Electronic Supplementary Information (ESI)

Highly Efficient Transformation of Linear Poly(Phenylene Ethynylene)s into Zigzag-Shaped π-Conjugated Microporous Polymers through Boron-Mediated Alkyne Benzannulation

Yoshiaki Shoji,* Minsu Hwang, Haruka Sugiyama, Fumitaka Ishiwari, Kumiko Takenouchi, Ryota Osuga, Junko N. Kondo, Shigenori Fujikawa and Takanori Fukushima*

> *To whom correspondence should be addressed. E-mail: yshoji@res.titech.ac.jp (Y.S.), fukushima@res.titech.ac.jp (T.F)

Table of Contents

1.	Supplementary Scheme (Scheme S1)	. S2
2.	Supplementary Table (Table S1)	. S2
3.	Supplementary Figures (Figs. S1–S5)	. S3
4.	Analytical Data (Figs. S6–S23)	. S6

Supplementary Scheme.

poly- 3_{OTBS} - $^{t}Bu_{50}$ (benzannulation ratio ~ 50%)

Scheme S1. Synthesis of poly-3_{OTBS}-^{*t*}Bu₅₀ from poly-2_{OTBS}. Possible partial structures of poly-3_{OTBS}-^{*t*}Bu₅₀ are shown.

Supplementary Table.

Table S1. Molecular weight and PDI values of polymers, obtained by the SEC-MALS analysis.

Entry	Polymer	M_n / Da (SEC-MALS)	PDI (SEC-MALS)
1	$\text{poly-}\mathbf{3_{OTBS}}^{-t}\mathbf{Bu_{100}}^{a}$	4.77 x 10 ⁴ ^c	1.66
2	poly- 3_{OTBS}- ^{<i>t</i>} Bu ₅₀ ^{<i>a</i>}	1.62×10^4	1.52
3	poly-3 _{OTBS} -H ₁₀₀ ^a	$1.61 \mathrm{x} \ 10^4$	1.34
4	poly- $3_{\mathbf{OHex}}$ - $\mathbf{B}\mathbf{u}_{100}$	1.87 x 10 ⁴ ^c	2.37
5	poly-3 _{OHex} -H ₁₀₀	2.25 x 10 ⁴ ^c	2.00
6	poly- 3_{OTBS} - ${}^{t}\text{Bu}_{100}$	6.17 x 10 ^{4 c}	1.25
7	poly- 3_{OH}-^{<i>t</i>}Bu₁₀₀^{<i>b</i>}	$1.28 \times 10^{5 c}$	1.14

^{*a*}Synthesized from poly- 2_{OTBS} ($M_n = 6,400$, PDI = 2.02). ^{*b*}Synthesized from poly- 2_{OTBS} ($M_n = 5,900$, PDI = 2.32). ^{*c*}The values may be overestimated to some extent due to the occurrence of polymer aggregation in the SEC analysis.

Supplementary Figures.

Fig. S1. Electronic absorption spectra of poly- 2_{OTBS} (black, 3.2 x 10^{-3} mg mL⁻¹) and poly- 3_{OTBS} - ${}^{t}Bu_{100}$ (red, 3.2 x 10^{-3} mg mL⁻¹) in CH₂Cl₂ at 25 °C.

Fig. S2. GPC profiles of poly- 2_{OTBS} ($M_n = 6,400$ Da, PDI = 2.02) and poly- 3_{OTBS} - ${}^tBu_{100}$ (eluent: CHCl₃).

Fig. S3. SEC-MALS profile of poly- 3_{OTBS} - ${}^{t}Bu_{100}$ ($M_n = 4.77 \times 10^4$ Da, PDI = 1.66). The observed rise in the light-scattering (LS) trace (green arrow) suggests the occurrence of polymer aggregation in the SEC analysis, which may lead to the overestimation of the molecular weight of the polymer.

Fig. S4.BJH pore size distribution profiles of powder samples of (a) poly- $\mathbf{3}_{OTBS}$ - ${}^{t}\mathbf{Bu}_{100}$ and (b) poly- $\mathbf{3}_{OTBS}$ - ${}^{t}\mathbf{Bu}_{50}$ obtained from **poly-\mathbf{2}_{OTBS}** ($M_n = 6,400$, PDI = 2.02), and (c) poly- $\mathbf{3}_{OTBS}$ - ${}^{t}\mathbf{Bu}_{100}$ and (d) poly- $\mathbf{3}_{OH}$ - ${}^{t}\mathbf{Bu}_{100}$ obtained from **poly-\mathbf{2}_{OTBS}** ($M_n = 5,900$, PDI = 2.02).

Fig. S5. IR spectra (KBr) of poly- 3_{OTBS} -^{*t*} Bu_{100} (red) and poly- 3_{OH} -^{*t*} Bu_{100} (green) at 25 °C

Analytical Data

Fig. S7. ¹¹B NMR spectrum (128 MHz) of $\mathbf{1}_{tBu}$ in CDCl₃ at 25 °C. The broad peaks in a region from 50 to -40 ppm are the contributions from a borosilicate-glass NMR tube.

Fig. S8. ¹³C NMR spectrum (125 MHz) of 1_{tBu} in CDCl₃ at 25 °C.

Fig. S9. ¹H NMR spectrum (500 MHz) of poly- 1_{OTBS} in CDCl₃ at 25 °C.

Fig. S10. ¹³C NMR spectrum (125 MHz) of poly-1_{Ohex} in CDCl₃ at 25 °C.

Fig. S11. ¹H NMR spectrum (500 MHz) of poly-1_{OHex} in CDCl₃ at 25 °C.

Fig. S12. ¹³C NMR spectrum (125 MHz) of poly-1_{OHex} in CDCl₃ at 25 °C.

Fig. S13. ¹H NMR spectrum (500 MHz) of poly- 3_{OTBS} -^{*t*}Bu₁₀₀ in CDCl₃ at 25 °C.

Fig. S15. ¹H NMR spectrum (500 MHz) of poly-3_{OTBS}-^{*t*}Bu₅₀ in CDCl₃ at 25 °C.

Fig. S16. ¹³C NMR spectrum (125 MHz) of poly-3_{0TBS}-^{*t*}Bu₅₀ in CDCl₃ at 25 °C.

Fig. S17. ¹H NMR spectrum (500 MHz) of poly-3_{0TBS}-H₁₀₀ in CDCl₃ at 25 °C.

Fig. S18. ¹H NMR spectrum (500 MHz) of poly- 3_{OHex} ^{*t*}Bu₁₀₀ in CDCl₃ at 25 °C.

Fig. S19. ¹³C NMR spectrum (125 MHz) of poly- 3_{OHex} - $^{t}Bu_{100}$ in CDCl₃ at 25 °C.

Fig. S20. ¹H NMR spectrum (500 MHz) of poly- 3_{OHex} - H_{100} in CDCl₃ at 25 °C.

Fig. S21. ¹³C NMR spectrum (125 MHz) of poly- 3_{OHex} - H_{100} in CDCl₃ at 25 °C.

Fig. S22. ¹H NMR spectrum (500 MHz) of poly- 3_{OH} -^{*t*} Bu_{100} in CDCl₃ at 25 °C.

Fig. S23. ¹³C NMR spectrum (125 MHz) of poly-**3**_{OH}-^{*t*}**Bu**₁₀₀ in CDCl₃ at 25 °C.