Electronic Supplementary Information for

The lower rather than higher density charge carrier determines the NH₃sensing nature and sensitivity of ambipolar organic semiconductors

Yanli Chen, *^a Xia Kong,^a Guifen Lu,^c Dongdong Qi,^b Yanling Wu,^a Xiyou Li,^a Marcel Bouvet,^d Daofeng Sun^a and Jianzhuang Jiang^{*,a,b}

^a School of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China
^b Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline
Materials, Department of Chemistry, University of Science and Technology Beijing, Beijing
100083, P. R. China

^c School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China

^d Institut de Chimie Moléculaire de l'Université de Bourgogne, CNRS UMR 5260, Université de Bourgogne, Dijon, France

Corresponding Author

*E-mail: jianzhuang@ustb.edu.cn (J. Jiang) and yanlichen@upc.edu.cn (Y. Chen).

Content List

1. Chemicals and Characterization

2. Electrical measurements and Gas sources for sensing experiments

3. Figs. S1-S2 and Table S1

1. Chemicals and Characterization

Bis(phthalocyaninato) rare earth(III) complexes **1-4** were synthesized according to previously published procedure.¹ All other reagents and solvents were of reagent grade and used as received.

Electrochemical measurements were conducted using a CHI760D voltammetric analyzer based on the procedure reported previously.² The aggregates were fabricated using the QLS method following previously published process,³ which were transferred onto the quartz substrate for UV-vis absorption spectra measurement and onto the bare SiO₂/Si substrate for Xray diffraction (XRD), ultraviolet photoelectron spectrometry (UPS), and atomic force microscope (AFM) measurements. Electronic absorption spectra were recorded on a Hitachi U-4100 spectrophotometer. XRD experiments were carried out on a Rigaku D/max-B X-ray diffractometer with copper (Ka) radiation ($\lambda = 1.5406$ Å). UPS measurements were performed using a HeI α (21.22 eV) discharge lamp in a VG ESCALAB 220i-XL UHV photoelectron spectroscopy system which consists of an analysis chamber interconnected to a preparation chamber. AFM images were collected under ambient conditions using the tapping mode with a NanoscopeIII/Bioscope scanning probe microscope from digital instruments.

2. Electrical measurements and Gas sources for sensing experiments

OFET devices were fabricated from the aggregates **1-4** in the typical top-contact/bottom-gate geometry on the hexamethyldisilazane (HMDS)-treated doped-Si/SiO₂ (300 nm thickness, capacitance $C_0=10$ nF cm⁻²) substrates, in which the source and drain gold electrodes are vacuum-deposited on the top of the aggregates employing a shadow mask.⁴ The drain-source current (I_{ds}) versus drain-source voltage (V_{ds}) characteristic was obtained with a Hewlett–Packard (HP) 4140B parameter analyzer at room temperature. Experimental data were analyzed

using standard field-effect transistor equations reported previously.⁵ The direct current–voltage (I–V) measurements for the aggregats of **1-4** deposited on insulating SiO_2 substrates with the ITO interdigitated electrodes were performed using a Keithley 6517 electrometer with an incorporated DC voltage supply. The NH₃-sensing properties of samples **1-4** have been examined by exposing the corresponding aggregats to different concentrations of ammonia and measuring the current changes of the aggregats at a constantly polarized voltage of 5 V.

The desired ammonia concentration was produced by diluting a mixture NH_3/Ar (1000 ppm NH_3 , from Air Liquid, France) with dry Ar using two mass flow controllers (total mass flow: 0.5 $L min^{-1}$).

Reference

- 1 G. Lu, M. Bai, R. Li, X. Zhang, C. Ma, P.-C. Lo, D. K. P. Ng and J. Jiang, *Eur. J. Inorg. Chem.*, 2006, 18, 3703.
- 2 D. Gao, X. Zhang, X. Kong, Y. Chen and J. Jiang, ACS Appl. Mater. Interfaces, 2015, 7, 2486.
- 3 Y. Chen, M. Bouvet, T. Sizun, Y. Gao, C. Plassard, E. Lesniewska and J. Jiang, *Phys. Chem. Chem. Phys.*, 2010, **12**, 12851.
- 4 Y. Chen, W. Su, J. Jiang, X. Li and Y. Liu, J. Am. Chem. Soc., 2005, 127, 15700.
- 5 S. M. Sze, In Physics of Semiconductor Devices, John Wiley & Sons, New York, 1981.

3. Figs. S1-S2 and Table S1

Fig. S1 UPS spectra (UV excitation by HeI α =21.22 eV) of the aggregates 1-4 (a-d). The Fermi level was obtained using the formula $E_f = hv - (E_{cut-off}^{max} - E_{cut-off}^{min})$. The minimum kinetic energy $E_{cut-off}^{min}$ at the left-hand part ($E_{cut-off}^{min} = E_v - E_f = E_{HOMO} - E_f$), corresponds to electrons from the HOMO level.

Fig. S2 UV-vis absorption spectra of 1-4 in CH_2Cl_2 solution (solid line) and self-assembled aggregates (dash line).

Table S1. Half-wave redox potentials of **1-4** (V vs. SCE) in CH_2Cl_2 containing 0.1 M TBAP (Tetrabutylammonium perruthenate) and maximum Q band absorption of compounds **1-4** in CH_2Cl_2 solution and self-assembled nanostructures.

Compound	E _{Oxd1}	E _{Red1}	\pmb{E}_{Red2}	E_{Red3}	∆E ° _{1/2} ª)	∆ E°′ _{1/2} ª)	LUMO/eV ^{b)}	HOMO/eV ^{b)}	$\Delta\lambda_{max}/nm$		$\Delta\lambda_{max}/nm^{c)}$
									solution	aggregate	
1	+0.67	+0.30	-0.84	-1.08	0.37	1.14	-3.60	-4.74	716	730	14
2 ^{d)}	+0.66	+0.28	-0.85	-1.04	0.38	1.13	-3.59	-4.72	709	719	10
3	+0.64	+0.22	-0.90	-1.25	0.42	1.12	-3.54	-4.66	694	702	8
4 ^{d)}	+ 0.58	+0.17	-0.92	-1.21	0.41	1.09	-3.52	-4.61	688	691	3

^{*a*)} $\Delta E^{o}_{1/2} = E_{Oxd1} - E_{Red1}, \Delta E^{o'}_{1/2} = E_{Red1} - E_{Red2};$

^{b)} HOMO (eV) = -4.44eV $- e E_{Red1}$, LUMO (eV) = -4.44eV $- e E_{Red2}$;

^{c)} $\Delta \lambda_{\text{max}} = \lambda_{\text{max(aggregate)}} - \lambda_{\text{max(solution)}};$

^{d)} Cited from G. Lu, M. Bai, R. Li, X. Zhang, C. Ma, P.-C. Lo, D. K. P. Ng and J. Jiang, *Eur. J. Inorg. Chem.*, 2006, **18**, 3703.