Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2017

Supporting information

Synthesis of Largely π -Extended Naphthalenediimides via C-H Activation towards Highly Soluble and Narrow Band-Gap Organic

Optoelectronic Materials

Wenting Wu, Jing Li, Zheng Zhao, Xiaodi Yang and Xike Gao*

Contents:

1.	Materials and general methods.	S2
2.	OTFT Device Fabrication and Measurements.	S3
3.	Synthesis and characterization.	S4
4.	The HPLC data of reactive intermediate 2, (DTYM-NDI-DTYA) ₂ and 4a.	S7
5.	Plausible reaction mechanism of homocoupling.	S 8
6.	TGA and DSC plots of 4a–c .	S9
7.	UV-Vis-NIR spectra of 4a–c .	S10
8.	Characteristics of OFET devices based on 4a–c .	S13
9.	XRD measurements of thin films of 4a–c .	S14
10.	MS, NMR, and IR spectra.	S15

Experimental Section

1. Materials and General Methods.

Trans-bis(benzonitrile) dichloropalladium $(PdCl_2(PhCN)_2),$ Tetrakis(triphenylphosphine)palladiuM(0) (Pd(PPh₃)₄) were purchased from Aldrich and used without further purification. Other reagents were obtained commercially and used as received. DTYM-NDI-DTYA $(9)^1$ and NDI-DTYA2 $(8)^2$ were synthesized according to the reported procedures. ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) spectra were measured on on JOEL NMR instruments, using tetramethylsilane as an internal standard. MALDI-TOF spectra were carried out on InoSpec 4.7 Tesla FT-MS. Elemental analyses were performed on an Elementa Vario EL III elemental analyzer. FT-IR spectra were determined using a Bio-Rad FTS-185 spectrometer. Absorption spectra were measured on a on a JASCO V-570 UV-vis-NIR spectrophotometer. Thermogravimetric measurements (TGA) were carried out on a TA Q500 instruments under a dry nitrogen flow at a heating rate of 10 °C/min, heating from room temperature to 500 °C. Differential scanning calorimetry (DSC) analysis was performed on a Perkin Elmer Pyris I instruments under nitrogen atmosphere at a heating (cooling) rate of 10 °C/min. The first cooling and second heating DSC scans are recorded. Cyclic voltammetric measurements were carried out in a conventional three-electrode cell using a platinum button working electrode of 2 mm diameter, a platinum wire counter electrode, and a saturated calomel electrode (SCE) reference electrode on a computer-controlled CHI610D instruments (ferrocene as the internal standard, $E_{\text{Fc+/Fc}} = 0.36 \text{ V}$). X-ray diffraction (XRD) data were collected from an X'Pert Pro diffraction instrument. AFM images were recorded on a Nanoscope Iva-Multimode atomic force microscope in tapping mode.

2. OTFT Device Fabrication and Measurements.

An n-type heavily doped Si wafer with a SiO₂ layer of 300 nm and a capacitance of 11 nF/cm² was used as the gate electrode and dielectric layer. Thin films (25–40 nm in thickness) of semiconductors **4** were deposited on octadecyltrichlorosilane (OTS)-treated SiO₂/Si substrates by spin-coating their respectively solutions (10 mg/mL). Then, the thin films were annealed at different temperatures for improving their thin-film quality/morphology. Gold source and drain contacts (50 nm in thickness) were deposited by vacuum evaporation on the organic layer through a shadow mask, affording a bottom-gate top-contact device configuration. The channel width (W) /length (L) = 8.95. Electrical measurements of OTFT devices were carried out at room temperature in air using a Keithley 4200 semiconductor parameter analyzer. The field-effect mobility was calculated in the saturation regime by using the equation I_{DS} = ($\mu WC_i/2L$)($V_G - V_T$)₂, where I_{DS} is the drain-source current, μ is the field-effect mobility. W is the channel width (237 µm), L is the channel length (31 µm), C_i is the capacitance per unit area (9.8 nF) of the gate dielectric layer, V_G is the gate voltage, and V_T is the threshold voltage.

3. Synthesis and characterization.

7. To a solution of **1** (400 mg, 0.343 mmol) in CHCl₃ (30 mL), Br₂ (60 mg, 0.378 mmol) in 30 mL CHCl₃ was added dropwise at room temperature, and the mixture was stirred for 2 hours. The solvent was then removed under reduced pressure. The residue was purified by chromatography with dichloromethane/petroleum ether (1/2) as eluent. Compound **2** was obtained as blue solid, 230 mg (yield, 54%). ¹H NMR (400 MHz, CDCl₃, mixture of Z/E) δ 0.85–0.88 (m, 12H, –CH₃), 1.22 (br, 80H, – CH₂–), 1.99 (br, 2H, –CH–), 4.15–4.17 (m, 4H, –CH₂–N), 5.68 (s, 1H, =CH–CN).; ¹³C NMR (100 MHz, CDCl₃, mixture of Z/E): δ : 14.26 22.83, 26.47, 29.52, 29.76, 29.83, 30.19, 30.23, 31.64, 32.07, 36.58, 36.63, 46.20, 46.30, 71.07, 85.40, 114.40, 115.69, 115.94, 116.05, 116.23, 124.79, 125.08, 144.80, 146.94, 147.03, 161.87, 162.13, 162.18, 162.31, 164.60; MS (MALDI-TOF) m/z: 1323.3 M⁺; MS (MALDI-TOF) m/z: 1244.0 (M+H)⁺; HR-MS: (MALDI/DHB) Calcd. For C₇₄H₁₀₄O₄N₄S₄: 1243.5805, Found: 1243.5863.

3a. Under a nitrogen atmosphere, a mixture of **2** (200 mg, 0.161 mmol), (4-(trifluoromethyl)phenyl)boronic acid (51 mg, 0.402 mmol), Pd(PPh₃)₄ (19 mg, 0.016 mmol), and K₂CO₃ (133 mg, 1.288 mmol) in 20 mL redistilled THF and 2 mL H₂O was stirred at 100 °C for 10 h. The mixture was poured into methanol after refluxing 10 hours. The blue precipitate was filtered and purified by chromatography with

dichloromethane/petroleum ether (1/2) as eluent. Compound **3a** was obtained as blue solid, 177mg in 77% yield. ¹H NMR (400 MHz, CDCl₃, mixture of Z/E) δ 7.82 (br, 4H, =CH–), 5.65 (br, 1H, =CH–CN), 4.17–4.12 (br, 4H, –CH₂–N), 1.98, 1.97 (br, 2H, – CH–), 1.23 (m, 80H, –CH₂–), 0.86, 0.85 (m, 12H, –CH₃). ¹³C NMR (100 MHz, CDCl₃) δ 162.13, 161.17, 160.37, 156.00, 146.81, 133.21, 127.88, 127.17, 126.62, 125.15, 124.99, 118.79, 115.97, 114.89, 100.11, 94.16, 85.13, 79.15, 66.01, 46.08, 38.69, 36.57, 36.43, 34.82, 32.01, 31.62, 31.52, 31.15, 30.13, 29.77, 29.74, 29.45, 28.46, 26.41, 24.21, 22.77, 19.12, 14.20; MS (MALDI-TOF) m/z: 1309.5 (M+H)⁺; HR-MS: (MALDI/DHB) Calcd. For C₇₅H₁₀₃F₃O₄N₄S₄: 1309.6887, found: 1309.6876.

The same procedure was followed for the synthesis of compounds **3b** and **3c**, using phenylboronic acid and (4-(diphenylamino)phenyl)boronic acid instead of (4-(trifluoromethyl)phenyl)boronic acid, respectively.

3b was obtained as blue solid in 89% yield. ¹H NMR (400 MHz, CDCl₃, mixture of Z/E) δ 7.67, 7.65 (d, 2H, =CH–), 7.56, 7.54, 7.52 (t, 2H, =CH–), 7.47, 7.45, 7.44 (t, 1H, =CH–), 5.62 (s, 1H, =CH–CN), 4.15–4.10 (br, 4H, –CH₂–N), 1.97 (br, 2H, –CH–), 1.22 (m, 80H, –CH₂–), 0.86 (m, 12H, –CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 164.8, 162.24, 162.12, 157.38, 147.37, 147.30, 146.62, 146.51, 146.41, 146.29, 146.02, 145.94, 132.90, 129.59, 127.43, 124.89, 115.82, 101.96, 84.78, 46.08, 35.56, 36.41, 32.02, 31.59, 31.51, 30.17, 29.80, 29.77, 29.48, 26.48, 26.42, 22.79, 14.23; MS (MALDI-TOF) m/z: 1241.7 (M+H)⁺; HR-MS: (MALDI/DHB) Calcd. For C₇₄H₁₀₄O₄N₄S₄: 1241.7013, found: 1241.6994.

3c was obtained as blue solid in 98% yield. ¹H NMR (400 MHz, CDCl₃, mixture of Z/E) δ 7.39–7.35 (m, 6H, =CH–), 7.24, 7.22 (d, 4H, =CH–), 7.18, 7.16, 7.14 (t, 2H, =CH–), 7.09, 7.07 (br, 2H, =CH–), 5.55 (br, 1H, =CH–CN), 4.13–4.12 (br, 4H, – CH₂–N), 2.00 (br, 2H, –CH–) 1.23 (m, 80H, –CH₂–), 0.86 (m, 12H, –CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 164.91, 162.16, 162.02, 161.91, 148.79, 146.64, 146.26, 146.05, 145.82, 129.75, 128.03, 125.98, 124.98, 124.58, 121.08, 116.80, 115.80, 115.36, 115.09, 102.02, 84.43, 77.44, 77.12, 76.80, 46.23, 36.54, 36.37, 32.02, 31.62, 31.52, 30.22, 29.79, 29.47, 26.51, 26.45, 22.78, 14.21; MS (MALDI-TOF) m/z: 1408.8 (M+H)⁺; HR-MS: (MALDI/DHB) Calcd. For C₈₆H₁₁₃O₄N₅S₄: 1408.7748, found:

S5

1408.7738.

4a. Under a nitrogen atmosphere, a mixture of **3a** (40 mg, 0.03 mmol), $PdCl_2(PhCN)_2$ (0.35 mg, 0.09% mmol), AgNO₃ (20.4 mg, 0.12 mmol), and KF (7.0 mg, 0.12 mmol) in 2 mL DMF was stirred at 120 °C for 3 hours. The mixture was poured into methanol. The green precipitate was filtered and purified by column chromatography, using dichloromethane/petroleum ether (1/2) as the eluent. 32.8 mg of green **4a** was obtained as green solid (yield, 85%). M.p.: 300 °C. ¹H NMR (400 MHz, CDCl₃, mixture of Z/E) δ 7.82 (br, 8H, =CH–), 4.25–4.11 (br, 8H, –CH₂–N), 2.02 (br, 4H, – CH–), 1.24–1.18 (m, 160H, –CH₂–), 0.86–0.83 (m, 24H, –CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 162.24, 160.38, 147.30, 145.84, 136.45, 127.89, 126.65, 125.24, 125.11, 116.91, 116.69, 116.27, 116.10, 113.84, 100.36, 90.56, 77.42, 77.10, 76.78, 46.28, 36.64, 36.51, 32.00, 31.67, 31.57, 31.48, 30.13, 29.75, 29.73, 29.45, 26.42, 22.77, 14.19; MS (MALDI-TOF) m/z: 2616.2 (M+H)⁺; Anal. Calcd. For C₁₅₀H₂₀₄F₆N₈O₈S₈: C, 68.82; H, 7.85; N, 4.28; found: C, 69.01; H, 7.81; N, 4.19.

The same procedure was followed for the synthesis of compounds **4b** and **4c**, using **3b** and **3c** instead of **3a**, respectively.

4b was obtained as green solid (yield, 90%). M.p.: 291 °C. ¹H NMR (400 MHz, CDCl₃, mixture of Z/E) δ 7.67–7.65 (br, 4H, =CH–), 7.57–7.53 (m, 4H, =CH–), 7.49–7.44 (m, 2H, =CH–), 4.25–4.11 (m, 8H, –CH₂–N), 2.01 (m, 4H, –CH–), 1.25–1.18 (m, 160H, –CH₂–), 0.86–0.83 (m, 24H, –CH₃); ¹³C NMR (100MHz, CDCl₃) δ 168.42, 162.31, 157.54, 148.20, 146.89, 145.47, 133.04, 129.58, 127.47, 125.13, 116.93, 115.78, 113.93, 102.26, 90.42, 46.27, 36.49, 31.96, 31.65, 30.09, 29.71, 29.39, 26.44, 26.37, 22.72, 14.10; MS (MALDI-TOF) m/z: 2503.2 (M+Na)⁺; Anal. Calcd. For C₁₄₈H₂₀₆N₈O₈S₈: C, 71.63; H, 8.37; N, 4.52; Found: C, 71.57; H, 8.44; N, 4.29.

4c was obtained as green solid (yield, 94%). M.p.: 322 °C. ¹H NMR (400 MHz, CDCl₃, mixture of Z/E) δ 7.52–7.49 (m, 4H, =CH–), 7.37–7.31 (m, 8H, =CH–), 7.26–7.19 (m, 8H, =CH–), 7.16–7.10 (m, 8H, =CH–), 4.25–4.10 (br, 8H, –CH₂–N), 2.01 (br, 4H, –CH–), 1.24-1.17 (m, 160H, –CH₂–), 0.85 (m, 24H, –CH₃); ¹³C (100 MHz, CDCl₃) δ 162.31, 148.91, 146.72, 129.71, 128.29, 125.81, 125.36, 125.22, 124.47, 121.38, 102.43, 77.42, 77.10, 76.78, 46.22, 36.48, 32.01, 31.57, 30.14, 29.76, 29.73,

29.46, 26.46, 22.78, 14.21; MS (MALDI-TOF) m/z: 2814.4 (M+H)⁺; Anal. Calcd. For C₁₇₂H₂₂₄N₁₀O₈S₈: C, 73.36; H, 8.02; N, 4.97; Found: C, 73.51; H, 7.99; N, 4.84.

Scheme S1. Synthesis of (DTYM-NDI-DTYA)₂

(**DTYM-NDI-DTYA**)₂. Under a nitrogen atmosphere, a mixture of **5** (40 mg, 0.037 mmol), PdCl₂(PhCN)₂ (0.43 mg, 0.001 mol), AgNO₃ (25.2 mg, 0.148 mmol), and KF (8.6 mg, 0.148 mmol) in 2 mL DMF was stirred in 120 °C for 3 hours. The mixture was poured into methanol. The green precipitate was filtered and purified by column chromatography, using dichloromethane/petroleum ether (1/2) as the eluent. (**DTYM-NDI-DTYA**)₂ was obtained 33.2 mg (yield, 83%). ¹H NMR (400 MHz, CDCl₃) δ 4.27–4.17 (m, 8H, –CH₂–N), 2.04–2.00 (br, 4H, –CH–), 1.27–1.19 (m, 128H, –CH₂–), 0.88–0.82 (m, 24H, –CH₃); ¹³C (100 MHz, CDCl₃) δ 182.47, 168.09, 162.20, 162.18, 162.17, 162.13, 147.42, 147.40, 144.42, 144.37, 125.26, 125.13, 117.85, 117.76, 116.77, 113.59, 111.87, 91.30, 70.61, 46.47, 31.99, 29.75, 29.70, 29.63, 29.41, 22.79, 22.77, 14.24, 14.23, 14.21.

4. The HPLC data of 2, (DTYM-NDI-DTYA)₂, and 4a.

5. Plausible reaction mechanism of homocoupling.

Scheme S2. Plausible reaction mechanism of homocoupling.

Reference

1. Y. Hu, Z. Wang, X. Zhang, X. Yang, C. Ge, L. Fu and X. Gao, *Org. Lett.*, **2017**, *19*, 468-471.

2. Z. Zhao, F. Zhang, Y. Hu, Z. Wang, B. Leng, X. Gao, C.-a. Di and D. Zhu, *ACS Macro. Lett.*, **2014**, *3*, 1174.

6. TGA and DSC curves for 4a-c.

Figure S5. DSC plots of 4a–c.

7. UV-vis-NIR spectra of 4a–c in solution and thin film.

Figure S6. UV-vis-NIR spectra of **4a–c** (red: in CHCl₃ with a concentration of 2×10^{-5} M; blue: as-spun film).

8. Characteristics of OFET devices.

Table S1. Average (Maximum) mobilities (μ_e), current on/off ratios (I_{on}/I_{off}), and threshold voltages (V_T) for thin film of **4a–c** fabricated by spin coating on OTS-treated Si/SiO₂ substrates at different annealing temperatures.

	annealed at 80 °C				annealed at 120 °C			annealed at 160 °C		
	μ_{e}^{a} (cm ² V ⁻¹ s ⁻¹)	$I_{\rm on}/I_{\rm off}{}^{\rm a}$	$V_{\mathrm{T}^{a}}\left(\mathrm{V}\right)$	$ \mu_e^a (cm^2 V^{-1} s^{-1}) $	$I_{\rm on}/I_{\rm off}{}^{\rm a}$	$V_{T}^{a}(V)$	μ_{e}^{a} (cm ² V ⁻ ¹ s ⁻¹)	$I_{\rm on}/I_{\rm off}{}^{\rm a}$	V_{T}^{a} (V)	
4 a	0.0009	10 ²	-10	0.0009	10 ²	-10	0.0009	102	-10	
4b	0.016	$10^2 \sim 10^3$	-5 ~ -4	0.020	$10^2 \sim 10^3$	-5 ~ -8	0.015	$10^2 \sim$	3 ~ 13	
	(0.019)			(0.022)			(0.018)	10 ³		
4c	0.003	10 ²	-6 ~ -4	0.003	$10^2 \sim 10^3$	-2 ~ -7	0.003	10 ²	-2 ~	
	(0.003)			(0.005)			(0.003)	~103	-1	

^a Typical device characteristics obtained from about 10 devices, and all devices were measured in nitrogen.

Table S2. Average (Maximum) mobilities (μ), current on/off ratios (I_{on}/I_{off}), and threshold voltages (V_T) for thin film of **4a–c** fabricated by spin coating on OTS-treated Si/SiO₂ substrates at different annealing temperatures.

	annealed at 80 °C			annealed at 120 °C			annealed at 160 °C		
	$\mu_{e}^{a} (cm^{2} V^{-1} s^{-1})$	$I_{\rm on}/I_{\rm off}{}^{\rm a}$	$V_{\mathrm{T}}{}^{a}\left(\mathrm{V} ight)$	μ_e^a (cm ² V ⁻¹ s ⁻¹)	$I_{\rm on}/I_{\rm off}{}^{\rm a}$	$V_{T}^{a}(V)$	$\frac{\mu_{\rm e}^a}{(\rm cm^2 V^{-1} s^{-1})}$	$I_{\rm on}/I_{\rm off}{}^{\rm a}$	V_{T}^{a} (V)
4 a	0.002	10 ² ~	12 ~ 15	0.003	10 ³ ~	1~4	0.002	$10^2 \sim 10^3$	0 ~ 3
	0.016	10^{4} $10^{3} \sim$	3 ~ 8	0.015	104	2 ~ 5	0.011	10 ³ ~10 ⁴	0~4
4b	(0.019)	10^{4}		(0.022)	$10^{-5} \sim 10^{-4}$		(0.014)		
4c	0.003	10 ² ~	22 10	0.003		16 ~ 12	0.003		0 12
	(0.003)	10 ³	25~18	(0.005)	10 ²		(0.003)	$10^2 \sim$	9~12
	0.002	$10^3 \sim$	-56 ~	0.002	~10 ^{3b}	-70 ~	0.0004	10 ^{3b}	-60 ~
	(0.002) ^b	10 ^{4b}	-53 ^b	(0.003) ^b		-65 ^b	(0.0008) ^b		-53 ^b

^a Typical device characteristics obtained from about 10 devices, and all devices were measured in air. ^b hole mobilities.

Figure S7. Comparison of transfer characteristics measured under ambient conditions and N₂ with $V_{\rm T}$ of 100V (blue: measured in Air; red: measured in N₂; a, 4a; b, 4b; c, 4c; d, 4c).

9. XRD measurements of thin films of 4a-c.

Figure S8. XRD patterns of spin-coated thin films of 4a–c annealed at 120 °C

National Center for Organic Mass Spectrometry in Shanghai Shanghai Institute of Organic Chemistry Chinese Academic of Sciences High Resolution MS DATA REPORT

Instrument: Thermo Fisher Scientific LTQ FT Ultra

Card Serial Number : M162395

Sample Serial Number: WWT-1-1-1

Operator : HUAQIN Date: 2016/09/08

Operation Mode: MALDI_DHB

Elemental composition search on mass 1243.59

m/z=. 1238.	59-1248.59			
m/z	Theo. Mass	Delta	RDB	Composition
		(ppm)	equiv.	
1243.5863	1243.5805	4.65	20.5	C 68 H 100 O 4 N 4 Br S 4

Shanghai Institute of Organic Chemistry

星期一 9月 26 17:29:26 2016 (GMT+08:00)

The MS, ¹H-NMR, ¹³C-NMR and IR spectra of compound 3a

National Center for Organic Mass Spectrometry in Shanghai Shanghai Institute of Organic Chemistry Chinese Academic of Sciences High Resolution MS DATA REPORT

Instrument: Thermo Fisher Scientific LTQ FT Ultra

Card Serial Number : M163026

Sample Serial Number: WWT-3-23

Operator :HUAQIN Date: 2016/11/25

Operation Mode: DART Positive

Elemental composition search on mass 1309.69

m/z = 1304.	69-1314.69			
m/z	Theo. Mass	Delta	RDB	Composition
		(ppm)	equiv.	
1309.6876	1309.6876	0.02	28.5	C 78 H 103 O 3 N 4 F 2 S 4
	1309.6867	0.70	29.0	C 80 H 102 O 5 N F 3 S 3
	1309.6887	-0.85	24.5	C 75 H 104 O 4 N 4 F 3 S 4
	1309.6889	-1.00	28.0	C 80 H 105 O 4 N F 2 S 4
	1309.6894	-1.36	34.0	C 80 H 97 O 5 N 5 F 2 S 2
	1309.6853	1.73	29.5	C 78 H 100 O 4 N 4 F 3 S 3
	1309.6900	-1.87	24.0	C77 H106 O5 N F3 S4
	1309.6914	-2.90	29.0	C 78 H 102 O N 5 F 3 S 4
	1309.6837	2.94	28.0	C 78 H 104 O 5 N 3 F S 4
	1309.6916	-3.06	33.0	C 80 H 100 O 4 N 5 F S 3

The MS, ¹H-NMR, ¹³C-NMR and IR spectra of compound 3b

National Center for Organic Mass Spectrometry in Shanghai Shanghai Institute of Organic Chemistry Chinese Academic of Sciences High Resolution MS DATA REPORT

Instrument: Thermo Fisher Scientific LTQ FT Ultra

Card, Serial Number : M162399

Sample Serial Number: wwt-3-22

Operator : HUAQIN Date: 2016/09/08

Operation Mode: MALDI_DHB

Elemental composition search on mass 1241.70

m/z= 1236.70-1246.70

m/z	Theo.	Mass	Delta	RDB	Composition
			(ppm)	equiv.	
1241.6994	1241.	6993	0.08	29.0	C 79 H 103 O 5 N S 3
	1241.	7006	-1.00	34.0	C 80 H 99 O N 5 S 3
	1241.	6979	1.16	29.5	C77 H101 O4 N4 S3
	1241.	7013	-1.55	24.5	C74 H105 O4 N4 S4
	1241.	7027	-2.63	24.0	C76 H107 O5 N S4
	1241.	7040	-3.71	29.0	C 77 H 103 O N 5 S 4
	1241.	6946	3.88	34.5	C 80 H 97 O 4 N 4 S 2
	1241.	6941	4.26	28.5	C 80 H 105 O 3 S 4
	1241.	7053	-4.79	28.5	C 79 H 105 O 2 N 2 S 4

Shanghai Institute of Organic Chemistry

星期一 9月 26 17:33:43 2016 (GMT+08:00)

The MS, ¹H-NMR, ¹³C-NMR and IR spectra of compound 3c

The MS, ¹H-NMR, ¹³C-NMR, IR spectra and element analysis of compound 4a

S28

Shanghai Institute of Organic Chemistry

星期一 9月 26 17:22:24 2016 (GMT+08:00)

The MS, ¹H-NMR, ¹³C-NMR, IR spectra and element analysis of

compound 4b

The MS, ¹H-NMR, ¹³C-NMR, IR spectra and element analysis of

compound 4c

S32

Shanghai Institute of Organic Chemistry

星期一 9月 26 17:27:29 2016 (GMT+08:00)

