Electronic Supplementary Material (ESI) for Materials Chemistry Frontiers. This journal is © the Partner Organisations 2018

Electronic Supplementary Information

Crystal structure and physical properties of radical cation salt based on 4,5-ethylenedioxy-4'-iodotetrathiafulvalene (EDO-TTF-I) with iodine bonding ability

Yoshiaki Nakano,*^{ab} Yusuke Takahashi,^a Kohdai Ishida,^a Manabu Ishikawa,^b

Hideki Yamochi^{ab} and Mikio Uruichi^c

^{a.} Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan.

^{b.} Research Center for Low Temperature and Materials Sciences, Kyoto University, Yoshida Honmachi, Sakyo-ku, Kyoto 606-8501, Japan.

^{c.} Institute for Molecular Science, Myodaiji, Okazaki, Aichi 444-8585, Japan.

E-mail: nakano.yoshiaki.5x@kyoto-u.ac.jp (Y. Nakano).

Fig. S1 (a) Crystal and (b) dimer structures of EDO-TTF-I at 100 K.

(a)

Fig. S2 Crystal structures viewed along (a) a, (b) b, and (c) c axes of (EDO-TTF-I)₂PF₆ at 300 K.

Fig. S3 Molecular packing viewed along molecular short axis in $(EDI-TTF-I)_2PF_6$ at 300 K. The boxes in black and red indicate the ring-over-bond and ring-over-atom stacking manners, respectively.

Fig. S4 Stacking manners viewed along stacking axis in $(EDI-TTF-I)_2PF_6$ at 300 K. (a) Ring-over-bond and (b) ring-over-atom manners.

Table S1 Overlap integrals (10⁻³) calculated without and with sulfur 3d orbitals, degree of molecular dimerization ($\Delta s/\langle s \rangle$) and energy gaps between upper and lower bands

	Without sulfur 3d orbitals		With sulfur 3d orbitals	
	300 K	100 K	300 K	100 K
<u>s1</u>	11.9	13.2	22.9	25.8
<i>s</i> 2	7.9	7.5	7.6	6.0
<i>a</i> 1	1.0	1.4	4.0	5.2
<i>p</i> 1	5.8	6.9	14.1	15.7
<i>p</i> 2	2.0	2.1	6.9	7.4
$\Delta s/\langle s \rangle^a$	0.40	0.55	1.00	1.24
$E_{\rm g}$ / eV	0.002	0.019	0.013	—
$a \Delta s/\langle s \rangle = 2(s1 - s)$	$(s_2)/(s_1 + s_2).$			

Fig. S5 Energy band structures and Fermi surfaces calculated (a, b) without and (c, d) with sulfur 3d orbitals.

Fig. S6 Sample dependence on electrical resistivity measured along b axis in (EDI-TTF-I)₂PF₆. Two samples showed almost the same behavior.

Fig. S7 Temperature dependence of the magnetic susceptibility (χ) of (EDO-TTF-I)₂PF₆. The solid curve represents the best fit to the Bonner–Fisher model.

Fig. S8 (a) Observed infrared spectra of neutral EDO-TTF-I dispersed in KBr at room temperature. (c) Observed Raman spectra of neutral EDO-TTF-I excited by a 633-nm laser at 300 K. (b) Infrared spectra and (d) Raman spectra EDO-TTF-I⁰ molecule calculated at the B3LYP/Aug-cc-pVTZ(-PP). The numbering *j* denotes the v_i mode. The frequency scaling factor is 0.969.

V	Infrared	Raman	Calc. ^a	Assignment
6	1650	1650	1646	C=C stretching
7	1535	1535	1548	C=C stretching
8	1507	1508	1519	C=C stretching
0	1464	1463	1440	CII
9	1451	1454	1449	CH_2 scissoring
10	1443	1445	1447	CH ₂ scissoring
11	1369	1369	1354	CH ₂ wagging
12	1366	1365	1352	CH ₂ wagging
	$\mathbf{VTT}(\mathbf{DD})$			

Table S2 Observed and calculated frequencies (cm⁻¹) of EDO-TTF-I

^{*a*} B3LYP/Aug-cc-pVTZ(-PP), frequency scaling factor = 0.969.