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1. X-ray crystal structure of 2a

Fig. S1 a) and b) Molecular packing of 2a in a unit cell. Hydrogen atoms and cocrystallized solvent 

molecule (acetonitrile) removed for clarity. c) ORTEP drawings of another independent molecule of 

2a with thermal ellipsoids at 50% probability; front and top views.

X-ray crystallography: Single crystals of 2a suitable for X-ray analysis were obtained by slow 
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evaporation from a toluene solution. X-ray diffraction data were collected on a Rigaku RAXIS-

RAPID Imaging Plate with graphite-monochromated MoK ( = 0.71070 Ǻ) radiation,  and  scans 

to a maximum 2 value of 55.0º. The structures were solved by a direct method using SIR2004.1 All 

non-hydrogen atoms were refined anisotropically by full-matrix least-squares on F2 using 

SHELXL97.2 Hydrogen atoms of 2a were positioned geometrically and refined using a riding model. 

All calculations were performed using the WinGX program package.3 CCDC 1524830 (2a, C118H92N8 

+ C2H3N) contains the supplementary crystallographic data for this paper. These data can be obtained 

free of charge from the Cambridge Crystallographic Data Centre via 

www.ccdc.cam.ac.uk/data_request/cif.

2a: Crystal system = triclinic, a = 13.8813(6) Å, b = 14.4392(7) Å, c = 23.5317(11) Å,  = 

95.8618(12)º,  = 105.3647(12)º,  = 91.4814(11)º, V = 4517.3(4) Å3, Space group = P‒1, Z = 2, Dcalc 

= 1.220 g/cm3, T = 200, R1 [I > 2 (I)] = 0.0714, wR2 (all) = 0.2407, F = 0.938. Refl/param. = 

20530/1183 (CCDC 1524830).

http://www.ccdc.cam.ac.uk/data_request/cif


6

2. Optical properties
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Fig. S2 Absorption spectra of 1a and 2a in CH2Cl2.
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Fig. S3 Colors of 1a and 2a under day light (upside) and under a UV (360 nm) lamp (downside). 
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Fig. S4. Normalized fluorescence spectra of 1a and 2a in the solid state (powder) (λEX = 365 nm).
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Fig. S5 UV-Vis spectra of 2a in various solvents.
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3. Ion and molecular sensing experiments

3-1. Cyanide ion sensing experiments
Fig. S7 Fluorescence and absorption spectra of 2a (1× 10‒5 M) in the presence of none, 1 eq, 2 eq 
and 6 eq of nBu4NCN in CH2Cl2. These spectra were measured after 30 min.

When an excess amount of nBu4NCN (~10‒2 M) was added to the NMR sample solution of 2a 
(~10‒3 M), the fluorescence color was changed from reddish orange to blue-green color (Fig. S7). 
The NMR spectral change was disclosed in Fig. S8. The NMR spectrum of the cyanide adduct (Fig. 
8) showed broad signals, because the cyanide adduct 7A would exist as an equilibrium mixture with 
the monoanion 7B and the neutral species 7c owing to the presence of water as a contamination 
(Scheme S1).
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Scheme S1 Addition of nBu4NCN to 2a.  
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Fig. S8 1H-NMR spectra of 2a (~10‒3 M) before and after adding an excess amount of nBu4NCN in 
CDCl3.

3-2. n-Propylamine (nPrNH2) sensing experiments

Scheme S2 Addition of nPrNH2 to 2a.

When an excess amount of nPrNH2 (~10‒2 M) was added to the NMR sample solution of 2a (~10‒3 
M), the fluorescence color was changed from reddish orange to blue (Fig. S7). The NMR spectral 
change was illustrated in Fig. S10. The NMR spectrum of the adduct showed clear signals. It 
probably due to the formation of the corresponding dianion 8 in the presence of an excess amount 
of nPrNH2.
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Fig S9 1H-NMR spectra of 2a (~10‒3 M) before and after adding an excess amount of nPrNH2 in 
CDCl3.
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Fig. S10 Time- and concentration-dependent fluorescence intensity change at 478 nm of 2a (0.1, 
0.5, 1 and 5 × 10‒5 M) in the presence of excess amount of nBu4NF and nPrNH2 in CH2Cl2.

3-3. Fluoride ion sensing experiments

Fig S11 Fluorescence and absorption spectra of 2a (1× 10‒5 M) in the presence of none, 1 eq, 2 eq 
and 6 eq of nBu4NF in CH2Cl2. These spectra were measured after 30 min.

Fig S12 Time- and concentration-dependent fluorescence intensity change at 478 nm of 2a (0.1, 0.5, 
1 and 5 × 10‒5 M) in the presence of excess amount of nBu4NF in CH2Cl2.
 

n-Pen n-Pen

NC
CN

2a

F

n-Pen n-Pen
CHO

/H2O
OHC

CN
NC

3

Scheme S3 Retro-Knoevenagel condensation of 2a.
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4. NMR spectra of 2a and 3 in CDCl3

Fig. S13 1H-NMR spectrum of 3.

Fig. S14 13C-NMR spectrum of 3.
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Fig. S15 1H-NMR spectrum of 2a.

Fig. S16 13C-NMR spectrum of 2a.
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4. IR spectra of 3 and 2a.

Fig. S17 IR spectrum of 3.

Fig. S18 IR spectrum of 2a.
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