for Materials Chemistry Frontiers. This journal is © the Partner Organisations 2018

Electronic Supplementary Information

Title:

Direct Synthetic Method for (Nitronyl Nitroxide)-substituted π -Electronic Compounds by Palladium-catalyzed Cross-Coupling Reaction with a Zinc Complex

Authors:

Shuichi Suzuki,*a Fumiya Nakamuraa and Takeshi Naota*a

Affiliation:

^a Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan.

Corresponding Author:

Shuichi Suzuki (mail to suzuki-s@chem.es.osaka-u.ac.jp)

Takeshi Naota (mail to naota@chem.es.osaka-u.ac.jp)

Table of Contents

Observed and simulated ESR spectra 1-15P (Fig. S1-14)	p. S2
UV-vis spectra change during the reaction (Fig. S15)	p. S9
Calculated intermolecular exchange interactions for 15P ⁺ (Table S1)	p. S10
Reference	p. S11

Fig. S1 Observed (solid line) and simulated (red broken line) ESR spectra of **1P**: g = 2.007 ($v_0 = 9.815013$ GHz), $|a_N| = 0.752$ mT in CH₂Cl₂ at room temperature).

Fig. S2 Observed (solid line) and simulated (red broken line) ESR spectra of **2P**: g = 2.007 ($v_0 = 9.813534$ GHz), $|a_N| = 0.761$ mT in CH₂Cl₂ at room temperature).

Fig. S3 Observed (solid line) and simulated (red broken line) ESR spectra of **3P**: g = 2.007 ($v_0 = 9.608108$ GHz), $|a_N| = 0.769$ mT in CH₂Cl₂ at room temperature).

Fig. S4 Observed (solid line) and simulated (red broken line) ESR spectra of **4P**: g = 2.007 ($v_0 = 9.811410$ GHz), $|a_N| = 0.773$ mT in CH₂Cl₂ at room temperature).

Fig. S5 Observed (solid line) and simulated (red broken line) ESR spectra of **5P**: g = 2.007 ($v_0 = 9.598689$ GHz), $|a_N| = 0.752$ mT in CH₂Cl₂ at room temperature).

Fig. S6 Observed (solid line) and simulated (red broken line) ESR spectra of **6P**: g = 2.007 ($v_0 = 9.812717$ GHz), $|a_N| = 0.773$ mT in CH₂Cl₂ at room temperature).

Fig. S7 Observed (solid line) and simulated (red broken line) ESR spectra of **7P**: g = 2.007 ($v_0 = 9.813716$ GHz), $|a_N| = 0.748$ mT in CH₂Cl₂ at room temperature).

Fig. S8 Observed (solid line) and simulated (red broken line) ESR spectra of **8P**: g = 2.007 ($v_0 = 9.616935$ GHz), $|a_N| = 0.769$ mT in CH₂Cl₂ at room temperature).

Fig. S9 Observed (solid line) and simulated (red broken line) ESR spectra of **9P**: g = 2.007 ($v_0 = 9.595996$ GHz), $|a_N| = 0.734$ mT in CH₂Cl₂ at room temperature).

Fig. S10 Observed (solid line) and simulated (red broken line) ESR spectra of **11P**: g = 2.007 ($v_0 = 9.599547$ GHz), $|a_N| = 0.787$ mT in CH₂Cl₂ at room temperature).

Fig. S11 Observed (solid line) and simulated (red broken line) ESR spectra of **12P**: g = 2.007 ($v_0 = 9.810618$ GHz), $|a_N| = 0.752$ mT in CH₂Cl₂ at room temperature).

Fig. S12 Observed (solid line) and simulated (red broken line) ESR spectra of **13P**: g = 2.007 ($v_0 = 9.813807$ GHz), $|a_N| = 0.752$ mT in CH₂Cl₂ at room temperature).

Fig. S13 Observed (solid line) and simulated (red broken line) ESR spectra of **14P**: g = 2.007 ($v_0 = 9.812223$ GHz), $|a_N| = 0.757$ mT in CH₂Cl₂ at room temperature).

Fig. S14 Observed (solid line) and simulated (red broken line) ESR spectra of **15P**: g = 2.007 ($v_0 = 9.811669$ GHz), $|a_N| = 0.759$ mT in CH₂Cl₂ at room temperature).

Fig. S15 UV-vis spectra (in THF, 250–800 nm) (a) of **NN-H** as initial state of reaction, (b) after addition of LHMDS, (c) after addition of ZnCl₂, and (d) of **1P**.Figure

Table S1. Calculated intermolecular exchange interactions for 15P⁺.

Spin state	E / au	<\$2>	$J_{ m intra-calc}/k_{ m B}$ / K ^b
Triplet	-1679.7160710	2.070722	+1031.9
Singlet	-1679.7120841	0.850604	

^a The calculations were carried out by *Gaussian 09* program with density functional theory at the UB3LYP/6-31G(d,p) level of theory.^[S1] The singlet states were calculated using the broken symmetry method using the optimized geometry in the triplet state. ^b Exchange interaction ($J_{intra-calc}/k_B$) was using an equation, $J_{intra-calc} = (E^{singlet} - E^{triplet})/(\langle S^2 \rangle^{triplet} - \langle S^2 \rangle^{singlet})$.^[S2]

- [S1] *Gaussian 09*, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
- [S2] K. Yamaguchi, T. Kawakami, Y. Takano, Y. Kitagawa, Y. Yamashita and H. Fujita, *Int. J. Quantum Chem.* 2002, 90, 370–385.