Electronic Supplementary Material (ESI) for Materials Chemistry Frontiers. This journal is © the Partner Organisations 2018

Supporting information for:

Remarkable Water-Soluble ZnO Nanocrystals: From 'Click' Functionalization to Supramolecular Aggregation Enhanced Emission Phenomenon

Agnieszka Grala,† Małgorzata Wolska-Pietkiewicz,‡ Zbigniew Wróbel,† Tomasz Ratajczyk,† Joanna Kuncewicz§ and Janusz Lewiński†,‡,*

† Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
 ‡ Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland.
 § Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Cracow, Poland.

* The corresponding author: lewin@ch.pw.edu.pl

Table of Contents:

1.	STEM and HRTEM analysis					
2.	Size distribution of ZnO NCs					
3.	Dynamic Light Scattering					
4.	NMR spectroscopy					
4	4.1 ¹ H NMR spectra for ZnO- <i>una</i> 2 NCs	S6				
4	4.2 ¹ H NMR spectra for <i>hex</i> -H and ZnO- <i>hex</i> 1 NCs	S7				
5.	FTIR spectroscopy	S8				
6.	Powder X-ray diffraction studies					
7.	Optical spectroscopyS					
8.	PL lifetimes measurements					

1. STEM and HRTEM analysis

Figure S1. STEM and HRTEM micrographs of ZnO-*una*1 NCs (a-c) and ZnO-*una*2 NCs (d-f) prepared from samples dissolved in DMSO.

Figure S2. STEM and HRTEM micrographs of ZnO-*hex*1 NCs (in DMSO) (a-e) and ZnO-*hex*2 NCs (in H₂O) (f-k).

2. Size distribution of ZnO NCs

Figure S3. Size distributions of a) ZnO-hex1 NCs and b) ZnO-hex2 NCs.

3. Dynamic Light Scattering

Figure S4. DLS data: size distribution by number and raw correlation data for ZnO-*hex*1 (a-b) NCs and ZnO-*hex*2 NCs (c-d) in DMSO, respectively.

Figure S5. The ZnO-*hex2* NCs size distribution by number: a) in 50% DMSO/50% H₂O (v/v), b) 50% DMSO/50% H₂O (v/v) after 24 h, c) 10% DMSO/90% H₂O (v/v), and d) 10% DMSO/90% H₂O (v/v) after 5 days. The above data present three individual repeats of the same sample.

4. NMR spectroscopy

4.1 ¹H NMR spectra for ZnO-una2 NCs

Figure S6. ¹H NMR spectra of ZnO-*una*2 NCs after the CuAAC process, the most distinctive signals (ppm) for OH-terminated triazole molecule: 7.81 (=CH-N), 4.60 (-OH), 4.45, 3.78, 3.47, 3.36; 2.74 (C=CH from unreacted*una*acid), *-DMSO-d₆, # - catalyst residue, RT.

4.2 ¹H NMR spectra for *hex*-H and ZnO-*hex*1 NCs

Figure S7. ¹H NMR spectra of a) ZnO-*hex*1 NCs and b) *hex*-H, *-DMSO-d₆, RT.

5. FTIR spectroscopy

Figure S8. FTIR spectra for ZnO-*una*1 NCs (dark grey line) and ZnO-*una*2 NCs (grey line), respectively.

Figure S9. FTIR spectra for ZnO-*hex*1 NCs (dark grey line) and ZnO-*hex*2 NCs (grey line), respectively.

6. Powder X-ray diffraction studies

For XRD data for ZnO-*una*1 NCs see: *Chem. Commun.*, **2016**, *52*, 7340-7343 and the Supplementary Information therein).

Figure S10. The powder X-ray diffraction patterns for ZnO-*hex*1 NCs (black line) and ZnO-*hex*2 (red line).

7. Optical spectroscopy

Figure S11. a) Absorption spectra of ZnO-*hex*1 NCs (before the CuAAC reaction) and ZnO-*hex*2 NCs (after the CuAAC) in DMSO; b) absorption spectrum of ZnO-*una*1 NCs in DMSO.

Figure S12. Time-dependent emission of ZnO-hex2 NCs in water.

8. PL lifetimes measurements

The PL lifetimes were measured at 20 °C using a single-photon counting system UV-VIS-NIR Fluorolog 3 Spectro-fluorimeter (*Horiba Jobin Yvon*). The solid-state pulsed NanoLED ($\lambda_{max} = 336$ nm) was used as an excitation source. PL decay signals with a nanosecond resolution were obtained using photomultiplier tube. The instrument response function was acquired with a LUDOX scatterer. The obtained

decay curves fourfunction. luminescence were fitted using exponential

Figure S13. Photoluminescence decays taken for ZnO-*hex*2 NCs in DMSO and in in the mixture of 50% DMSO/50% H₂O (v/v).
a) b)

ZnO- <i>hex</i> 2	τ	S.Dev	а	Normalized a	Relative
in DMSO	(lifetime)		(amplitude)		contribution
1	1,80E-08	1,80E-09	0,714	0,655	0,116
2	5,39E-08	2,84E-09	0,253	0,232	0,123
3	4,54E-07	1,58E-08	0,090	0,083	0,370
4	1,30E-06	2,27E-08	0,033	0,030	0,390

d)

ZnO-hex2	τ	S. Dev.	а	Normalized a	Relative
in DMSO/H ₂ O	(lifetime)		(amplitude)		contribution
1	5,07E-09	1,85E-10	1,187	0,683	0,150
2	1,99E-08	5,42E-10	0,435	0,250	0,216
3	1,28E-07	3,44E-09	0,083	0,048	0,266
4	4,46E-07	9,57E-09	0,033	0,019	0,368