Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2017

Supporting Information

Iridium-Catalyzed Asymmetric Hydrogenation of Cyclic Iminium Salts

Yue Ji, Guang-Shou Feng, Mu-Wang Chen, Lei Shi, Haifeng Du and Yong-Gui Zhou Email: shileichem@dicp.ac.cn; ygzhou@dicp.ac.cn.

Table of Contents

1.	General	S1
2.	General Procedure for Synthesis of Cyclic Iminium Salts	S1
3.	General Procedure for Iridium-Catalyzed Asymmetric Hydrogenation	S6
4.	Asymmetric Hydrogenation at Gram Scale	S12
5.	The Determination of Absolute Configuration of (-)-4a	S13
6.	References	S13
7.	Copy of NMR and HPLC for Compounds	S14
	- F J F	

1. General

Commercially available reagents were used without further purification. ¹H NMR, ¹³C NMR and ¹⁹F NMR spectra were recorded at room temperature in CDCl₃ or DMSO on 400 MHz instrument with TMS (tetramethylsilane) as the internal standard. Enantiomeric excess was determined by HPLC using the chiral column described below in detail. Optical rotations were measured by polarimeter. Flash column chromatography was performed on silica gel (200-300 mesh).

2. General Procedure for Synthesis of Cyclic Iminium Salts

1-Substituted 3,4-dihydrosioquinolines and 1-substituted 4,9-dihydro-3-*H*- β -carbolines were synthesized according to the known literature procedures.¹ The cyclic iminium salts **1** and **3** were synthesized from the corresponding imines according to the known literature procedures.²

2.1 General Procedure for Synthesis of Cyclic Iminium Iodides

General Procedure: A mixture of 1-substituted 3,4-dihydrosioquinoline (or 1-substituted 4,9-dihydro-3-*H*- β -carboline) (1.0 mmol) and iodomethane (0.50 mL) in acetone (2.0 mL) was stirred at 80 °C overnight and the solid gradually formed. Afterwards the precipitate was filtered from the solution and washed with ethyl acetate to give the corresponding cyclic iminium iodides.

2-Methyl-1-phenyl-3,4-dihydroisoquinolin-2-ium iodide (1a): 5.0 mmol scale, 1.667 g, 95% yield, unknown compound, pale yellow solid, m.p. 217-218 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.77 (dd, J = 5.2, 3.3 Hz, 2H), 7.64 (m, 4H), 7.42 (d, J = 7.5 Hz, 1H), 7.33 – 7.26 (m, 1H), 7.02 (d, J = 7.9 Hz, 1H), 4.56 (t, J = 7.8 Hz, 2H), 3.81 (s, 3H), 3.59 (t, J = 7.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 175.2, 137.4, 137.1, 134.0, 132.1, 129.4, 129.3, 129.0, 128.4, 128.0, 127.5, 53.5, 48.1, 26.0; HRMS calculated for C₁₆H₁₆N [M-I]⁺ 222.1277, found 222.1280.

2-Methyl-1-(*m*-tolyl)-3,4-dihydroisoquinolin-2-ium iodide (1b): 1.0 mmol scale, 0.323 g, 89% yield, unknown compound, pale yellow solid, m.p. 201-202 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.77 (t, *J* = 7.5 Hz, 1H), 7.61 – 7.54 (m, 3H), 7.42 – 7.39 (m, 3H), 6.97 (d, *J* = 7.9 Hz, 1H), 4.25 (t, *J* = 7.7 Hz, 2H), 3.50 (s, 3H), 3.34 (t, *J* = 7.7 Hz, 2H), 2.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 175.2, 139.4, 137.4, 137.0, 134.0, 132.8, 129.3, 129.2, 128.9, 128.4, 128.0, 127.5, 126.0, 53.4, 48.0, 26.0, 21.4; HRMS calculated for C₁₇H₁₈N [M-I]⁺ 236.1434, found 236.1436.

2-Methyl-1-(*p***-tolyl)-3,4-dihydroisoquinolin-2-ium iodide (1c):** 1.0 mmol scale, 0.330 g, 91% yield, unknown compound, pale yellow solid, m.p. 197-198 °C; ¹H NMR (400 MHz, CDCl₃)

δ 7.67 – 7.61 (m, 3H), 7.42 – 7.40 (m, 3H), 7.30 (t, *J* = 7.7 Hz, 1H), 7.05 (d, *J* = 7.8 Hz, 1H), 4.55 (t, *J* = 7.7 Hz, 2H), 3.84 (s, 3H), 3.56 (t, *J* = 7.8 Hz, 2H), 2.48 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 175.4, 143.1, 137.5, 137.0, 134.2, 129.9, 129.2, 128.4, 128.0, 127.7, 126.4, 53.5, 48.0, 26.0, 21.7; HRMS

calculated for $C_{17}H_{18}N [M-I]^+ 236.1434$, found 236.1439.

1-(4-Methoxyphenyl)-2-methyl-3,4-dihydroisoquinolin-2-ium iodide (1d): 1.0 mmol scale,

0.231 g, 61% yield, unknown compound, pale yellow solid, m.p. 215-216 °C; ¹H NMR (400 MHz,

DMSO) & 7.78 (t, J = 7.5 Hz, 1H), 7.59 (t, J = 7.8 Hz, 3H), 7.43 (t, J = 7.7 Hz, 1H), 7.27 (d, J = 8.7 Hz, 2H), 7.02 (d, J = 7.8 Hz, 1H), 4.26 (t, J = 7.6 Hz, 2H), 3.90 (s, 3H), 3.59 (s, 3H), 3.36 (t, J = 7.5 Hz, 2H); ¹³C NMR (100 MHz, DMSO) & 178.7, 167.2, 143.4, 141.5, 138.5, 136.5, 133.4, 133.1,

133.0, 126.6, 119.7, 60.9, 57.5, 51.2, 29.9; HRMS calculated for C₁₇H₁₈NO [M-I]⁺ 252.1383, found 252.1388.

1-(4-Fluorophenyl)-2-methyl-3,4-dihydroisoquinolin-2-ium iodide (1e): 0.88 mmol scale, 0.283 g, 81% yield, unknown compound, pale yellow solid, m.p. 188-189 °C; ¹H NMR (400 MHz,

 $CDCl_3$) δ 7.91 – 7.87 (m, 2H), 7.67 (t, J = 7.5 Hz, 1H), 7.41 (d, J = 7.5 Hz, 1H) 1H), 7.33 – 7.28 (m, 3H), 7.00 (d, J = 7.9 Hz, 1H), 4.52 (t, J = 7.8 Hz, 2H), 3.80 (s, 3H), 3.58 (t, J = 7.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ ¹³C NMR (100 MHz, CDCl₃) δ 174.4, 164.6 (d, J = 255.2 Hz), 137.5, 137.2,

133.9, 132.1 (d, J = 8.8 Hz), 128.5, 128.1, 127.6, 125.3 (d, J = 3.5 Hz), 116.7 (d, J = 22.3 Hz), 53.6, 48.2, 25.9; ¹⁹F NMR (376 MHz, CDCl₃) δ -105.4; HRMS calculated for C₁₆H₁₅NF [M-I]⁺ 240.1183, found 240.1185.

1-(4-Chlorophenyl)-2-methyl-3,4-dihydroisoquinolin-2-ium iodide (1f): 1.0 mmol scale, 0.355 g, 92% yield, unknown compound, pale yellow solid, m.p. 234-235 °C;. ¹H NMR (400 MHz,

DMSO) δ 7.83 – 7.71 (m, 3H), 7.73 (d, J = 8.5 Hz, 2H), 7.59 (d, J = 7.5 Hz, 1H), 7.42 (t, J = 7.7 Hz, 1H), 6.99 (d, J = 7.9 Hz, 1H), 4.30 (t, J = 7.7 Hz, 2H), 3.54 (s, 3H), 3.40 (t, J = 7.7 Hz, 2H); ¹³C NMR (100 MHz, DMSO) δ 173.3, 138.3, 137.3, 137.1, 133.4, 131.0, 129.8, 128.9, 128.8, 128.4, 128.0,

52.9, 46.7, 25.0; HRMS calculated for $C_{16}H_{15}NC1 [M-I]^+$ 256.0888, found 256.0888.

1-(4-Bromophenyl)-2-methyl-3,4-dihydroisoquinolin-2-ium iodide (1g): 1.3 mmol scale, 0.523 g, 94% yield, unknown compound, pale yellow solid, m.p. 234-235 °C; ¹H NMR (400 MHz,

DMSO) δ 7.96 (d, J = 8.4 Hz, 2H), 7.79 (t, J = 7.5 Hz, 1H), 7.65 (d, J = 8.4 Hz, 2H), 7.59 (d, J = 7.5 Hz, 1H), 7.42 (t, J = 7.6 Hz, 1H), 6.99 (d, J = 7.8Hz, 1H), 4.30 (t, J = 7.7 Hz, 2H), 3.54 (s, 3H), 3.40 (t, J = 7.7 Hz, 2H); ¹³C NMR (100 MHz, DMSO) δ 173.3, 138.3, 137.1, 133.4, 132.7, 131.1, 129.3,

128.7, 128.4, 127.9, 126.2, 52.9, 46.7, 25.0; HRMS calculated for C₁₆H₁₅NBr [M-I]⁺ 300.0382, found 300.0386.

2,7-Dimethyl-1-phenyl-3,4-dihydroisoquinolin-2-ium iodide (1h): 1.0 mmol scale, 0.280 g, 77% yield, unknown compound, pale yellow solid, m.p. 202-204 °C; ¹H NMR (400 MHz, DMSO)

δ 7.81 – 7.57 (m, 6H), 7.49 (d, J = 7.7 Hz, 1H), 6.74 (s, 1H), 4.29 (t, J = 7.7 Hz, 2H), 3.52 (s, 3H), 3.38 – 3.33 (m, 2H), 2.22 (s, 3H); ¹³C NMR (100 MHz, DMSO) & 174.2, 137.7, 135.5, 133.3, 132.3, 130.2, 129.6, 128.8, 128.8, 128.7, 128.0, 52.9, 46.6, 24.7, 21.0; HRMS calculated for $C_{17}H_{18}N [M-I]^+$ 236.1434,

found 236.1435.

ÓMe

7-Methoxy-2-methyl-1-phenyl-3,4-dihydroisoquinolin-2-ium iodide (1i): 1.0 mmol scale, 0.385 g, 93% yield, unknown compound, pale yellow solid, m.p. 233-235 °C; ¹H - ا NMR (400 MHz, DMSO) δ 7.83 – 7.69 (m, 5H), 7.55 (d, J = 8.4 Hz, 1H), 7.44 – 7.42 (m, 1H), 6.35 (d, J = 2.5 Hz, 1H), 4.31 (t, J = 7.7 Hz, 2H), 3.65 (s, 3H), 3.56 (s, 3H), 3.34 (t, J = 7.7 Hz, 2H); ¹³C NMR (100 MHz, DMSO) δ 173.9, 158.5, 132.4, 130.2, 130.0, 129.6, 128.9, 128.9, 128.8, 122.1, 118.7, 56.1, 53.3, 46.8, 24.3; HRMS calculated for $C_{17}H_{18}NO [M-I]^+ 252.1383$, found 252.1388.

7-Chloro-2-methyl-1-phenyl-3,4-dihydroisoquinolin-2-ium iodide (1j): 0.8 mmol scale, 0.244 g, 79% yield, unknown compound, yellow solid, m.p. 237-238 °C; ¹H NMR (400 MHz,

DMSO) δ 7.86 (dd, J = 8.2, 1.6 Hz, 1H), 7.80 – 7.67 (m, 5H), 7.64 (d, J = 8.2

Hz, 1H), 6.81 (d, J = 1.4 Hz, 1H), 4.32 (t, J = 7.7 Hz, 2H), 3.55 (s, 3H), 3.41 (t, J = 7.7 Hz, 2H); ¹³C NMR (100 MHz, DMSO) δ 175.1, 139.2, 138.3, 134.5, 134.3, 133.8, 132.7, 131.7, 131.6, 131.5, 130.9, 54.9, 48.9, 26.5; HRMS

calculated for $C_{16}H_{15}CIN [M-I]^+$ 256.0888, found 256.0887.

2-Methyl-1-phenethyl-3,4-dihydroisoquinolinium iodide (1k): 1.0 mmol scale, 0.309 g, 82% yield, unknown compound, pale yellow solid, m.p. 164-165 °C; ¹H NMR (400 MHz, DMSO) δ

> 8.13 (d, J = 7.9 Hz, 1H), 7.76 (t, J = 7.4 Hz, 1H), 7.52 (dd, J = 15.8, 7.7 Hz, 2H), 7.31 (d, J = 4.5 Hz, 4H), 7.27 - 7.20 (m, 1H), 4.05 (t, J = 7.5 Hz, 2H), 3.74 (s, 3H), 3.56 (t, J = 7.9 Hz, 2H), 3.12 (t, J = 7.5 Hz, 2H), 3.02 - 2.90 (m,

2H); ¹³C NMR (100 MHz, DMSO) δ 177.4, 139.2, 137.8, 136.5, 130.8, 129.1, 129.0, 128.7, 128.6, 127.3, 126.7, 52.9, 45.3, 33.0, 32.4, 25.4; HRMS calculated for $C_{18}H_{20}N [M-I]^+$ 250.1590, found 250.1593.

2-Methyl-1-phenyl-4,9-dihydro-3H-pyrido[3,4-b]indol-2-ium iodide (3a): 2.0 mmol scale, 0.630 g, 81% yield, unknown compound, yellow solid, m.p. 230-231 °C; ¹H NMR (400 MHz,

DMSO) δ 11.58 (brs, 1H), 7.87 - 7.68 (m, 6H), 7.50 - 7.36 (m, 2H), 7.23 -7.19 (m, 1H), 4.34 (t, J = 8.6 Hz, 2H), 3.57 – 3.38 (m, 5H); ¹³C NMR (100 MHz, DMSO) & 164.3, 142.1, 132.7, 129.8, 129.4, 129.0, 128.8, 127.6, 124.4, 124.3, 122.3, 122.0, 114.1, 53.8, 44.2, 19.5; HRMS calculated for C₁₇H₁₈N

[M-I]⁺ 261.1386, found 261.1391.

2-Methyl-1-(p-tolyl)-4,9-dihydro-3H-pyrido[3,4-b]indol-2-ium iodide (3b): 5.0 mmol scale, 1.875 g, 93% yield, unknown compound, yellow solid, m.p. 237-239 °C; ¹H NMR (400 MHz,

DMSO) δ 11.56 (brs, 1H), 7.81 (d, J = 8.2 Hz, 1H), 7.64 (d, J = 8.1 Hz, 2H), 7.57 (d, J = 8.1 Hz, 2H), 7.47 – 7.37 (m, 2H), 7.21 (ddd, J = 7.9, 5.9, 1.8 Hz, 1H), 4.33 (t, J = 8.6 Hz, 2H), 3.51 (s, 3H), 3.44 (t, J = 8.6 Hz, 2H); ¹³C NMR (100 MHz, DMSO) δ 164.4, 143.0, 142.1, 130.3, 129.6, 128.9, 127.6, 125.9,

124.4, 124.2, 122.3, 122.0, 114.1, 53.7, 44.2, 21.7, 19.4; HRMS calculated for $C_{17}H_{18}N [M-I]^+$ 275.1543, found 275.1550.

1-(4-Methoxyphenyl)-2-methyl-4,9-dihydro-3H-pyrido[3,4-b]indol-2-ium iodide (3c): 2.0 mmol scale, 0.795 g, 95% yield, unknown compound, yellow solid, m.p. 254-255 °C; ¹H NMR

(400 MHz, DMSO) δ 11.57 (brs, 1H), 7.81 (d, J = 8.2 Hz, 1H), 7.71 (d, J = 8.8 Hz, 2H), 7.49 – 7.38 (m, 2H), 7.31 (d, J = 8.8 Hz, 2H), 7.25 – 7.17 (m, 1H), 4.31 (t, J = 8.5 Hz, 2H), 3.93 (s, 3H), 3.55 (s, 3H), 3.42 (t, J =8.5 Hz, 2H); ¹³C NMR (100 MHz, DMSO) δ 164.0, 162.8, 141.9, 132.2, 128.8, 127.7, 124.5, 124.1, 122.2, 122.0, 120.5, 115.2, 114.0, 56.3, 53.8,

44.1, 19.4; HRMS calculated for $C_{17}H_{18}N [M-I]^+$ 291.1492, found 291.1497.

2.2 General Procedure for Synthesis of Cyclic Iminium Bromides

General Procedure: A mixture of 1-substituted 3,4-dihydrosioquinoline (1.0 mmol) and (bromomethyl)benzene (1.2 mmol) in acetone (3.0 mL) was stirred at 80 °C overnight and the solid gradually formed. Afterwards the precipitate was filtered from the solution and washed with ethyl acetate. If no precipitate generated, the mixture should be concentrated in vacuum and further purification was performed by a silica gel column eluted with dichloromethane/methanol to give the cyclic iminium bromides **1**.

2-Benzyl-1-phenyl-3,4-dihydroisoquinolin-2-ium bromide (11): 2.7 mmol scale, 0.840 g, 83% yield, unknown compound, pale yellow solid, m.p. 168-170 °C; ¹H NMR (400 MHz, CDCl₃)

δ 7.93 (dd, J = 7.5, 1.7 Hz, 2H), 7.70 – 7.66 (m, 4H), 7.41 – 7.38 (m, 4H), 7.35 – 7.30 (m, 3H), 7.10 (d, J = 7.9 Hz, 1H), 5.49 (s, 2H), 4.50 (t, J = 7.7 Hz, 2H), 3.34 (t, J = 7.7 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 175.7, 137.6, 137.5, 134.7, 132.3, 132.1, 129.6, 129.5, 129.5, 128.9, 128.5, 128.5, 128.4, 128.3,

127.7, 61.7, 50.2, 26.3; HRMS calculated for $C_{22}H_{20}N [M-Br]^+$ 298.1590, found 298.1599.

2-Benzyl-1-(*p*-tolyl)-3,4-dihydroisoquinolin-2-ium bromide (1m): 1.0 mmol scale, 0.274 g, 70% yield, unknown compound, pale yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, *J* = 8.0

Hz, 2H), 7.66 (t, J = 7.5 Hz, 1H), 7.46 (d, J = 8.0 Hz, 2H), 7.39 – 7.30 (m, 7H), 7.13 (d, J = 7.9 Hz, 1H), 5.54 (s, 2H), 4.50 (t, J = 7.7 Hz, 2H), 3.28 (t, J = 7.7 Hz, 2H), 2.49 (s, 3H); ¹³C NMR (100 MHz, DMSO) δ 176.6, 142.6, 138.7, 137.5, 134.3, 132.9, 130.2, 129.6, 129.3, 128.8, 128.7, 128.6, 128.6,

128.5, 127.3, 60.6, 50.3, 25.6, 21.6; HRMS calculated for $C_{23}H_{22}N$ $[M-Br]^+$ 312.1747, found 312.1752.

2-Benzyl-1-(4-methoxyphenyl)-3,4-dihydroisoquinolin-2-ium bromide (1n): 1.0 mmol scale, 0.224 g, 55% yield, unknown compound, pale yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, *J*

= 8.6 Hz, 2H), 7.65 (t, J = 7.5 Hz, 1H), 7.38 – 7.27 (m, 7H), 7.15 (t, J = 7.4 Hz, 3H), 5.57 (s, 2H), 4.46 (t, J = 7.6 Hz, 2H), 3.91 (s, 3H), 3.22 (t, J = 7.5 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 175.6, 162.8, 138.0, 137.2, 134.9, 132.6, 131.7, 129.5, 129.5, 128.4, 128.3, 128.2, 128.0, 121.1, 114.9, 61.3,

55.8, 50.1, 26.4; HRMS calculated for $C_{23}H_{22}NO [M-Br]^+$ 328.1696, found 328.1698.

2-Benzyl-1-(4-chlorophenyl)-3,4-dihydroisoquinolin-2-ium bromide (10): 1.0 mmol scale, 0.217 g, 53% yield, unknown compound, pale yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, *J*

anknown compound, pare yenow on, H NMK (400 MHz, CDCl₃) 6 7.99 (d, J = 8.4 Hz, 2H), 7.71 – 7.63 (m, 3H), 7.42 – 7.39 (m, 4H), 7.36 – 7.28 (m, 3H), 7.08 (d, J = 7.9 Hz, 1H), 5.43 (s, 2H), 4.47 (t, J = 7.7 Hz, 2H), 3.32 (t, J = 7.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 174.9, 138.8, 137.7, 134.5, 131.9, 130.7, 129.9, 129.6, 129.6, 128.5, 128.4, 128.4, 128.3, 127.8, 127.6, 61.8,

50.4, 26.2; HRMS calculated for $C_{22}H_{19}NCl [M-Br]^+$ 332.1201, found 332.1207.

2-Benzyl-7-methoxy-1-phenyl-3,4-dihydroisoquinolin-2-ium bromide (**1p**): 1.0 mmol scale, 0.286 g, 64% yield, unknown compound, pale yellow oil; ¹H NMR (400 MHz, DMSO) δ 7.74 – 7.70 (m, 5H), 7.53 (d, *J* = 8.4 Hz, 1H), 7.46 – 7.40 (m, 6H), 6.40 (d, *J* = 2.4 Hz, 1H), 5.06 (s, 2H),

4.12 (t, J = 7.5 Hz, 2H), 3.65 (s, 3H), 3.19 (t, J = 7.7 Hz, 2H); ¹³C NMR (100 MHz, DMSO) δ 177.0, 159.4, 133.5, 133.3, 131.4, 130.8, 130.8, 130.5, 130.4, 130.2, 130.0, 129.5, 129.5, 123.6, 120.1, 61.7, 57.0, 51.7, 25.5; HRMS calculated for C₂₃H₂₂NO [M-Br]⁺ 328.1696, found 328.1698.

2-Benzyl-7-chloro-1-phenyl-3,4-dihydroisoquinolin-2-ium bromide (1q): 0.8 mmol scale, 0.275 g, 83% yield, unknown compound, pale yellow solid, m.p. 214-216 °C; ¹H NMR (400 MHz,

N⁺-Bn Br Cl Id, unknown compound, pale yellow solid, m.p. 214-216 °C; ¹H NMR (400 MHz, DMSO) δ 7.93 (dd, J = 8.2, 2.1 Hz, 1H), 7.87 (dd, J = 7.6, 1.5 Hz, 2H), 7.81 – 7.72 (m, 3H), 7.68 (d, J = 8.2 Hz, 1H), 7.53 – 7.39 (m, 5H), 6.90 (d, J = 2.1 Hz, 1H), 5.13 (s, 2H), 4.21 (t, J = 7.6 Hz, 2H), 3.35 (t, J = 7.6 Hz, 2H); ¹³C NMR (100 MHz, DMSO) δ 175.5, 137.6, 136.8, 132.7, 132.5, 132.5, 132.4, 130.8,

130.4, 129.9, 129.6, 129.5, 129.4, 128.8, 128.8, 61.1, 50.6, 25.0; HRMS calculated for $C_{22}H_{19}CIN$ [M-Br]⁺ 332.1201, found 332.1206.

3. General Procedure for Iridium-Catalyzed Asymmetric Hydrogenation

3.1. Hydrogenation of Cyclic Iminium Salts with a 3,4-Dihydroisoquinoline Core

General Procedure: A mixture of $[Ir(COD)Cl]_2$ (1.3 mg, 0.002 mmol) and (*R*)-SegPhos (2.7 mg, 0.0044 mmol) in dichloroethane (1.0 mL) was stirred at room temperature for 10 min in glove box. Subsequently, the catalyst was transferred by a syringe to the mixture of 1-substituted 3,4-dihydroisoquinolin-2-ium salts **1** (0.2 mmol) using 4.0 mL dichloroethane. The hydrogenation was performed at 70 °C at a hydrogen pressure of 1000 psi for 24 h. After carefully releasing the hydrogen gas, the mixture was concentrated in vacuum and further purification was performed by a silica gel column eluted with hexanes/ethyl acetate to give the corresponding chiral hydrogenation products (*R*)-**2**.

(*R*)-(-)-2-Methyl-1-phenyl-1,2,3,4-tetrahydroisoquinoline (2a): 44 mg, 99% yield, 91% ee, known compound,³ pale yellow oil; $[\alpha]^{20}_{D} = -117.26$ (*c* 0.88, CHCl₃) [lit³: $[\alpha]^{20}_{D} = -103.4$ (*c* 0.50,

CHCl₃) for 95% ee], $R_f = 0.32$ (hexanes/ethyl acetate 5:1); ¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.24 (m, 5H), 7.10 (q, J = 7.2 Hz, 2H), 6.97 (t, J = 7.3 Hz, 1H), 6.63 (d, J = 7.8 Hz, 1H), 4.24 (s, 1H), 3.31 – 3.23 (ddd, J = 16.3, 11.2, 5.4 Hz, 1H), 3.12 (ddd, J = 11.4, 5.4, 2.7 Hz, 1H), 2.82 (dt, J = 16.1, 2.8 Hz, 1H), 2.69 – 2.55 (m, 1H), 2.23 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 144.0, 138.6, 134.3, 129.7, 128.6, 128.3, 128.3, 127.3, 126.0, 125.7, 71.6, 52.4, 44.4, 29.6; Enantiomeric excess was determined by HPLC (OD-H column, hexane/ⁱPrOH 98/2, 0.70 mL/min, 230 nm): t₁ = 6.0 min, t₂ = 6.3 min (major).

(*R*)-(-)-2-Methyl-1-*m*-tolyl-1,2,3,4-tetrahydroisoquinoline (2b): 47 mg, 99% yield, 90% ee, known compound,³ pale yellow oil; $[\alpha]^{20}{}_{D} = -115.77$ (*c* 0.90, CHCl₃) [lit³: $[\alpha]^{20}{}_{D} = -118.2$ (*c* 0.50, CHCl₃) for 91% ee], R_f = 0.23 (hexanes/ethyl acetate 5:1); ¹H NMR (400 MHz, CDCl₃) δ 7.24 – 7.20 (m, 1H), 7.13 – 7.07 (m, 5H), 6.98 (t, *J* = 7.3 Hz, 1H), 6.64 (d, *J* = 7.8 Hz, 1H), 4.19 (s, 1H), 3.32 – 3.24 (m, 1H), 3.15 – 3.11 (m, 1H), 2.83 – 2.79 (m, 1H), 2.66 – 2.59 (m, 1H), 2.31 (s, 3H), 2.23 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 144.0, 138.7, 138.0, 134.3, 130.1, 128.6, 128.3, 128.1, 128.1, 126.9, 125.9, 125.7, 71.7, 52.6, 44.5, 29.6, 21.5; Enantiomeric excess was determined by HPLC (OJ-H column, hexane/ ⁱPrOH 95/5, 0.70 mL/min, 230 nm): t₁ = 6.7 min (major), t₂ = 7.7 min.

(*R*)-(-)-2-Methyl-1-*p*-tolyl-1,2,3,4-tetrahydroisoquinoline (2c): 46 mg, 97% yield, 90% ee, known compound,³ pale yellow oil; $[\alpha]^{20}_{D} = -114.66$ (*c* 0.90, CHCl₃) [lit³: $[\alpha]^{20}_{D} = -111.0$ (*c* 0.50,

 $\begin{array}{c} & \text{CH} \\ & \text{CH}$

CHCl₃) for 94% ee], $R_f = 0.25$ (hexanes/ethyl acetate 5:1); ¹H NMR (400 MHz, CDCl₃) δ 7.16 – 7.06 (m, 6H), 6.97 (t, J = 7.3 Hz, 1H), 6.64 (d, J = 7.8 Hz, 1H), 4.20 (s, 1H), 3.30 – 3.22 (M, 1H), 3.11 (ddd, J = 11.5, 5.5, 2.8 Hz, 1H), 2.81 (dt, J = 16.1, 2.8 Hz, 1H), 2.62 (td, J = 11.3, 3.8 Hz, 1H), 2.33 (s, 3H), 2.23 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 140.9, 138.8, 136.9, 134.3, 129.5, 129.0, 128.6, 128.3,

125.9, 125.7, 71.3, 52.4, 44.4, 29.6, 21.2; Enantiomeric excess was determined by HPLC (OJ-H column, hexane/^{*i*}PrOH 95/5, 0.70 mL/min, 230 nm): $t_1 = 6.8 \text{ min (major)}, t_2 = 9.7 \text{ min}.$

(*R*)-(-)-1-(4-Methoxyphenyl)-2-methyl-1,2,3,4-tetrahydroisoquinoline (2d): 46 mg, 91% yield, 89% ee, known compound,³ pale yellow solid; $[\alpha]_{D}^{20} = -110.96$ (*c* 0.62, CHCl₃) [lit³: $[\alpha]_{D}^{20}$

= -111.2 (c 0.50, CHCl₃) for 91% ee], $R_f = 0.25$ (hexanes/ethyl acetate 2:1); ¹H NMR (400 MHz, CDCl₃) δ 7.17 (d, J = 8.5 Hz, 2H), 7.09 (q, J = 7.6 Hz, 2H), 6.98 (t, J = 7.2 Hz, 1H), 6.85 (d, J = 8.6 Hz, 2H), 6.64 (d, J = 7.8 Hz, 1H), 4.20 (s, 1H), 3.80 (s, 3H), 3.29 - 3.21 (m, 1H), 3.11 (ddd, J = 11.4, 5.4, 2.8 Hz, 1H), 2.86 - 2.77 (m, 1H), 2.62 (td, J = 11.3, 3.8 Hz, 1H), 2.23 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 158.8, 138.9, 136.0, 134.3, 130.6, 128.6, 128.3, 125.9, 125.6, 113.6, 70.9, 55.2, 52.4,

44.3, 29.5. Enantiomeric excess was determined by HPLC (OD-H column, hexane/^{*i*}PrOH 90/10, 1.0 mL/min, 230 nm): $t_1 = 4.1 \text{ min}$, $t_2 = 4.4 \text{ min}$ (major).

(*R*)-(-)-1-(4-Fluorophenyl)-2-methyl-1,2,3,4-tetrahydroisoquinoline (2e): 45 mg, 94% yield, 90% ee, unknown compound, colorless oil; $[\alpha]^{20}_{D} = -114.38$ (*c* 0.82, CHCl₃), R_f = 0.30

(hexanes/ethyl acetate 5:1); ¹H NMR (400 MHz, CDCl₃) δ 7.25 – 7.21 (m, 2H), 7.13– 7.07 (m, 2H), 7.02 – 6.96 (m, 3H), 6.60 (d, *J* = 7.8 Hz, 1H), 4.22 (s, 1H), 3.29 – 3.21 (m, 1H), 3.11 (ddd, *J* = 11.5, 5.5, 2.7 Hz, 1H), 2.81 (dt, *J* = 16.1, 3.0 Hz, 1H), 2.63 (td, *J* = 11.3, 3.8 Hz, 1H), 2.22 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 162.1 (d, *J* = 245.2 Hz), 139.9 (d, *J* = 3.2 Hz), 138.4, 134.4, 131.1 (d, *J* = 7.9 Hz),

128.5, 128.4, 126.1, 125.7, 115.1 (d, J = 21.3 Hz), 70.8, 52.4, 44.3, 29.5; ¹⁹F NMR (376 MHz, CDCl₃) δ -115.41; Enantiomeric excess was determined by HPLC (OD-H column, hexane/^{*i*}PrOH 95/5, 1.0 mL/min, 230 nm): t₁ = 3.8 min, t₂ = 4.2 min (major); HRMS calculated for C₁₆H₁₇NF [M+H]⁺ 242.1340, found 242.1350.

(*R*)-(-)-1-(4-Chlorophenyl)-2-methyl-1,2,3,4-tetrahydroisoquinoline (2f): 50 mg, 97% yield, 87% ee, known compound,³ white solid; $[\alpha]_{D}^{20} = -118.55$ (*c* 0.90, CHCl₃) [lit³: $[\alpha]_{D}^{20} = -130.0$ (*c*

0.50, CHCl₃) for 91% ee], $R_f = 0.35$ (hexanes/ethyl acetate 5:1); ¹H NMR (400 MHz, CDCl₃) δ 7.28 (d, J = 8.4 Hz, 2H), 7.22 (t, J = 7.9 Hz, 2H), 7.13 – 7.07 (m, 2H), 6.98 (t, J = 7.2 Hz, 1H), 6.59 (d, J = 7.8 Hz, 1H), 4.21 (s, 1H), 3.29 – 3.20 (m, 1H), 3.10 (ddd, J = 11.4, 5.4, 2.6 Hz, 1H), 2.88 – 2.74 (m, 1H), 2.62 (td, J = 11.3, 3.7 Hz, 1H), 2.22 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 142.7, 138.1, 134.3,

133.0, 130.9, 128.5, 128.5, 128.4, 126.1, 125.8, 70.8, 52.3, 44.3, 29.5; Enantiomeric excess was determined by HPLC (OD-H column, hexane/^{*i*}PrOH 90/10, 1.0 mL/min, 230 nm): $t_1 = 3.7 \text{ min}, t_2 = 4.1 \text{ min (major)}.$

(*R*)-(-)-1-(4-Bromophenyl)-2-methyl-1,2,3,4-tetrahydroisoquinoline (2g): 59 mg, 98% yield, 87% ee, unknown compound, white solid, m.p. 97-99 °C; $[\alpha]^{20}_{D} = -106.86$ (*c* 1.18, CHCl₃), R_f =

0.30 (hexanes/ethyl acetate 5:1); ¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, J = 8.3 Hz, 2H), 7.18 – 7.09 (m, 4H), 7.00 (t, J = 7.1 Hz, 1H), 6.60 (d, J = 7.8 Hz, 1H), 4.22 (s, 1H), 3.30 – 7.21 (m, 1H), 3.12 (ddd, J = 11.4, 5.4, 2.6 Hz, 1H), 2.88 – 2.76 (m, 1H), 2.64 (td, J = 11.4, 3.8 Hz, 1H), 2.23 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 143.3, 138.0, 134.3, 131.5, 131.3, 128.5, 128.4, 126.2, 125.8, 121.2, 70.9, 52.3,

44.4, 29.5; Enantiomeric excess was determined by HPLC (OD-H column, hexane/^{*i*}PrOH 98/2, 0.7 mL/min, 230 nm): $t_1 = 6.0$ min, $t_2 = 7.2$ min (major); HRMS calculated for $C_{16}H_{17}NBr$ [M+H]⁺ 302.0539, found 302.0541.

(*R*)-(-)-2,7-Dimethyl-1-phenyl-1,2,3,4-tetrahydroisoquinoline (2h): 46 mg, 97% yield, 93% ee, known compound,³ pale yellow oil; $[\alpha]^{20}{}_{D} = -72.07$ (*c* 0.82, CHCl₃) [lit³: $[\alpha]^{20}{}_{D} = -73.8$ (*c* 0.50, CHCl₃) for 93% ee], R_f = 0.50 (hexanes/ethyl acetate 2:1); ¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.23 (m, 5H), 7.01 (d, *J* = 7.7 Hz, 1H), 6.91 (d, *J* = 7.7 Hz, 1H), 6.44 (s, 1H), 4.19 (s, 1H), 3.25 –

 $3.17 \text{ (m, 1H)}, 3.10 \text{ (ddd, } J = 11.3, 5.3, 2.8 \text{ Hz}, 1\text{H}), 2.83 - 2.73 \text{ (m, 1H)}, 2.60 \text{ (td,} J = 11.2, 3.8 \text{ Hz}, 1\text{H}), 2.22 \text{ (s, 3H)}, 2.12 \text{ (s, 3H)}; {}^{13}\text{C} \text{ NMR} (100 \text{ MHz}, \text{CDCl}_3) \delta$ 144.1, 138.4, 135.0, 131.4, 129.7, 129.0, 128.3, 128.2, 127.3, 126.9, 71.5, 52.4, $44.4, 29.2, 21.1; \text{ Enantiomeric excess was determined by HPLC (OG column, hexane/{}^{i}\text{PrOH 99.6/0.4}, 0.7 \text{ mL/min}, 230 \text{ nm}): t_1 = 5.9 \text{ min}, t_2 = 6.5 \text{ min (major)}.$

(*R*)-(-)-7-Methoxy-2-methyl-1-phenyl-1,2,3,4-tetrahydroisoquinoline (2i): 46 mg, 91% yield, 86% ee, known compound,³ pale yellow oil; $[\alpha]^{20}_{D} = -52.50$ (*c* 0.80, CHCl₃) [lit³: $[\alpha]^{20}_{D} = -58.4$ (*c*

 $\begin{array}{c} \text{MeO} \end{array} \begin{array}{c} 0.50, \ \text{CHCl}_3) \ \text{for } 86\% \ \text{ee}], \ \text{R}_{\rm f} = 0.35 \ (\text{hexanes/ethyl acetate } 5:1); \ ^1\text{H NMR} \\ (400 \ \text{MHz}, \ \text{CDCl}_3) \ \delta \ 7.32 - 7.23 \ (\text{m}, \ 5\text{H}), \ 7.04 \ (\text{d}, \ J = 8.4, \ 1\text{H}), \ 6.68 \ (\text{dd}, \ J = 8.4, \ 2.6 \ \text{Hz}, \ 1\text{H}), \ 6.17 \ (\text{d}, \ J = 2.4 \ \text{Hz}, \ 1\text{H}), \ 4.19 \ (\text{s}, \ 1\text{H}), \ 3.59 \ (\text{s}, \ 3\text{H}), \ 3.22 \\ - \ 3.08 \ (\text{m}, \ 2\text{H}), \ 2.77 \ (\text{dd}, \ J = 15.7, \ 3.2 \ \text{Hz}, \ 1\text{H}), \ 2.60 \ (\text{td}, \ J = 10.9, \ 3.8 \ \text{Hz}, \ 1\text{H}), \ 2.23 \ (\text{s}, \ 3\text{H}); \ ^{13}\text{C} \ \text{NMR} \ (100 \ \text{MHz}, \ \text{CDCl}_3) \ \delta \ 157.5, \ 143.8, \ 139.7, \ 129.6, \ 129.2, \ 128.3, \ 127.3, \ 126.7, \ 113.8, \ 112.0, \ 71.6, \ 55.1, \ 52.5, \ 44.4, \ 28.7; \ \text{Enantiomeric excess was determined by HPLC} \ (\text{OJ-H column, hexane/}^{i}\text{PrOH 90/10}, \ 0.7 \ \text{mL/min}, \ 230 \ \text{nm}): \ t_1 = 12.3 \ \text{min} \ (\text{major}), \ t_2 = 17.4 \ \text{min}. \end{array}$

(*R*)-(-)-7-Chloro-2-methyl-1-phenyl-1,2,3,4-tetrahydroisoquinoline (2j): 48 mg, 93% yield, 84% ee, unknown compound, colourless oil; $[\alpha]^{20}_{D} = -34.79$ (*c* 0.96, CHCl₃), R_f = 0.45

n compound, colourless oil; $[\alpha]_{D}^{20} = -34.79$ (*c* 0.96, CHCl₃), R_f = 0.45 (hexanes/ethyl acetate 2:1); ¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.22 (m, 5H), 7.13 – 6.99 (m, 2H), 6.61 (s, 1H), 4.18 (s, 1H), 3.25 – 3.06 (m, 2H), 2.84 – 2.73 (m, 1H), 2.63 – 2.56 (m, 1H), 2.21 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 143.1, 140.5, 132.9, 131.3, 129.7, 129.6, 128.5, 128.4, 127.6, 126.2, 71.21,

52.1, 44.3, 29.0; Enantiomeric excess was determined by HPLC (AD-H column, hexane/^{*i*}PrOH 95/5, 0.8 mL/min, 230 nm): $t_1 = 4.7$ min, $t_2 = 5.1$ min (major); HRMS calculated for $C_{16}H_{17}CIN$ [M+H]⁺ 258.1044, found 258.1047.

(*R*)-(+)-2-Methyl-1-phenethyl-1,2,3,4-tetrahydroisoquinoline (2k): 50 mg, 99% yield, 26% ee, known compound,⁴ pale yellow oil; $[\alpha]^{20}{}_{D} = +1.20$ (*c* 1.00, CHCl₃), R_f = 0.30 (hexanes/ethyl acetate 2:1); ¹H NMR (400 MHz, CDCl₃) δ 7.28 – 7.24 (m, 2H), 7.22 – 7.04 (m, 7H), 3.50 (t, *J* = 5.3 Hz, 1H), 3.21 – 3.10 (m, 1H), 2.89 – 2.66 (m, 4H), 2.59 – Ph 2.50 (m, 1H), 2.48 (s, 3H), 2.16 – 2.01 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 143.0, 138.1, 134.9, 128.8, 128.5, 128.3, 127.1, 125.9, 125.8, 125.6, 63.1, 48.5, 42.9, 36.7, 31.4, 26.3; Enantiomeric excess was determined by HPLC (OD-H column, hexane/ ^{*i*}PrOH 98/2, 0.7 mL/min, 230 nm): t₁ = 6.6 min, t₂ = 7.2 min (major).

(*R*)-(-)-2-Benzyl-1-phenyl-1,2,3,4-tetrahydroisoquinoline (21): The hydrogenation was performed in dichloroethane (3 mL) at 50 °C; 57 mg, 95% yield, 96% ee, known compound,³ white

solid; $[\alpha]^{20}{}_{D} = -100.72$ (c 1.10, CHCl₃) [lit³: $[\alpha]^{20}{}_{D} = -94.6$ (c 0.50, CHCl₃) for ^N·_{Bn} 95% ee], R_f = 0.41 (hexanes/ethyl acetate 20:1); ¹H NMR (400 MHz, CDCl₃) δ 7.38 (d, J = 7.4 Hz, 2H), 7.34 – 7.20 (m, 8H), 7.12 – 7.07 (m, 2H), 7.02 – 6.98 (m, 1H), 6.72 (d, J = 7.8 Hz, 1H), 4.60 (s, 1H), 3.81 (d, J = 13.6 Hz, 1H), 3.24 (d, J = 13.6 Hz), 3.24 (d,

13.6 Hz, 1H), 3.12 - 3.02 (m, 2H), 2.78 - 2.74 (m, 1H), 2.54 - 2.48 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 144.5, 139.6, 138.6, 134.9, 129.7, 128.9, 128.8, 128.5, 128.3, 128.2, 127.3, 126.9, 125.9, 125.7, 68.9, 58.9, 47.4, 29.3; Enantiomeric excess was determined by HPLC (AD-H column, hexane/^{*i*}PrOH 90/10, 1.0 mL/min, 230 nm): t₁ = 3.5 min (major), t₂ = 3.9 min.

(*R*)-(-)-2-Benzyl-1-(*p*-tolyl)-1,2,3,4-tetrahydroisoquinoline (2m): The hydrogenation was performed in dichloroethane (3 mL) at 50 °C; 61 mg, 97% yield, 95% ee, unknown compound, white solid, m.p. 97-99 °C; $[\alpha]_{D}^{20} = -92.45$ (*c* 1.22, CHCl₃), R_f = 0.58 (hexanes/ethyl acetate 10:1); ¹H

NMR (400 MHz, CDCl₃) δ 7.31 – 7.24 (m, 6H), 7.21 – 7.18 (m, 1H), 7.12 – 7.05 (m, 4H), 7.00 – 6.96 (m, 1H), 6.73 (d, J = 7.8 Hz, 1H), 4.56 (s, 1H), 3.81 (d, J = 13.6 Hz, 1H), 3.22 (d, J = 13.6 Hz, 1H), 3.11 – 3.01 (m, 2H), 2.78 – 2.72 (m, 1H), 252 – 2.45 (m, 1H), 2.31 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 141.4, 139.7, 138.9, 136.8, 134.9, 129.6, 129.1, 128.9, 128.8, 128.5, 128.2, 126.8, 125.9, 125.7,

68.6, 58.9, 47.4, 29.4, 21.2; Enantiomeric excess was determined by HPLC (AD-H column, hexane/^{*i*}PrOH 98/2, 0.7 mL/min, 230 nm): $t_1 = 5.2 \text{ min}$ (major), $t_2 = 5.9 \text{ min}$; HRMS calculated for $C_{23}H_{24}N$ [M+H]⁺ 314.1903, found 314.1908.

(*R*)-(-)-2-Benzyl-1-(4-methoxyphenyl)-1,2,3,4-tetrahydroisoquinoline (2n): The hydrogenation was performed in dichloroethane (3 mL) at 50 °C; 63 mg, 96% yield, 96% ee, known

MeO

compound,² colorless oil; $[\alpha]^{20}{}_{D}$ = -98.39 (*c* 1.00, CHCl₃), [lit²: $[\alpha]^{29}{}_{D}$ = -94.6 (c 2.05, CHCl₃) for 94% ee], R_f = 0.45 (hexanes/ethyl acetate 10:1); ¹H NMR (400 MHz, CDCl₃) δ 7.31 – 7.25 (m, 6H), 7.22 – 7.18 (m, 1H), 7.10 – 7.06 (m, 2H), 7.01 – 6.96 (m, 1H), 6.87 – 6.83 (m, 2H), 6.73 (d, *J* = 7.8 Hz, 1H), 4.55 (s, 1H), 3.82 (d, *J* = 13.6 Hz, 1H), 3.77 (s, 3H), 3.22 (d, *J* = 13.6 Hz, 1H), 3.11 – 3.00 (m,

2H), 2.75 (dt, J = 7.2, 4.5 Hz, 1H), 2.53 – 2.46 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 158.8, 139.7, 138.9, 136.5, 134.9, 130.7, 128.9, 128.8, 128.5, 128.2, 126.8, 125.9, 125.6, 113.7, 68.2, 58.8, 55.3, 47.4, 29.3; Enantiomeric excess was determined by HPLC (AD-H column, hexane/^{*i*}PrOH 99.2/0.8, 0.7 mL/min, 230 nm): t₁ = 8.9 min (major), t₂ = 10.1 min.

(*R*)-(-)-2-Benzyl-1-(4-chlorophenyl)-1,2,3,4-tetrahydroisoquinoline (20): The hydrogenation was performed in dichloroethane (3 mL) at 50 $^{\circ}$ C; 62 mg, 93% yield, 95% ee, unknown

compound, white solid, mp 108-109 °C; $[\alpha]^{20}_{D}$ = -92.54 (*c* 1.14, CHCl₃), R_f = 0.43 (hexanes/ethyl acetate 20:1); ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.24 (m, 9H), 7.15 – 7.12 (m, 2H), 7.07 – 7.03 (m, 1H), 6.73 (d, *J* = 7.7 Hz, 1H), 4.63 (s, 1H), 3.82 (d, *J* = 13.5 Hz, 1H), 3.28 (d, *J* = 13.5 Hz, 1H), 3.15 – 3.04 (m, 2H), 2.80 (dt, *J* = 6.8, 4.2 Hz, 1H), 2.58 – 2.52 (m, 1H); ¹³C NMR (100 MHz, CDCl₃)

δ 143.9, 140.1, 138.8, 135.7, 133.8, 131.8, 129.6, 129.5, 129.5, 129.3, 129.1, 127.8, 127.0, 126.6, 68.9, 59.7, 48.1, 30.0; Enantiomeric excess was determined by HPLC (AD-H column, hexane/ ^{*i*}PrOH 98/2, 0.7 mL/min, 230 nm): $t_1 = 5.9$ min (major), $t_2 = 6.3$ min; HRMS calculated for $C_{22}H_{21}NCI [M+H]^+$ 334.1357, found 334.1360.

(*R*)-(-)-2-Benzyl-7-methoxy-1-phenyl-1,2,3,4-tetrahydroisoquinoline (2p): The hydrogenation was performed in dichloroethane (3 mL) at 50 $^{\circ}$ C; 60 mg, 91% yield, 93% ee, unknown

compound, colorless oil; $[\alpha]^{20}_{D} = -41.87$ (*c* 1.12, CHCl₃), R_f = 0.35 `Bn (hexanes/ethyl acetate 20:1); ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.22 (m, 10H), 7.05 (d, *J* = 8.4 Hz, 1H), 6.70 (dd, *J* = 8.4, 2.5 Hz, 1H), 6.29 (d, *J* = 2.6 Hz, 1H), 4.58 (s, 1H), 3.82 (d, *J* = 13.6 Hz, 1H), 3.63 (s, 3H), 3.27 (d, *J*

= 13.5 Hz, 1H), 3.10 (dt, J = 11.3, 4.7 Hz, 1H), 3.05 – 2.94 (m, 1H), 2.73 (dt, J = 15.8, 3.9 Hz, 1H), 2.51 (ddd, J = 11.6, 9.9, 4.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 157.5, 144.2, 139.6, 139.5, 129.6, 129.4, 128.8, 128.3, 128.2, 127.3, 127.1, 126.8, 114.0, 112.1, 68.8, 58.9, 55.1, 47.4, 28.2; Enantiomeric excess was determined by HPLC (AD-H column, hexane/ ^{*i*}PrOH 98/2, 0.7 mL/min, 230 nm): t₁ = 7.0 min (major), t₂ = 9.1 min; HRMS calculated for C₂₃H₂₄NO [M+H]⁺ 330.1852, found 330.1854.

(*R*)-(-)-2-Benzyl-7-chloro-1-phenyl-1,2,3,4-tetrahydroisoquinoline (2q): The hydrogenation was performed in dichloroethane (3 mL) at 50 °C; 64 mg, 96% yield, 95% ee, unknown compound,

colorless oil; $[\alpha]^{20}{}_{D}$ = -27.89 (*c* 1.28, CHCl₃), R_f = 0.58 (hexanes/ethyl acetate 10:1); ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.18 (m, 10H), 7.10 – 6.97 (m, 2H), 6.71 (d, *J* = 1.0 Hz, 1H), 4.54 (s, 1H), 3.78 (d, *J* = 13.5 Hz, 1H), 3.23 (d, *J* = 13.5 Hz, 1H), 3.13 – 3.03 (m, 1H), 3.02 – 2.95 (m, 1H), 2.75 – 2.69 (m, 1H), 2.50 – 2.44 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 143.5, 140.4, 139.3,

133.4, 131.2, 129.9, 129.6, 128.7, 128.7, 128.5, 128.2, 127.6, 127.0, 126.2, 68.5, 58.7, 47.1, 28.7; Enantiomeric excess was determined by HPLC (AD-H column, hexane/^{*i*}PrOH 95/5, 0.8 mL/min, 230 nm): $t_1 = 4.5$ min (major), $t_2 = 5.2$ min; HRMS calculated for $C_{22}H_{21}CIN [M+H]^+$ 334.1357, found 330. 334.1355.

Optimization of Iridium-Catalyzed Asymmetric Hydrogenation of Cyclic Iminium Salts with a 4,9-Dihydro-3-H- β -carboline Core

	N ⁺ N H 3b	[Ir(COD)CI] ₂ /L* ent, H ₂ (1000 psi), 7 >95% conv.	70 °C	N-
Entry ^a	Solvent		L*	$\operatorname{Ee}(\%)^{c}$
1	DCE		L3	62
2	Toluene		L3	79
3	Dioxane		L3	76
4	THF		L3	73
5	ⁱ PrOH		L3	47
6 ^b	Toluene		L1	76
7	Toluene		L4	77
8	Toluene		L5	85
9^d	Toluene		L5	84
C PPh2 C PPh2 C PPh2 C PPh2	PPh ₂ PPh ₂ PPh ₂	PPh ₂ OFFPPh ₂ OFFPPh ₂	F F F F F F F F F F	CI PPh2 MeO PPh2 CI PPh2
LI. (A)-SynPhos	LZ. (A)-BINAP	Lo. (A)-SegPhos	L4. (A)-Dinuorphos	цэ. (л)-сниес-ырпер

^{*a*} Reaction condition: **3b** (0.1 mmol), $[Ir(COD)Cl]_2$ (1 mol%), **L*** (2.2 mol%), H₂ (1000 psi), solvent (3.0 mL), 24 h, 70 °C; The reaction was conducted with full conversion (determined by ¹H NMR analysis with 1,3,5-trimethoxy-benzene as the internal standard). ^{*b*} 66% conversion ^{*c*} Determined by HPLC analysis. ^{*d*} 80 °C.

With the optimization of reaction conditions, (*R*)-Cl-MeO-BiPhep and toluene turned out to be the best ligand and solvent for hydrogenation of 2-methyl-1-(*p*-tolyl)-4,9-dihydro-3*H*-pyrido-[3,4-b]indol-2-ium iodide, providing the desired product in full conversion and 84% ee.

3.2. Hydrogenation of Cyclic Iminium Salts with 4,9-Dihydro-3-*H*-β-carboline Core

General Procedure: A mixture of $[Ir(COD)Cl]_2$ (1.4 mg, 0.002 mmol) and (*R*)-Cl-MeO-BiPhep (3.0 mg, 0.0044 mmol) in toluene (1.0 mL) was stirred at room temperature for 10 min in glove box. Subsequently, the catalyst was transferred by a syringe to the mixture of 1-substituted 2-methyl-2,3,4,9-tetrahydro-1*H*-pyrido[3,4-*b*]indol-2-ium iodide **3** (0.2 mmol) using 4.0 mL toluene. The hydrogenation was performed at 80 °C and at a hydrogen pressure of 1000 psi for 24 h. After carefully releasing the hydrogen, the mixture was concentrated in vacuum and further purification was performed by a silica gel column eluted with hexanes/ethyl acetate to give the chiral hydrogenation product (*R*)-**4**.

(*R*)-(-)-2-Methyl-1-phenyl-2,3,4,9-tetrahydro-1*H*-pyrido[3,4-*b*]indole (4a): 41 mg, 78% yield, 88% ee, known compound,⁵ pale yellow solid; $[\alpha]^{20}_{D} = -89.20$ (*c* 0.76, CHCl₃), $R_f = 0.45$

(hexanes/ethyl acetate 2:1); ¹H NMR (400 MHz, CDCl₃) δ 7.53 – 7.50 (m, 1H), ^NPh (1.3 – 7.28 (m, 5H), 7.20 (brs, 1H), 7.16 – 7.11 (m, 1H), 7.11 – 7.04 (m, 2H), 4.28 (s, 1H), 3.34 – 3.15 (m, 1H), 3.15– 3.06 (m, 1H), 2.93 – 2.79 (m, 1H), 2.74 (td, *J* = 11.0, 4.2 Hz, 1H), 2.32 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 140.8, 136.3, 134.9, 129.2, 128.8, 128.2, 127.1, 121.5, 119.4, 118.3, 110.8, 108.9, 67.4, 53.3, 43.6, 21.6; Enantiomeric excess was determined by HPLC (IC column, hexane/^{*i*}PrOH 70/30, 0.8 mL/min, 230 nm): t₁ = 5.1 min, t₂ = 9.9 min (major).

(*R*)-(-)-2-Methyl-1-p-tolyl-2,3,4,9-tetrahydro-1*H*-pyrido[3,4-*b*]indole (4b): 54 mg, 98% yield, 84% ee, unknown compound, pale yellow solid, m.p. 158-160 °C; $[\alpha]_{D}^{20} = -85.19$ (*c* 1.04,

CHCl₃), $R_f = 0.45$ (hexanes/ethyl acetate 2:1); ¹H NMR (400 MHz, CDCl₃) δ 7.53 – 7.51 (m, 1H), 7.24 – 7.20 (m, 3H), 7.18 – 7.13 (m, 3H), 7.13 – 7.05 (m, 2H), 4.26 (s, 1H), 3.31 – 3.19 (m, 1H), 3.14 – 3.06 (m, 1H), 2.88 – 2.67 (m, 2H), 2.34 (s, 3H+3H); ¹³C NMR (100 MHz, CDCl₃) δ 138.0, 137.7,

136.3, 135.1, 129.4, 129.1, 127.2, 121.5, 119.4, 118.3, 110.8, 108.8, 67.1, 53.3, 43.6, 21.7, 21.2; Enantiomeric excess was determined by HPLC (IC column, hexane/^{*i*}PrOH 70/30, 0.7 mL/min, 230 nm): $t_1 = 6.3 \text{ min}$, $t_2 = 11.3 \text{ min}$ (major); HRMS calculated for $C_{23}H_{24}NO [M+H]^+$ 277.1705 found 277.1714.

(*R*)-(-)-1-(4-Methoxyphenyl)-2-methyl-2,3,4,9-tetrahydro-1*H*-pyrido[3,4-*b*]indole (4c): 48 mg, 83% yield, 88% ee, unknown compound, colorless oil; $[\alpha]^{20}{}_{D}$ = -69.88 (*c* 0.90, CHCl₃), R_f =

0.40 (hexanes/ethyl acetate 2:1); ¹H NMR (400 MHz, CDCl₃) δ 7.57 – 7.49 (m, 1H), 7.26 – 7.20 (m, 3H), 7.19 – 7.13 (m, 1H), 7.13 – 7.04 (m, 2H), 6.93 – 6.83 (m, 2H), 4.24 (s, 1H), 3.81 (s, 3H), 2.86 – 2.81 (m, 1H), 3.13 – 3.06 (m, 1H), 2.83 (ddd, J = 13.3, 4.0, 2.0 Hz, 1H), 2.73 (td, J = 11.0, 4.2 Hz, 1H), 2.31 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 159.5,

136.3, 135.3, 132.8, 130.3, 127.2, 121.5, 119.4, 118.3, 114.1, 110.8, 108.8, 66.7, 55.3, 53.3, 43.5, 21.7; Enantiomeric excess was determined by HPLC (IC column, hexane/ ^{*i*}PrOH 70/30, 0.8 mL/min, 230 nm): $t_1 = 6.7$ min, $t_2 = 12.2$ (major) min; HRMS calculated for $C_{23}H_{24}NO$ [M+H]⁺

4. Asymmetric Hydrogenation at Gram Scale

A mixture of $[Ir(COD)Cl]_2$ (26.8 mg, 0.04 mmol) and (*R*)-SegPhos (53.7 mg, 0.088 mmol) in dichloroethane (5.0 mL) was stirred at room temperature for 10 min in glove box. Subsequently, the catalyst was transferred by a syringe to the mixture of **11** (1.513 g, 4.0 mmol) using 35 mL of dichloroethane. The hydrogenation was performed at 50 °C at a hydrogen pressure of 1000 psi for 24 h. After carefully releasing the hydrogen, the mixture was concentrated in vacuum and further purification was performed by a silica gel column eluted with hexanes/ethyl acetate to give the product (*R*)-**21** 1.141 g in 95% yield and 96% ee. Enantiomeric excess was determined by HPLC (AD-H column, hexane/^{*i*}PrOH 90/10, 1.0 mL/min, 230 nm): t₁ = 3.6 min (major), t₂ = 3.9 min.

5. The Determination of Absolute Configuration of (-)-4a

The absolute configuration of (-)-4a is unknown. Considering that the absolute configuration of compound (S)-(+)-5 is known,⁶ N-methylation of (S)-(+)-5 was performed to deliver the product (S)-(+)-4a, which is the same structure with our hydrogenation product 4a. By comparison with the optical rotation datum, the absolute configuration of hydrogenation product 4a could be unambiguously assigned.

Iodomethane (22 mg, 0.30 mmol) was slowly added to the solution of (S)-(+)-5 (37 mg, 0.15 mmol, 96% ee) and DMF (2 mL). After stirring 2 h, saturated aqueous sodium bicarbonate was added to the mixture until pH reaching to 8-9. The mixture was extracted with dichloromethane twice and the combined organic extracts dried over sodium sulfate. The resulting mixture was concentrated in vacuum and further purification was performed by a silica gel column eluted with hexanes/ethyl acetate to give product (S)-(+)-2-methyl-1-phenyl-2,3,4,9-tetrahydro-1*H*-pyrido-[3,4-*b*]indole **4a**. The optical rotation datum of the corresponding product is opposite to our hydrogenation product of iminium salt **3a**. By comparison with the optical rotation datum, the absolute configuration of hydrogenation product (-)-**4a** was assigned as (**R**)-(-)-**4a**.

(S)-(+)-2-Methyl-1-phenyl-2,3,4,9-tetrahydro-1*H*-pyrido[3,4-*b*]indole ((S)-(+)-4a): 20 mg, yield: 51%, ee: 96%, the known compound,⁵ pale yellow solid; $[\alpha]^{20}_{D} = +102.49$ (*c* 0.16, CHCl₃), R_f = 0.32 (hexanes/ethyl acetate 2:1); ¹H NMR (400 MHz, CDCl₃) δ 7.53 – 7.50 (m, 1H), 7.39 – 7.27 (m, 5H), 7.19 (brs, 1H), 7.15 – 7.05 (m, 3H), 4.27 (s, 1H), 3.22 (ddd, *J* = 11.4, 5.4, 2.3 Hz, 1H), 3.13 – 3.05 (m, 1H), 2.86 – 2.81 (m, 1H), 2.74 (td, *J* = 11.0, 4.2 Hz, 1H), 2.31 (s, 3H); Enantiomeric excess was determined by HPLC (IC column, hexane/^{*i*}PrOH 70/30, 0.8 mL/min, 230 nm): t₁ = 5.2 min (major), t₂ = 10.1 min.

6. References

- (a) M. Ružič, A. Pečavar, D. Prudič, D. Kralj, C. Scriban and A. Zanotti-Gerosa, Org. Process Res. Dev., 2012, 16, 1293; (b) J. Dong, X.-X. Shi, J. Xing and J.-J. Yan, Synth. Commun., 2012, 42, 2806.
- Z.-S. Ye, R.-N. Guo, X.-F. Cai, M.-W. Chen, L. Shi and Y.-G. Zhou, *Angew. Chem., Int. Ed.*, 2013, 52, 3685.
- 3. Y. Ji, L. Shi, M.-W. Chen, G.-S. Feng and Y.-G. Zhou, J. Am. Chem. Soc., 2015, 137, 10496.
- 4. A. P. Venkov and S. Statkova-Abeghe, Synth. Commun., 1996, 26, 2135.
- K. Freter, H. H. Hübner, H. Merz, H. D. Schroeder and K. Zeile, *Liebigs Ann. Chem.*, 1965, 684, 159
- 6. C. Li and J. Xiao, J. Am. Chem. Soc., 2008, 130, 13208.

6. Copy of NMR and HPLC for Compounds

1H NMR YJ-6-96D in DMSO

1H NMR YJ-6-89E in CDCI3

20024428002

-52.90

4.3437 4.3247 4.3053 4.3053 4.3053 4.3053 3.4096 3.34096 3.3904

1H NMR YJ-8-66A in DMSO

S34

1H NMR YJ-6-81B in DMSO

1 1 00 00

-53.76

-44.23

-19.49

-164.33 142.14 132.74 129.78 129.41 128.77 128.77 128.77 128.77 128.77 128.77 128.77

1H NMR YJ-7-100A in DMSO

1H NMR YJ-6-54B in CDCl3

1H NMR YJ-6-99C in CDCI3

1H NMR YJ-6-99B in CDCI3

S54

2362	2715 1490 1423 1206 11206 8410 83410 85583 855855
-42	

1H NMR YJ-6-87B in CDCI3

S57

1H NMR YJ-6-90A in CDCI3

1H NMR YJ-6-101A in CDCI3

S62

2226	2481 2481 2481 2490 2583 2583 2583 2583 2583 2583 2583 2583
-4.2	11111111111111111111111111111111111111

1H NMR YJ-6-93C in CDCI3

40	400000000000000000000000000000000000000
5	400000000000000000000000000000000000000
4	00000000000000000000000000000000000000
ł.	

1H NMR YJ-6-101B in CDCI3

10	AL- IO IO OL AL M M AN
47	
40	00-4100000
-	00,-004000400
N	No 0 0 0 0 0 0 7 7 7 N
4	00000000000000
1	

1H NMR YJ-6-93D in CDCI3

948	2078 1244 1177 1177 1177 1177 1177 1177 1177
4.	de la

1H NMR YJ-6-97A in CDCI3

1H NMR YJ-7-13A in CDCI3

-4.1918

3.5866

-3.1265 -3.0992 -3.0921 -2.7812 -2.7422 -2.7422 -2.5923

1H NMR YJ-8-67A in CDCI3

1H NMR YJ-8-64 in CDCI3

1H NMR YJ-6-67B in CDCI3

1H NMR YJ-7-4B in CDCI3

S87

S89

1H NMR YJ-8-10D in CDCI3

4	040044000-00
40	N-N00000000
40	4010000-400-
2	0011100000NNN0
4	NNNNNNNNNNNN

1H NMR YJ-8-9A in CDCI3

1H NMR YJ-8-10C in CDCI3

1H NMR YJ-8-25 in CDCI3

Data File C:\CHEM32\1\DATA\ZHOU-16\YZN000988.D Sample Name: YJ-6-87+-

Acq. Operator	:					
Acq. Instrument	:	Instrument 1	Location	:	Vial	1
Injection Date	:	4/12/2016 9:47:05 PM				
Acq. Method	:	C:\CHEM32\1\METHODS\DEF_LC.M				
Last changed	:	4/12/2016 9:45:42 PM				
		(modified after loading)				
Analysis Method	:	C:\CHEM32\1\METHODS\DEF LC.M				
Last changed	:	7/25/2016 7:47:19 PM				
		(modified after loading)				
Sample Info	:	OD-H, Hex/i-PrOH = 98/2, 0.7 ml	L/min, 30o	c,	230 n	m

Instrument 1 7/25/2016 7:47:24 PM

Page 1 of 1

Instrument 1 7/25/2016 7:47:51 PM

Data File C:\CHEM32\1\DATA\ZHOU-16\YZN001014.D Sample Name: YJ-6-90B+-

Acq. Operator	:	
Acq. Instrument	: Instrument 1	Location : Vial 1
Injection Date	: 4/14/2016 9:56:55 PM	
Acq. Method	: C:\CHEM32\1\METHODS\DEF_LC.M	
Last changed	: 4/14/2016 9:55:26 PM	
	(modified after loading)	
Analysis Method	: C:\CHEM32\1\METHODS\DEF LC.M	
Last changed	: 7/25/2016 7:50:25 PM	
	(modified after loading)	
Sample Info	: 0J-H, Hex/i-PrOH = 95/5, 0.7 mI	/min, 30oC, 230 nm

	Area Percent Report		=
Sorted By Multiplier: Dilution: Use Multiplier &	: Signal : 1.0000 : 1.0000 ilution Factor with ISTDs		
Signal 1: VWD1 A, Peak RetTime Type # [min]	Wavelength=230 nm Width Area Height [min] mAU *s [mAU]	Area %	
1 6.677 VV 2 7.696 VB	0.2050 3323.76807 249.38417 0.2231 3356.83643 229.42706	49.7525 50.2475	(+/-)-2 b
Totals :	6680.60449 478.81123		
	*** End of Report ***		-

Data File C:\CHEM32\1\DATA\ZH0U-16\YZN001019.D Sample Name: YJ-6-90B -----Acq. Operator : Acq. Instrument : Instrument 1 Location : Vial 1 Acq. Method : C:\CHEM32\1\METHODS\DEF_LC.M Last changed : 4/14/2016 10:58:07 PM (modified after loading) Analysis Method : C:\CHEM32\1\METHODS\DEF_LC.M Last changed : 7/25/2016 7:50:25 PM (modified after loading) Sample Info : OJ-H, Hex/i-PrOH = 95/5, 0.7 mL/min, 30oC, 230 nm

Instrument 1 7/25/2016 7:50:35 PM

Page 1 of 1

Instrument 1 7/25/2016 7:50:59 PM

Data File C:\CHEM32\1\DATA\ZH0U-16\YZN001025.D Sample Name: YJ-6-90A+-

				-==		
Acq. Operator	:					
Acq. Instrument	:	Instrument 1	Location	:	Vial l	
Injection Date	:	4/15/2016 5:15:52 PM				
Acq. Method	:	C:\CHEM32\1\METHODS\DEF_LC.M				
Last changed	:	4/15/2016 5:09:35 PM				
		(modified after loading)				
Analysis Method	:	C:\CHEM32\1\METHODS\DEF_LC.M				
Last changed	:	7/25/2016 7:52:28 PM				
		(modified after loading)				
Sample Info	:	OJ-H, Hex/i-PrOH = 95/5, 0.7 mL	/min, 30o0	Ξ,	230 nm	

	Area Percent Report	
Sorted By Multiplier: Dilution: Use Multiplier & S	: Signal : 1.0000 : 1.0000 Dilution Factor with ISTDs	
Signal 1: VWD1 A, Peak RetTime Type # [min]	Wavelength=230 nm Width Area Height Area [min] mAU *s [mAU] %	
1 6.752 BV 2 9.461 BB	0.1700 1642.48145 146.59044 49.5974 0.2800 1669.14624 91.40023 50.4026	 (+/-)-2c
Totals :	3311.62769 237.99067	

Data File C:\CHEM32\1\DATA\ZHOU-16\YZN001024.D Sample Name: YJ-6-90A

			===:			
Acq. Operator	:					
Acq. Instrument	:	Instrument l Locati	on	: Via	11	
Injection Date	:	4/15/2016 4:56:53 PM				
Acq. Method	:	C:\CHEM32\1\METHODS\DEF_LC.M				
Last changed	:	4/15/2016 4:47:41 PM				
		(modified after loading)				
Analysis Method	:	C:\CHEM32\1\METHODS\DEF LC.M				
Last changed	:	7/25/2016 7:52:28 PM				
		(modified after loading)				
Sample Info	:	OJ-H, Hex/i-PrOH = 95/5, 0.7 mL/min, 3	0 o C	, 230	nm	

Area Percer	Area Percent Report								
Sorted By : Signal Multiplier: : Dilution: : Use Multiplier & Dilution Factor wit	1.0000 1.0000 th ISTDs								
Signal 1: VWD1 A, Wavelength=230 nm									
Peak RetTime Type Width Area # [min] [min] mAU *s	Height Area [mAU] % 								
1 6.839 BV 0.1866 1049.71289 2 9.670 BB 0.3106 53.28136	9 84.79782 95.1694 5 2.66300 4.8306	(-)-2c							
Totals : 1102.99423	5 87.46082								

*** End of Report ***

Instrument 1 7/25/2016 7:52:31 PM

Page 1 of 1

Instrument 1 7/25/2016 7:52:51 PM

Data File C:\CHEM32\1\DATA\ZHOU-16\YZN001281.D Sample Name: YJ-6-101A+-

	==	
Acq. Operator	:	
Acq. Instrument	:	Instrument l Location : Vial 1
Injection Date	:	5/7/2016 11:17:37 AM
Acq. Method	:	C:\CHEM32\1\METHODS\DEF_LC.M
Last changed	:	5/7/2016 11:16:29 AM
		(modified after loading)
Analysis Method	:	C:\CHEM32\1\METHODS\DEF LC.M
Last changed	:	7/25/2016 7:55:08 PM
		(modified after loading)
Sample Info	:	OD-H, Hex/i-PrOH = 90/10, 1.0 mL/min, 30oC, 230 nm

Data File C:\CHEM32\1\DATA\ZHOU-16\YZN001280.D Sample Name: YJ-6-101A

						==
Acq. Operator	:					
Acq. Instrument	:	Instrument 1	Location	:	Vial l	
Injection Date	:	5/7/2016 11:10:12 AM				
Acq. Method	:	C:\CHEM32\1\METHODS\DEF_LC.M				
Last changed	:	5/7/2016 11:09:28 AM				
		(modified after loading)				
Analysis Method	:	C:\CHEM32\1\METHODS\DEF LC.M				
Last changed	:	7/25/2016 7:55:08 PM				
		(modified after loading)				
Sample Info	:	OD-H, Hex/i-PrOH = 90/10, 1.0 m	L/min, 30c	ю,	230 m	m.

Area Percent Report	
Sorted By : Sigmal Multiplier: : 1.0000 Dilution: : 1.0000 Use Multiplier & Dilution Factor with ISTDs	
Signal 1: VUD1 A, Wavelength=230 nm Peak RetTime Type Width Area Height Area	
# mull mull made 's made 4 	[OMe
Totals: 1195.15752 225.89518	(-)-2d

*** End of Report ***

Instrument 1 7/25/2016 7:55:31 PM

Page 1 of 1

Instrument 1 7/25/2016 7:55:52 PM

Data File C:\CHEM32\1\DATA\ZHOU-16\YZN001141.D Sample Name: YJ-6-92C+-

	==:		
Acq. Operator	:		
Acq. Instrument	:	Instrument l Location : Vial 1	
Injection Date	:	4/22/2016 10:09:32 PM	
Acq. Method	:	C:\CHEM32\1\METHODS\DEF_LC.M	
Last changed	:	4/22/2016 10:06:06 PM	
		(modified after loading)	
Analysis Method	:	C:\CHEM32\1\METHODS\DEF LC.M	
Last changed	:	7/25/2016 7:55:08 PM	
		(modified after loading)	
Sample Info	:	OD-H, Hex/i-PrOH = 95/5, 1.0 mL/min, 30oC, 230 nm	

	Area Percent Report	
Sorted By Multiplier: Dilution: Use Multiplier 6	: Signal : 1.0000 : 1.0000 Dilution Factor with ISTDs	
Signal 1: VWD1 A Peak RetTime Typ	, Wavelength=230 nm e Width Area Height	Area
# min 1 3 777 WW	min mAU *3 mAU -	I
2 4.159 VB	0.0793 779.57513 150.73552 5	i0.7398
Totals :	1536.41730 310.24623	(+/-)-2
	*** End of Report ***	

Data File C:\CHEM32\1\DATA\ZHOU-16\YZN001144.D Sample Name: YJ-6-92C

Acq. Operator	:						
Acq. Instrument	:	Instrument 1 Lo	cation	:	Vial	1	
Injection Date	:	4/22/2016 10:30:03 PM					
Acq. Method	:	C:\CHEN32\1\METHODS\DEF_LC.M					
Last changed	:	4/22/2016 10:28:41 PM					
		(modified after loading)					
Analysis Method	:	C:\CHEM32\1\METHODS\DEF_LC.M					
Last changed	:	7/25/2016 7:55:08 PM					
		(modified after loading)					
Sample Info	:	OD-H, Hex/i-PrOH = 95/5, 1.0 mL/mi	n, 30o	с,	230 :	nm	

*** End of Report ***

Instrument 1 7/25/2016 7:57:33 PM

Page 1 of 1

Instrument 1 7/25/2016 7:57:53 PM

Data File C:\CHEM32\1\DATA\ZHOU-16\YZN001283.D Sample Name: YJ-6-101B+-

Acq. Operator	:						
Acq. Instrument	:	Instrument 1 Location : Vial 1					
Injection Date	:	5/7/2016 11:29:50 AM					
Acq. Method	:	C:\CHEN32\1\METHODS\DEF_LC.N					
Last changed	:	5/7/2016 11:29:16 AM					
		(modified after loading)					
Analysis Method	:	C:\CHEM32\1\METHODS\DEF LC.M					
Last changed	:	7/25/2016 7:55:08 PM					
		(modified after loading)					
Sample Info	:	OD-H, Hex/i-PrOH = 90/10, 1.0 mL/min, 30oC, 230 nm					

	Area Percent Report	
Sorted By Multiplier: Dilution: Use Multiplier &	: Signal : 1.0000 : 1.0000 Dilution Factor with ISTDs	
Signal 1: VWD1 A Peak RetTime Typ # [min]	, Wavelength=230 nm e Width Area Height Area [min] mAU *s [mAU] ≎	
 1 3.698 VV 2 4.056 VV Totals :	0.0670 1157.58936 265.09619 49.8513 0.0735 1164.49731 242.44028 50.1487 2322.08667 507.53647	ĊI (+/-)-2f
	*** End of Denort ***	

Data File C:\CHEM32\1\DATA\ZHOU-16\YZN001278.D Sample Name: YJ-6-101B

Acq. Operator	:					
Acq. Instrument	:	Instrument 1	Location	:	Vial l	
Injection Date	:	5/7/2016 10:57:17 AM				
Acq. Method	:	C:\CHEM32\1\METHODS\DEF_LC.M				
Last changed	:	5/7/2016 10:56:56 AM				
		(modified after loading)				
Analysis Method	:	C:\CHEM32\1\METHODS\DEF LC.M				
Last changed	÷	7/25/2016 7:55:08 PM				
		(modified after loading)				
Sample Info	:	OD-H, Hex/i-PrOH = 90/10, 1.0 m	L/min, 30	oC,	230 nm	

Area Percent Report • Sorted By Multiplier: Dilution: Signal : : 1.0000 : 1.0000 Use Multiplier & Dilution Factor with ISTDs Ē Signal 1: VWD1 A, Wavelength=230 nm ĊL (-)-2f Totals : 1037.09642 215.35345 -----

*** End of Report ***

Instrument 1 7/25/2016 7:59:08 PM

Page 1 of 1

Instrument 1 7/25/2016 7:59:27 PM

Data File C:\CHEM32\1\DATA\ZHOU-16\YZN001158.D Sample Name: YJ-6-93D+-

	==	
Acq. Operator	:	
Acq. Instrument	:	Instrument l Location : Vial 1
Injection Date	:	4/23/2016 3:59:44 PM
Acq. Method	:	C:\CHEM32\1\METHODS\DEF_LC.M
Last changed	:	4/23/2016 3:57:44 PM
		(modified after loading)
Analysis Method	:	C:\CHEM32\1\METHODS\DEF_LC.M
Last changed	:	7/25/2016 8:01:48 PM
		(modified after loading)
Sample Info	:	OD-H, Hex/i-PrOH = 98/2, 0.7 mL/min, 30oC, 230 nm

Data File C:\CHEM32\1\DATA\ZHOU-16\YZN001157.D Sample Name: YJ-6-93D

Acq. Operator	:					
Acq. Instrument	:	Instrument 1	Location : Vial 1			
Injection Date	:	4/23/2016 3:49:47 PM				
Acq. Method	:	C:\CHEM32\1\METHODS\DEF_LC.M				
Last changed	:	4/23/2016 3:48:08 PM				
		(modified after loading)				
Analysis Method	:	C:\CHEM32\1\METHODS\DEF LC.M				
Last changed	÷	7/25/2016 8:01:48 PM				
		(modified after loading)				
Sample Info	:	OD-H, Hex/i-PrOH = 98/2, 0.7 m	L/min, 30oC, 230 nm			

Area Per	cent Report	
		\land
Sorted By : Sign Multiplier: : Dilution: : Use Multiplier & Dilution Factor	nal 1.0000 1.0000 with ISTDs	N,
Signal 1: VWD1 A, Wavelength=230	nm	
Peak RetTime Type Width Area # [min] [min] mAU *	a Height Area 's [mAU] %	\mathbf{i}
1 6.032 VB 0.1147 164.21	 L527 22.00098 6.6115	Br
2 7.195 BB 0.1332 2319.56	982 267.58517 93.3885	(-)-2a
Totals: 2483.78	3510 289.58615	()-9

*** End of Report ***

Instrument 1 7/25/2016 8:01:51 PM

Page 1 of 1

Instrument 1 7/25/2016 8:02:19 PM

Data File C:\CHEM32\1\DATA\ZHOU-16\YZN001190.D Sample Name: YJ-6-97A+-

Data File C:\CHEM32\1\DATA\ZHOU-16\YZN001188.D Sample Name: YJ-6-97A

				= = :		====	===	
Acq. Operator	:							
Acq. Instrument	:	Instrument 1	Locatio	n	: V	ial	1	
Injection Date	:	4/26/2016 5:59:34 PM						
Acq. Method	:	C:\CHEM32\1\METHODS\DEF_LC.M						
Last changed	:	4/26/2016 5:58:43 PM						
		(modified after loading)						
Analysis Method	:	C:\CHEM32\1\METHODS\DEF LC.M						
Last changed	÷	7/25/2016 8:05:43 PM						
		(modified after loading)						
Sample Info	:	OG, Hex/i-PrOH = 99.6/0.4, 0.7 I	uL/min,	30	ъС,	230	nm	

*** End of Report ***

Instrument 1 7/25/2016 8:05:46 PM

Page 1 of 1

Instrument 1 7/25/2016 8:06:31 PM

Data File C:\CHEM32\1\DATA\ZHOU-16\YZN001437.D Sample Name: YJ-7-13A+-

Acq. Operator		
Acq. Instrument	Instrument 1	Location : Vial 1
Injection Date	5/23/2016 10:41:44 PM	
Acq. Method	C:\CHEM32\1\METHODS\DEF_LC.M	Ϋ́Ι.
Last changed	5/23/2016 10:39:32 PM	
	(modified after loading)	
Analysis Method	C:\CHEM32\1\METHODS\DEF_LC.M	MI Contraction of the second se
Last changed	7/25/2016 9:44:36 PM	
	(modified after loading)	
Sample Info	OJ-H, Hex/i-PrOH = 90/10, 0.	.7 mL/min, 30oC, 230 nm

Data File C:\CHEM32\1\DATA\ZH0U-16\YZN001434.D Sample Name: YJ-7-13A

Acq. Operator	:					
Acq. Instrument	:	Instrument 1	Location	:	Vial l	
Injection Date	:	5/23/2016 9:41:12 PM				
Acq. Method	:	C:\CHEM32\1\METHODS\DEF_LC.M				
Last changed	:	5/23/2016 9:40:02 PM				
		(modified after loading)				
Analysis Method	:	C:\CHEM32\1\METHODS\DEF LC.M				
Last changed	÷	7/25/2016 8:14:31 PM				
		(modified after loading)				
Sample Info	:	OJ-H, Hex/i-PrOH = 90/10, 0.7 m	nL/min, 30	оC,	230 nm	

	Area Percent Report							
Sorted By : Multiplier: Dilution: Use Multiplier & Dilution	Signal : 1.0000 : 1.0000 Factor with ISTDs	MeO						
Signal 1: VWD1 A, Wavelen	gth=230 nm							
feak Reclime Type Width	while the field of the second	\sim						
# (min) / min								
1 12.284 BB 0.4330 2 17.419 BB 0.7181	2485.96509 88.37807 92.9638 188.15681 3.98641 7.0362	(-)-2i						
Totals :	2674.12190 92.36447							

*** End of Report ***

Instrument 1 7/25/2016 9:44:38 PM

Page 1 of 1

Instrument 1 7/25/2016 8:14:42 PM

Data File C:\CHEM32\1\DATA\ZH0U-17\YZN003331.D Sample Name: YJ-8-67A+-

	==					
Acq. Operator	:	0				
Acq. Instrument	:	Instrument 1	Location	:	Vial l	
Injection Date	:	2/18/2017 10:13:45 PM				
Acq. Method	:	C:\CHEM32\1\METHODS\DEF LC.M				
Last changed	:	2/18/2017 10:12:41 PM by 0				
		(modified after loading)				
Analysis Method	:	C:\CHEM32\1\METHODS\DEF LC.M				
Last changed	:	2/19/2017 7:15:55 PM by 0				
		(modified after loading)				
Sample Info	:	AD-H, Hexane/i-PrOH = 95/5, 0.8	BmL/min, 30	000	C, 230 nm	

	Area Percen	t Report		
Sorted By Multiplier: Dilution: Use Multiplier & D	: Signal : : Dilution Factor wit	1.0000 1.0000 h ISTDs		
Signal 1: VWD1 A, Peak RetTime Type # [min]	Wavelength=230 nm Width Area [min] mAU *s	Height [mAU]	Area \$	
1 4.635 BV 2 5.018 VB	0.0893 2161.72510 0.0933 2153.55273	373.91660 351.52271	50.0947 49.9053	(+/-)-2j
Totals :	4315.27783	725.43930		
	*** End of	Report ***		

Data File C:\CHEM32\1\DATA\ZH0U-17\YZN003338.D Sample Name: YJ-8-67A

Acq. Operator	:	0	
Acq. Instrument	:	Instrument 1	Location : Vial 1
Injection Date	:	2/19/2017 6:51:42 PM	
Acq. Method	:	C:\CHEM32\1\METHODS\DEF LC.M	
Last changed	:	2/19/2017 6:45:41 PM by 0	
		(modified after loading)	
Analysis Method	:	C:\CHEM32\1\METHODS\DEF LC.M	
Last changed	:	2/19/2017 7:15:55 PM by 0	
		(modified after loading)	
Sample Info	:	AD-H, Hexane/i-PrOH = 95/5, 0	.8mL/min, 30oC, 230 nm

-----Area Percent Report • Sorted By Multiplier: Dilution: Signal . : 1.0000 : 1.0000 C Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=230 nm
 Peak RetTime Type
 Width
 Area
 Height
 Area

 # [min]
 [min]
 mAU
 *s
 [mAU]
 *

 ---- ----- ----- ------ ------ ------ ------

 1
 4.675
 BV
 0.0886
 68.86459
 11.77551
 8.0686

 2
 5.067
 VV
 0.0930
 784.62659
 128.58344
 91.9314
(-)-2j Totals : 853.49118 140.35894 -----

*** End of Report ***

Instrument 1 2/19/2017 7:16:24 PM 0

Page 1 of 1

Instrument 1 2/19/2017 7:16:00 PM 0

Data File C:\CHEM32\1\DATA\ZHOU-17\YZN003309.D Sample Name: YJ-8-64+-

Acq. Operator	:	0					
Acq. Instrument	:	Instrument 1 Location : Vial 1					
Injection Date	:	2/15/2017 9:48:37 PM					
Acq. Method	:	C:\CHEM32\1\METHODS\DEF LC.M					
Last changed	:	2/15/2017 9:47:28 PM by 0					
		(modified after loading)					
Analysis Method	:	C:\CHEM32\1\METHODS\DEF LC.M					
Last changed	:	2/19/2017 7:22:10 PM by 0					
		(modified after loading)					
Sample Info	:	OD-H, Hexane/i-PrOH = 98/2, 0.7 mL/min, 30oC, 230 nm					

: Signal ; ; ;ion Factor with :length=230 nm ith Area n] mAU *s	1.0000 1.0000 h ISTDs Height [mAU]	Area 2	
: Signal : cion Factor with elength=230 nm ith Area n] mAU *s 	1.0000 1.0000 h ISTDs Height [mAU]	Area \$	
length=230 nm hh Àrea n] mAU *s	Height [mAU]	Area %	Ĺ
		*	
235 1952.82532 358 1968.74060	241.28810 221.35089	49.7971 50.2029	(+/-)-2
3921.56592	462.63899		
.3	58 1968.74060 3921.56592 *** End of	58 1968.74060 221.35089 3921.56592 462.63899 *** End of Report ***	58 1968.74060 221.35089 50.2029 3921.56592 462.63899

Data File C:\CHEM32\1\DATA\ZHOU-17\YZN003308.D Sample Name: YJ-8-64

Acq. Operator	:	0					
Acq. Instrument	:	Instrument 1	Location	. :	Vial	. 1	
Injection Date	:	2/15/2017 9:38:40 PM					
Acq. Method	:	C:\CHEM32\1\METHODS\DEF LC.M					
Last changed	:	2/15/2017 9:37:50 PM by 0					
		(modified after loading)					
Analysis Method	:	C:\CHEM32\1\METHODS\DEF LC.M					
Last changed	:	2/19/2017 7:22:10 PM by 0					
		(modified after loading)					
Sample Info	:	OD-H, Hexane/i-PrOH = 98/2, 0.7	mL/min,	30	1oC, 2	30	nm

-----Area Percent Report • Sorted By Multiplier: Dilution: Signal : : 1.0000 : 1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=230 nm Ρh
 Peak RetTime Type Width
 Area
 Height
 Area

 # [min]
 [min]
 mAU
 *s
 [mAU]
 *

 ---- ----- ----- ----- ----- ----- -----

 1
 6.560 BV
 0.1235
 734.09674
 88.00777
 37.1689

 2
 7.216 VB
 0.1348
 1240.93079
 138.96794
 62.8311
Peak RetTime Type Width Area (+)-2k 1975.02753 226.97572 Totals : -----

*** End of Report ***

Instrument 1 2/19/2017 7:22:42 PM 0

Page 1 of 1

Instrument 1 2/19/2017 7:22:13 PM 0
Data File C:\CHEM32\1\DATA\ZHOU-16\YZN000667.D Sample Name: YJ-6-67B+-

	==:					
Acq. Operator	:					
Acq. Instrument	:	Instrument 1	Location	:	Vial l	
Injection Date	:	3/19/2016 3:22:12 PM				
Acq. Method	:	C:\CHEM32\1\METHODS\DEF_LC.M				
Last changed	:	3/19/2016 3:05:26 PM				
		(modified after loading)				
Analysis Method	:	C:\CHEM32\1\METHODS\DEF LC.M				
Last changed	:	7/25/2016 9:44:36 PM				
		(modified after loading)				
Sample Info	:	AD-H, H/i-PrOH = 90/10, 1.0 mL/m	min, 30 o(Ξ,	230 nm	

	Area Percent Report	
Sorted By Multiplier: Dilution: Use Multiplier & S	: Signal : 1.0000 : 1.0000 : Dilution Factor with ISTDs	
Signal 1: VWD1 A, Peak RetTime Type # [min]	Wavelength=230 nm Uidth Area Height Area [min] mAU *s [mAU] ∻	
1 3.519 VV 2 3.866 VB	0.0718 1043.47729 224.11391 49.7838 0.0744 1052.54089 215.67365 50.2162	(+/-)-2
Totals :	2096.01819 439.78755	
	*** End of Report ***	

Data File C:\CHEM32\1\DATA\ZHOU-16\YZN000643.D Sample Name: YJ-6-67B

Acq. Operator	:					
Acq. Instrument	:	Instrument 1	Location	:	Vial 1	
Injection Date	:	3/18/2016 4:37:37 PM				
Acq. Method	:	C:\CHEM32\1\METHODS\DEF_LC.M				
Last changed	:	3/18/2016 4:28:33 PM				
		(modified after loading)				
Analysis Method	:	C:\CHEM32\1\METHODS\DEF LC.M				
Last changed	:	7/25/2016 8:08:34 PM				
		(modified after loading)				
Sample Info	:	AD-H, H/i-PrOH = 90/10, 1.0 mL/	'min, 30 o(Ξ,	230 nm	

*** End of Report ***

Instrument 1 7/25/2016 9:45:14 PM

Page 1 of 1

∕^Ń∖Bn

Instrument 1 7/25/2016 8:08:37 PM

Data File C:\CHEM32\1\DATA\ZHOU-16\YZN001553.D Sample Name: YJ-7-4A+-

Acq. Operator	:	
Acq. Instrument	:	Instrument 1 Location : Vial 1
Injection Date	:	6/8/2016 4:00:54 PM
Acq. Method	:	C:\CHEM32\1\METHODS\DEF_LC.M
Last changed	:	6/8/2016 3:32:26 PM
		(modified after loading)
Analysis Method	:	C:\CHEM32\1\METHODS\DEF_LC.M
Last changed	:	7/25/2016 9:43:18 PM
		(modified after loading)
Sample Info	:	AD-H, Hex/i-PrOH = 98/2, 0.7 mL/min, 30oC, 230 nm

	Å1	ea Percent	t Report		
Sorted By	:	Signal			Í Ý Ì
Multiplier:		:	1.0000		U A Ń
Dilution:		:	1.0000		
Use Multiplier & Di	ilution H	actor with	n ISTDs		
Signal 1: VWD1 A, 6	Javelengt	:h=230 nm			
Peak RetTime Type	Width	Area	Height	Area	
# [min]	[min] ո	hà∏ ≭⊲	[mAU]	*	
# [mrn]	(man) a	110 U			
-					
- 1 5.147 VV	0.1549 1	.899.97949	184.84914	49.9071	
1 5.147 VV 2 5.822 VB	0.1549 1	.899.97949 .907.05432	184.84914 202.39923	49.9071 50.0929	(+/-)-2m
	0.1549 1 0.1434 1	.899.97949 .907.05432	184.84914 202.39923 387.24837	49.9071 50.0929	(+/-)-2m
	0.1549 J 0.1434 J	899.97949 907.05432	184.84914 202.39923 387.24837	49.9071 50.0929	(+/-)-2m

Data File C:\CHEM32\1\DATA\ZHOU-16\YZN001316.D Sample Name: YJ-7-4A

Acq. Operator	:			
Acq. Instrument	:	Instrument 1	Location : Vial 1	
Injection Date	:	5/10/2016 3:54:07 PM		
Acq. Method	:	C:\CHEM32\1\METHODS\DEF_LC.M		
Last changed	:	5/10/2016 3:51:28 PM		
		(modified after loading)		
Analysis Method	:	C:\CHEM32\1\METHODS\DEF_LC.M		
Last changed	:	7/25/2016 9:43:18 PM		
		(modified after loading)		
Sample Info	:	AD-H, Hex/i-PrOH = 98/00, 0.7 m	L/min, 30oC, 230 nm	

Instrument 1 7/25/2016 9:43:36 PM

Page 1 of 1

Instrument 1 7/25/2016 9:43:45 PM

Data File C:\CHEM32\1\DATA\ZHOU-16\YZNO01394.D Sample Name: YJ-7-4B+-

	==			==:			
Acq. Operator	:						
Acq. Instrument	:	Instrument 1	Location	:	Vial	1	
Injection Date	:	5/17/2016 10:06:35 AM					
Acq. Method	:	C:\CHEM32\1\METHODS\DEF_LC.M					
Last changed	:	5/17/2016 10:04:29 AM					
		(modified after loading)					
Analysis Method	:	C:\CHEM32\1\METHODS\DEF_LC.M					
Last changed	:	7/25/2016 8:12:06 PM					
		(modified after loading)					
Sample Info	:	AD-H, Hex/i-PrOH =99.2/0.8, 0.7	mL/min,	30	oC, 23	30 nm	

	Area Percent	Report		
Sorted By Multiplier: Dilution: Use Multiplier &	: Signal : 1 : 1 Dilution Factor with	.0000 .0000 ISTDs		N _{Bn}
Signal 1: VWD1 A Peak RetTime Typ # [min] 	Wavelength=230 nm Width Area [min] mAU *s [1]	Height A mAU] 	rea * -220	
1 0.917 BV 2 10.084 VB Totals :	0.2942 3309.72636 0.2926 3333.36963 6643.09619	187.81749 49 170.19594 50 338.01343	.1780	(+/-)-2n
	*** End of R	eport ***		

Data File C:\CHEM32\1\DATA\ZHOU-16\YZN001327.D Sample Name: YJ-7-4B

Acq. Operator : Instrument 1 Location : Vial 1 Acq. Instrument : Instrument 1 Location : Vial 1 Injection Date : 5/10/2016 6:36:22 PM	
Acq. Instrument : Instrument 1 Location : Vial 1 Injection Date : 5/10/2016 6:36:22 PM Acg. Method - C:VIEWENGSUNFFICONSUNFFIC	
Injection Date : 5/10/2016 6:36:22 PM	
Acc Method · C·\CHEM32\l\METHODS\DEE LC M	
hed. needed . c. (chillings / / hillings / billings / b	
Last changed : 5/10/2016 6:35:37 PM	
(modified after loading)	
Analysis Method : C:\CHEM32\1\METHODS\DEF LC.M	
Last changed : 7/25/2016 8:12:06 PM	
(modified after loading)	
Sample Info : AD-H, Hex/i-PrOH = 99.2/0.8, 0.7 mL/min, 30oC, 230	nm

*** End of Report ***

Instrument 1 7/25/2016 8:12:09 PM

Page 1 of 1

Instrument 1 7/25/2016 8:12:37 PM

Sample Name: YJ-7-7B

8

CI

(-)-20

Bn

Instrument 1 25/07/2016 19:39:11

Page 1 of 1

Instrument 1 25/07/2016 19:38:16

Data File C:\CHEM32\1\DATA\ZHOU-16\YZNO01483.D Sample Name: YJ-7-15B+-

	==				==	=====		
Acq. Operator	:							
Acq. Instrument	:	Instrument 1	Locat	ion	:	Vial	1	
Injection Date	:	5/28/2016 7:11:28 PM						
Acq. Method	:	C:\CHEM32\1\METHODS\DEF_LC.M						
Last changed	:	5/28/2016 7:10:43 PM						
		(modified after loading)						
Analysis Method	:	C:\CHEM32\1\METHODS\DEF_LC.M						
Last changed	:	7/25/2016 8:15:59 PM						
		(modified after loading)						
Sample Info	:	AD-H, Hex/i-PrOH = 98/2, 0.7 mL	/min,	30oC	,	230	nm	

Area Percent Report	
	A A
Sorted By : Signal Multiplier: : 1.0000 Dilution: : 1.0000 Use Multiplier & Dilution Factor with ISTDs	MeO
Signal 1: VWDl A, Wavelength=230 nm Peak RetTime Type Width Area Height Area	
# [min] [min] mAU *s [mAU] % 	(+/-)-2p
Totals: 4601.55591 436.74525	
*** End of Report ***	

						===	
Acq. Operator	:						
Acq. Instrument	:	Instrument 1	Location	:	Vial	1	
Injection Date	:	5/28/2016 6:38:18 PM					
Acq. Method	:	C:\CHEM32\1\METHODS\DEF_LC.M					
Last changed	:	5/28/2016 6:37:35 PM					
		(modified after loading)					
Analysis Method	:	C:\CHEM32\1\METHODS\DEF LC.M					
Last changed	:	7/25/2016 8:15:59 PM					
		(modified after loading)					
Sample Info	:	AD-H, Hex/i-PrOH = 98/2, 0.7 m	L/min, 30o0	;,	230	nm	

Instrument 1 7/25/2016 8:16:02 PM

Page 1 of 1

Instrument 1 7/25/2016 8:16:21 PM

Data File C:\CHEM32\1\DATA\ZH0U-17\YZN003325.D Sample Name: YJ-8-67B+-

	==				=====
Acq. Operator	:	0			
Acq. Instrument	:	Instrument 1	Location	: Via	1 1
Injection Date	:	2/18/2017 4:16:47 PM			
Acq. Method	:	C:\CHEM32\1\METHODS\DEF LC.M			
Last changed	:	2/18/2017 4:15:19 PM by 0			
		(modified after loading)			
Analysis Method	:	C:\CHEM32\1\METHODS\DEF LC.M			
Last changed	:	2/19/2017 7:15:55 PM by 0			
		(modified after loading)			
Sample Info	:	AD-H, Hexane/i-PrOH = 95/5, 0.8	8mL/min, 30)oC, 2	30 nm

Area Percent Report · Sorted By Signal : : 1.0000 : 1.0000 Multiplier: Dilution: Use Multiplier & Dilution Factor with ISTDs `Bn C Signal 1: VWD1 A, Wavelength=230 nm Peak RetTime Type Width Area Height Area # [min] [min] mAU *s [mAU] % 1 4.514 VV 0.0805 2516.94360 477.26559 49.9573 (+/-)-2q 2 5.152 VV 0.0897 2521.24121 433.69730 50.0427 Totals : 5038.18481 910.96289 -----*** End of Report ***

Data File C:\CHEM32\1\DATA\ZH0U-17\YZN003328.D Sample Name: YJ-8-67B

Acq. Operator	:	0							
Acq. Instrument	:	Instrument 1	Location	:	Vial .	1			
Injection Date	:	2/18/2017 5:06:43 PM							
Acq. Method	:	C:\CHEM32\1\METHODS\DEF LC.M							
Last changed	:	2/18/2017 5:05:14 PM by 0							
		(modified after loading)							
Analysis Method	:	C:\CHEM32\1\METHODS\DEF LC.M							
Last changed	:	2/19/2017 7:15:55 PM by 0							
		(modified after loading)							
Sample Info	:	AD-H, Hexane/i-PrOH = 95/5, 0.8	mL/min, 3	000	230, 230	nm			

Area Percent Report · Sorted By Signal : : 1.0000 : 1.0000 Multiplier: Dilution: Use Multiplier & Dilution Factor with ISTDs CI `Bn i Signal 1: VWD1 A, Wavelength=230 nm Peak RetTime Type Width Area Height Area # [min] [min] mAU *s [mAU] % 1 4.522 VV 0.0809 1855.14490 357.57715 97.3386 2 5.159 VV 0.0962 50.72193 7.95742 2.6614 (-)-2q Totals : 1905.86683 365.53456 -----

*** End of Report ***

Instrument 1 2/19/2017 7:19:14 PM 0

Page 1 of 1

Instrument 1 2/19/2017 7:20:33 PM 0

Data File C:\CHEM32\1\DATA\ZH0U-16\YZN002700.D Sample Name: YJ-8-10D+-

Acq. Operator	:	0						
Acq. Instrument	:	Instrument 1	Location	:	Vial 1			
Injection Date	:	10/31/2016 3:17:26 PM						
Acq. Method	:	C:\CHEM32\1\METHODS\DEF LC.M						
Last changed	:	10/31/2016 3:16:19 PM by 0						
		(modified after loading)						
Analysis Method	:	C:\CHEM32\1\METHODS\DEF LC.M						
Last changed	:	12/17/2016 11:12:34 AM by 0						
		(modified after loading)						
Sample Info	:	IC, Hexane/i-PrOH = 70/30, 0.8	mL/min, 30	000	C, 230 i	nm		

Area Percent Report

Dilution:		1.0000
Use Multiplier & Dilution	Factor	with ISTDs
Signal 1: VWD1 A, Waveleng	th=230	nm

Peak # 	RetTime [min]	Туре	Width [min]	Aı mAU	tea *s	Hei [mAU	ght 1	Area ۶
1 2	4.946 9.854	VB BB	0.1857 0.2715	3514 3523	16748 67017	277. 192.	30234 78810	49.9325 50.0675
Total	s :			7037.	83765	470.0	09044	

*** End of Report ***

10 min

Data File C:\CHEM32\1\DATA\ZHOU-16\YZN002705.D Sample Name: YJ-8-10D

Acq. Operator	:	0				
Acq. Instrument	:	Instrument 1	Location	. :	Vial	1
Injection Date	:	10/31/2016 8:55:15 PM				
Acq. Method	:	C:\CHEM32\1\METHODS\DEF LC.M				
Last changed	:	10/31/2016 8:51:06 PM by 0				
		(modified after loading)				
Analysis Method	:	C:\CHEM32\1\METHODS\DEF LC.M				
Last changed	:	12/17/2016 11:14:05 AM by 0				
		(modified after loading)				
Sample Info	:	IC, Hexane/i-PrOH = 70/30, 0.3	8 mL/min, 3	00	C, 23	0 nu

*** End of Report ***

Instrument 1 12/17/2016 11:12:37 AM 0

Page 1 of 1

(+/-)-4a

Instrument 1 12/17/2016 11:14:08 AM 0

Instrument 1 17/12/2016 10:57:26

Page 1 of 1

Instrument 1 17/12/2016 10:55:38

Data File C:\CHEM32\1\DATA\ZHOU-16\YZN002698.D Sample Name: YJ-8-10C+-

Acq. Operator	:	0						
Acq. Instrument	:	Instrument l Location : Vial 1						
Injection Date	:	10/31/2016 2:40:44 PM						
Acq. Method	:	C:\CHEM32\1\METHODS\DEF LC.M						
Last changed	:	10/31/2016 2:27:18 PM by 0						
		(modified after loading)						
Analysis Method	:	C:\CHEM32\1\METHODS\DEF LC.M						
Last changed	:	12/17/2016 11:10:28 AM by 0						
		(modified after loading)						
Sample Info	:	IC, Hexane/i-PrOH = 70/30, 0.8 mL/min, 30oC, 230 nm						

Data File C:\CHEM32\1\DATA\ZHOU-16\YZN002710.D Sample Name: YJ-8-10C

Acq. Operator	:	0							
Acq. Instrument	:	Instrument 1	Location	:	Vial l				
Injection Date	:	10/31/2016 10:24:55 PM							
Acq. Method	:	C:\CHEM32\1\METHODS\DEF LC.M							
Last changed	:	10/31/2016 10:16:44 PM by 0							
		(modified after loading)							
Analysis Method	:	C:\CHEM32\1\METHODS\DEF LC.M							
Last changed	:	12/17/2016 11:11:38 AM by 0							
		(modified after loading)							
Sample Info	:	IC, Hexane/i-PrOH = 70/30, 0.8 m	aL/min, 30)oC	, 230 1	nm.			
	Acq. Operator Acq. Instrument Injection Date Acq. Method Last changed Analysis Method Last changed Sample Info	Acq. Operator : Acq. Instrument : Injection Date : Acq. Method : Last changed : Analysis Method : Last changed : Sample Info :	Acg. Operator : 0 Acg. Instrument : Instrument 1 Injection Date : 10/31/2016 10:24:55 PM Acg. Method : C:\CHEM32\1\METHODS\DEF LC.M Last changed : 10/31/2016 10:16:44 PM by 0 (modified after loading) Analysis Method : C:\CHEM32\1\METHODS\DEF LC.M Last changed : 12/17/2016 11:11:38 AM by 0 (modified after loading) Sample Info : IC, Hexame/.Prc0H = 70/30, 0.8 i	Acq. Operator : 0 Acq. Instrument : Instrument 1 Injection Date : 10/31/2016 10:24:55 PM Acq. Method : C:\CHEM32\1\METHODS\DEF LC.M Last changed : 10/31/2016 10:16:44 PM by 0 (modified after loading) Analysis Method : C:\CHEM32\1\METHODS\DEF LC.M Last changed : 12/17/2016 11:11:38 AM by 0 (modified after loading) Sample Info : IC, Hexane/: PrOH = 70/30, 0.8 mL/min, 30	Acg. Operator : 0 Acg. Instrument : Instrument 1 Injection Date : 10/31/2016 10:24:55 PM Acg. Method : C:\CHEM32\L\METHODS\DEF LC.M Last changed : 10/31/2016 10:16:44 PM by 0 (modified after loading) Analysis Method : C:\CHEM32\L\METHODS\DEF LC.M Last changed : 12/17/2016 11:11:38 AM by 0 (modified after loading) Sample Info : IC, Hexang/-PrOH = 70/30, 0.8 mL/min, 300C	Acg. Operator : 0 Acg. Instrument : Instrument 1 Intection Date : 10/31/2016 10:24:55 PM Acg. Method : C:\CHEM32\1\METHODS\DEF LC.M Last changed : 10/31/2016 10:16:44 PM by 0 (modified after loading) Analysis Method : C:\CHEM32\1\METHODS\DEF LC.M Last changed : 12/17/2016 11:11:38 AM by 0 (modified after loading) Sample Info : IC, Hexang-1-PTGH = 70/30, 0.8 mL/min, 300C, 230 1			

Signa	al 1: VWI	D1 A,	Wavelen	gth=23	30 nm			
Peak #	RetTime	Туре	Width	Å1 måll	ea	Hei	ght 1	Area
								·
1	6.737	VB	0.7350	452.	88751	9.	38207	6.2161
2	12.062	BB	0.6189	6832.	87402	160.	52557	93.7839

7285.76154 169.90764 Totals :

-----*** End of Report ***

Instrument 1 12/17/2016 11:10:34 AM 0

Page 1 of 1

Instrument 1 12/17/2016 11:11:41 AM 0

Page 1 of 1

(-)-4c

ÒMe

Data File C:\CHEM32\1\DATA\ZHOU-16\YZN000667.D Sample Name: YJ-6-67B+-

Acq. Operator	:								
Acq. Instrument	:	Instrument 1	Location	:	Vial l				
Injection Date	:	3/19/2016 3:22:12 PM							
Acq. Method	:	C:\CHEM32\1\METHODS\DEF_LC.M							
Last changed	:	3/19/2016 3:05:26 PM							
		(modified after loading)							
Analysis Method	:	C:\CHEM32\1\METHODS\DEF_LC.M							
Last changed	:	7/25/2016 9:44:36 PM							
		(modified after loading)							
Sample Info	:	AD-H, H/i-PrOH = 90/10, 1.0 mL/m	min, 30 ol	Ξ,	230 nm				

Instrument 1 7/25/2016 9:45:14 PM

Page 1 of 1

Instrument 1 27/08/2016 09:13:04

Instrument 1 17/12/2016 10:59:17

Page 1 of 1

Instrument 1 17/12/2016 11:00:52