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1. Spin density distributions of ladder oligomers (Figure S1–S3)

Figure S1. Spin density distributions of the orbitals related to y0 for the smallest systems 

and to y0 and y1 for second smallest systems of the series 2 and 3. Yellow and blue 

surfaces represent α and β spin densities with ±0.002 a.u. iso-surfaces, respectively.  



Figure S2. Total spin density distributions of the two smallest systems of series 1–4 and 

PA(5) and PA(10). Yellow and blue surfaces represent α and β spin densities with 

±0.002 a.u. iso-surfaces, respectively.



Figure S3. Comparison between odd electron density and spin density distributions for 

the representative system 1(9). Contour values are 0.0008 a.u. for odd electron density 

and ±0.002 a.u. for spin density.



2. Basics of the relationship between natural orbitals and corresponding orbitals 

(Figure S4)

Here, the basics of the relationship between the natural orbitals and corresponding 

orbitals are given. More details should be referred to the paper [A. T. Amos, G. G. Hall, 

Proc. R. Soc. Lond. A 1961, 263, 483.]. Generally, the n-particle wavefunction,  , with 

singlet spin state within the unrestricted singlet determinantal scheme is expressed as

 1
n!

det 1
 (1)(1),...,n/2

 (n / 2)(n / 2),1
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 (n / 2)(n / 2) ,

where   and    are the orthonormal spatial molecular orbitals. Using this wavefunction, 

the first-order density matrix (s, t)  is expressed as

(s, t)  r
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By integrating (s, t)  over spin, we obtain the reduced density matrix  (s, t)  as

 (s, t)  r
*(s)r

 (t)
r
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Note that this is not generally diagonal since   and    are not necessarily spatially 

orthogonal each other. The unitary transformation of these sets of molecular orbitals offers 

the fully diagonalized spatial orbitals,   and   , of each spin except for the orbital pair 

with same index. This transformation attains the diagonalized overlap integral Trs :

Trs  *  d  Trrs .

Again, these orbitals   and    are orthogonal each other except when r = s from 

definition. They are called corresponding orbitals (COs) because of the property. Using COs, 

the reduced density matrix is similarly expressed as

 (s, t)   r
*(s) r

 (t)
r
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By combining the set of COs with same index, the natural orbitals (NOs) can be constructed 

as

HONOi 
1

2 2Ti

HOCOi
  HOCOi

 
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1

2 2Ti
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 .

Note that here the index is redefined. These NOs are fully orthonormal and the reduced 

density matrix becomes

 (s, t)  1Ti HONOi
* (s)HONOi (t)

i0
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 .

This expression shows that 1+Ti and 1–Ti are the occupation numbers of the HONO–i-th and 

LUNO+i-th NOs.

Figure S4. Comparison between natural orbitals and corresponding orbitals related to 

y0 and y1 values for the representative system 1(9). Contour values are ±0.02 a.u. for 

both orbitals.



3. Comparison between NICS(1) and NICS(1)yy values (Figure S5)

Figure S5. Comparison between NICS(1)yy and NICS(1) values for the representative 

system 1(49). 



4. Resonance structures (Figure S6)

Figure S6. Resonance structures of 1(9).



5. Further discussion on the geometry optimization (Figure S7 and S8)

Here, we compare the optimized geometries calculated with the spin-restricted (R) 

and spin-unrestricted (U) B3LYP/6-31G* methods. Since the static second 

hyperpolarizability of polyacetylene series is largely affected by the BLA [1], it is expected 

that the choice of the optimization method would have a large effect on the NLO properties. 

Figure S7 and S8 show the absolute values of the bond-length alternation (BLA) of the 

zigzag edges of the inner and outer five-membered rings for series 1 and 4 evaluated with the 

unrestricted method, together with the BLA of the central and terminal vinylene units of 

polyacetylene series calculated at both spin-restricted and unrestricted levels. In series 1 and 

4, the unrestricted method predicts the disappearance of the BLA in the central region. Since 

several studies have experimentally and theoretically (add references; later) shown that 

polyacetylene chains exhibit a finite BLA value, even in the infinite chain limit [2], the 

current UB3LYP results stem from spin contaminations [3]. This explains the choice of the 

spin-restricted B3LYP method for geometry optimizations.

Figure S7. Size dependence of the absolute BLA values for series 1 and 4 calculated 

using the spin-unrestricted method.



Figure S8. Size dependence of the absolute BLA values for polyacetylene series 

calculated using the spin-restricted and unrestricted method.
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6. Spin density distributions of polyacetylene(30) (Figure S9)

Figure S9. Total spin density distribution of polyacetylene(30). Yellow and blue surfaces 

represent α and β spin densities with ±0.002 a.u. iso-surfaces, respectively. 


