A Facile Approach to Ketones via Pd-Catalyzed Sequential Carbonylation of Olefins with Formic Acid

Wenju Chang,^a Jie Dai,^a Jingfu Li,^a Yuan Shi,^a Wenlong Ren,^a and Yian Shi*^{,a,b}

^aState Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Chemistry for Life Sciences, Center for Multimolecular Organic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China; ^bDepartment of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States.

Supporting Information

Table of Contents

Experimental procedures and characterization data	S-2
X-ray structure of 6	S-15
NMR spectra	S-25

General Methods. All commercially available reagents were used without further purification. All solvents used for the reaction were purified with solvent purification system. Column chromatography was performed on silica gel (200-300 mesh). ¹H NMR spectra were recorded on a 400 MHz NMR spectrometer and ¹³C NMR spectra were recorded on a 100 MHz NMR spectrometer. IR spectra were recorded on a FT-IR spectrometer. Melting points were uncorrected. Olefins **1a**, **1b**, **1d-j**, **1l**, and **1n-p** were purchased from commercial suppliers. Olefins **1c**, **1k**, and **1m** were prepared from the corresponding aldehydes via Wittig reaction.¹

Representative procedure for hydrocarbonylation (Table 2, 6a). To a mixture of $Pd(TFA)_2$ (0.0042 g, 0.0125 mmol), dppp (0.0103 g, 0.025 mmol), and CH₃CN (0.05 mL) in a vial (4.0 mL) were added styrene **1a** (0.1041 g, 1.00 mmol), HCOOH (0.069 g, 1.50 mmol), and Ac₂O (0.0766 g, 0.75 mmol) successively via syringe. The vial was purged with Ar to remove the air and tightly sealed with a septum cap. The reaction mixture was stirred at 90 °C for 24 h, cooled to rt, and purified by flash chromatography (silica gel, eluent: PE/EA = 50/1) to give ketone **6a** as a colorless oil (0.1072 g, 90% yield).

Table 2, 6a

Colorless oil; IR (film) 1713, 1492, 1452 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.30-7.24 (m, 4H), 7.22-7.18 (m, 2H), 7.18-7.13 (m, 4H), 2.89 (t, J = 7.4 Hz, 4H), 2.71 (t, J = 7.3 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 209.3, 141.2, 128.7, 128.5, 126.3, 44.7, 29.9; HRMS (ESI) Calcd for C₁₇H₁₉O (M+H): 239.1430; Found: 239.1427.

Margathe, J. F.; Shipman, M.; Smith, S. C. Org. Lett. 2005, 7, 4987

Table 2, 6b

White solid; mp. 43-44 °C; IR (film) 1713, 1511 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.11-7.02 (m, 8H), 2.84 (t, *J* = 7.4 Hz, 4H), 2.68 (t, *J* = 7.4 Hz, 4H), 2.31 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 209.5, 138.1, 135.7, 129.3, 128.4, 44.8, 29.5, 21.2; HRMS (ESI) Calcd for C₁₉H₂₃O (M+H): 267.1743; Found: 267.1739.

Table 2, 6c

Colorless oil; IR (film) 1713, 1460 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.05 (br s, 8H), 2.88-2.82 (m, 4H), 2.72-2.65 (m, 4H), 2.43 (d, *J* = 7.2 Hz, 4H), 1.89-1.76 (m, 2H), 0.89 (d, *J* = 6.6 Hz, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 209.7, 139.6, 138.4, 129.4, 128.2, 45.2, 44.9, 30.4, 29.6, 22.6; HRMS (ESI) Calcd for C₂₅H₃₄NaO (M+Na): 373.2502; Found: 373.2508.

Table 2, 6d

White solid; mp. 65-67 °C; IR (film) 1713, 1488 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.25-7.20 (m, 4H), 7.09-7.05 (m, 4H), 2.84 (t, *J* = 7.4 Hz, 4H), 2.67 (t, *J* = 7.4 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 208.5, 139.6, 132.1, 129.9, 128.8, 44.4, 29.1; HRMS (ESI) Calcd for C₁₇H₁₇Cl₂O (M+H): 307.0651; Found: 307.0644.

Table 2, 6e

White solid; mp. 50-51 °C; IR (film) 1699, 1505 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.13-7.06 (m, 4H), 6.98-6.90 (m, 4H), 2.85 (t, *J* = 7.5 Hz, 4H), 2.67 (t, *J* = 7.4 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 208.9, 161.6 (d, *J* = 242.0 Hz), 136.8 (d, *J* = 4.0 Hz), 129.9 (d, *J* = 8.0 Hz), 115.4 (d, *J* = 21.0 Hz), 44.7, 29.0; HRMS (ESI) Calcd for C₁₇H₁₇F₂O (M+H): 275.1242; Found: 275.1239.

Table 2, 6f

White solid; mp. 54-56 °C; IR (film) 1702, 1615 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, *J* = 8.0 Hz, 4H), 7.25 (d, *J* = 8.0 Hz, 4H), 2.94 (t, *J* = 7.4 Hz, 4H), 2.73 (t, *J* = 7.4 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 208.0, 145.2, 128.9, 128.7 (q, *J* = 32.0 Hz), 125.6 (q, *J* = 4.0 Hz), 124.5 (q, *J* = 271.0 Hz), 44.1, 29.5; HRMS (ESI) Calcd for C₁₉H₁₇F₆O (M+H): 375.1178; Found: 375.1171. Levinger, S.; Sharabi-Ronen, Y.; Mainfeld, A.; Albeck, A. *J. Org. Chem.* **2008**, *73*, 7793

Table 2, 6g

Colorless oil; IR (film) 1716, 1609 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.17 (t, *J* = 7.4 Hz, 2H), 7.04-6.93 (m, 6H), 2.85 (t, *J* = 7.4 Hz, 4H), 2.70 (t, *J* = 7.5 Hz, 4H), 2.32 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 209.5, 141.2, 138.3, 129.3, 128.6, 127.0, 125.5, 44.7, 29.9, 21.6; HRMS (ESI) Calcd for C₁₉H₂₃O (M+H): 267.1743;

Found: 267.1738.

Table 2, 6h

Colorless oil; IR (film) 1711, 1598 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.19 (t, *J* = 7.8 Hz, 2H), 6.77-6.69 (m, 6H), 3.79 (s, 6H), 2.87 (t, *J* = 7.3 Hz, 4H), 2.71 (t, *J* = 7.3 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 209.2, 159.9, 142.8, 129.7, 120.8, 114.3, 111.6, 55.3, 44.6, 30.0; HRMS (ESI) Calcd for C₁₉H₂₃O₃ (M+H): 299.1642; Found: 299.1647.

Table 2, 6i

Colorless oil; IR (film) 1716, 1597 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.22-7.13 (m, 6H), 7.03 (dt, *J* = 6.8 1,8 Hz, 2H), 2.86 (t, *J* = 7.5 Hz, 4H), 2.70 (t, *J* = 7.6 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 208.3, 143.2, 134.4, 130.0, 128.7, 126.8, 126.6, 44.3, 29.4; HRMS (ESI) Calcd for C₁₇H₁₆Cl₂NaO (M+Na): 329.0470; Found: 329.0471.

Table 2, 6j

Colorless oil; IR (film) 1713, 1584 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.26-7.18 (m, 2H), 6.96-6.82 (m, 6H), 2.89 (t, *J* = 7.4 Hz, 4H), 2.71 (t, *J* = 7.6 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 208.2, 162.9 (d, *J* = 244.0 Hz), 143.5 (d, *J* = 7.0 Hz),

129.9 (d, J = 8.0 Hz), 124.0 (d, J = 3.0 Hz), 115.2 (d, J = 21.0 Hz), 113.1 (d, J = 20.0 Hz), 44.0, 29.3 (d, J = 1.0 Hz); HRMS (ESI) Calcd for C₁₇H₁₆F₂NaO (M+Na): 297.1061; Found: 297.1069.

Table 2, 6k

White solid; mp. 96-98 °C; IR (film) 2228, 1702, 1482 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.49 (dt, *J* = 7.0, 1.7 Hz, 2H), 7.46-7.43 (m, 2H), 7.42-7.34 (m, 4H), 2.92 (t, *J* = 7.4 Hz, 4H), 2.73 (t, *J* = 7.4 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 207.3, 142.5, 133.2, 132.0, 130.2, 129.5, 119.0, 112.7, 43.8, 29.1; HRMS (ESI) Calcd for C₁₉H₁₇N₂O (M+H): 289.1335; Found: 289.1333.

Table 2, 6l

White solid; mp. 78-80 °C; IR (film) 1713, 1492 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.18 (td, J = 8.0, 1.7 Hz, 2H), 7.11 (dd, J = 7.4, 1.6 Hz, 2H), 6.89-6.80 (m, 4H), 3.81 (s, 6H), 2.88 (t, J = 7.2 Hz, 4H), 2.68 (t, J = 7.3 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 210.6, 157.6, 130.2, 129.7, 127.6, 120.7, 110.4, 55.4, 43.0, 25.2; HRMS (ESI) Calcd for C₁₉H₂₃O₃ (M+H): 299.1642; Found: 299.1638.

Table 2, 6m

Colorless oil; IR (film) 1713, 1504 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.04 (d, J = 7.6 Hz, 2H), 6.93 (s, 2H), 6.89 (d, J = 7.6 Hz, 2H), 2.82 (t, J = 7.4 Hz, 4H), 2.68 (t,

J = 7.2 Hz, 4H), 2.23 (br s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 209.7, 138.7, 136.8, 134.4, 129.93, 129.86, 125.8, 44.9, 29.5, 19.9, 19.5; HRMS (ESI) Calcd for C₂₁H₂₇O (M+H): 295.2056; Found: 295.2055.

Table 2, 6n

White solid; mp. 42-44 °C; IR (film) 1739, 1702 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.67 (s, 6H), 2.78 (t, *J* = 6.4 Hz, 4H), 2.61 (t, *J* = 6.4 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 207.1, 173.3, 52.0, 37.2, 27.9; HRMS (ESI) Calcd for C₉H₁₅O₅ (M+H): 203.0914; Found: 203.0911.

Zhang, Q.; Li, Y.; Wu, Y-K. Chin. J. Chem. 2007, 25, 1304

Table 2, 60

White solid; mp. 47-48 °C; IR (film) 1728, 1702 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.39-7.29 (m, 10H), 5.11 (s, 4H), 2.78 (t, *J* = 6.2 Hz, 4H), 2.65 (t, *J* = 6.3 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 207.0, 172.7, 136.0, 128.8, 128.44, 128.39, 66.7, 37.2, 28.2; HRMS (ESI) Calcd for C₂₁H₂₂NaO₅ (M+Na): 377.1359; Found: 377.1363.

Table 2, 6p

White solid; mp. 74-76 °C; IR (film) 1694, 1413 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.78-2.72 (m, 4H), 2.71-2.66 (m, 4H), 2.47 (q, *J* = 7.4 Hz, 4H), 1.05 (t, *J* = 7.3 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 210.2, 208.4, 36.3, 36.0, 35.9, 8.0; HRMS (ESI) Calcd for C₁₁H₁₈NaO₃ (M+Na): 221.1148; Found: 221.1148.

Table 2, 6q

Colorless oil; IR (film) 1706, 1447 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.30-7.24 (m, 2H), 7.21-7.15 (m, 3H), 2.88 (t, *J* = 7.2 Hz, 2H), 2.78-2.72 (m, 2H), 2.35-2.26 (m, 1H), 1.85-1.71 (m, 4H), 1.68-1.60 (m, 1H), 1.40-1.10 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ 213.4, 141.6, 128.6, 128.5, 126.2, 51.2, 42.4, 29.9, 28.6, 26.0, 25.8; HRMS (ESI) Calcd for C₁₅H₂₀NaO (M+Na): 239.1406; Found: 239.1409. Kose, O.; Saito, S. *Org. Biomol. Chem.* **2010**, *8*, 896

Table 2, 6r

Colorless oil; IR (film) 2227, 1704 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.58-7.53 (m, 2H), 7.31-7.26 (m, 2H), 2.94 (t, J = 7.4 Hz, 2H), 2.78 (t, J = 7.2 Hz, 2H), 2.39-2.25 (m, 1H), 1.83-1.71 (m, 4H), 1.69-1.61 (m, 1H), 1.36-1.10 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ 212.4, 147.4, 132.4, 129.4, 119.2, 110.1, 51.1, 41.5, 29.8, 28.6, 26.0, 25.8; HRMS (ESI) Calcd for C₁₆H₁₉NNaO (M+Na): 264.1359; Found: 264.1363.

Table 3, 8a

White solid; mp. 49-50 °C; IR (film) 1679, 1614 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.58-7.50 (m, 3H), 7.42-7.37 (m, 3H), 7.33-7.27 (m, 2H), 7.27-7.18 (m, 3H), 6.74 (d, *J* = 16.2 Hz, 1H), 3.01 (s, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 199.5, 142.9, 141.4, 134.7, 130.7, 129.1, 128.7, 128.6, 128.5, 126.4, 126.3, 42.6, 30.3; HRMS (ESI) Calcd for C₁₇H₁₆NaO (M+Na): 259.1093; Found: 259.1097.

Wu, X-F.; Neumann, H.; Beller, M. Chem. Asian. J. 2012, 7, 1199

Table 3, 8b

White solid; mp. 82-84 °C; IR (film) 1676, 1642 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, *J* = 16.2 Hz, 1H), 7.42 (d, *J* = 8.2 Hz, 2H), 7.19 (d, *J* = 8.0 Hz, 2H), 7.15-7.09 (m, 4H), 6.69 (d, *J* = 16.2 Hz, 1H), 2.97 (s, 4H), 2.38 (s, 3H), 2.32 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 199.7, 142.9, 141.1, 138.4, 135.8, 131.9, 129.9, 129.4, 128.5, 125.5, 42.7, 30.0, 21.7, 21.2; HRMS (ESI) Calcd for C₁₉H₂₀NaO (M+Na): 287.1406; Found: 287.1411.

Wu, X-F.; Neumann, H.; Beller, M. Chem. Asian. J. 2012, 7, 1199

Table 3, 8c

White solid; mp. 94-95 °C; IR (film) 1638, 1601, cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, *J* = 16.0 Hz, 1H), 7.48 (d, *J* = 8.8 Hz, 2H), 7.15 (d, *J* = 8.6 Hz, 2H), 6.91 (d, *J* = 8.8 Hz, 2H), 6.84 (d, *J* = 8.6 Hz, 2H), 6.62 (d, *J* = 16.2 Hz, 1H), 3.84 (s, 3H), 3.78 (s, 3H), 2.94 (s, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 199.7, 161.8, 158.1, 142.7, 133.6, 130.2, 129.5, 127.3, 124.2, 114.6, 114.1, 55.6, 55.5, 42.8, 29.6; HRMS (ESI) Calcd for C₁₉H₂₀NaO₃ (M+Na): 319.1305; Found: 319.1310.

Table 3, 8d

White solid; mp. 84-86 °C; IR (film) 1679, 1605 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.51-7.43 (m, 3H), 7.36 (d, J = 8.6 Hz, 2H), 7.26 (d, J = 8.5 Hz, 2H), 7.16

(d, J = 8.4 Hz, 2H), 6.69 (d, J = 16.2 Hz, 1H), 2.97 (s, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 198.8, 141.5, 139.8, 136.7, 133.1, 132.1, 130.0, 129.6, 129.5, 128.8, 126.5, 42.6, 29.5; HRMS (ESI) Calcd for C₁₇H₁₄Cl₂NaO (M+Na): 327.0314; Found: 327.0315.

Wu, X-F.; Neumann, H.; Beller, M. Chem. Asian. J. 2012, 7, 1199

Table 3, 8e

White solid; mp. 57-58 °C; IR (film) 1679, 1611 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.55-7.47 (m, 3H), 7.22-7.15 (m, 2H), 7.12-7.05 (m, 2H), 7.01-6.94 (m, 2H), 6.65 (d, *J* = 16.2 Hz, 1H), 2.97 (s, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 199.0, 164.2 (d, *J* = 268.0 Hz), 161.7 (d, *J* = 260.0 Hz), 141.7, 136.98 (d, *J* = 3.0 Hz), 130.9 (d, *J* = 3.0 Hz), 130.4 (d, *J* = 9.0 Hz), 130.0 (d, *J* = 8.0 Hz), 126.0 (d, *J* = 3.0 Hz), 116.4 (d, *J* = 22.0 Hz), 115.5 (d, *J* = 22.0 Hz), 42.8, 29.4; HRMS (ESI) Calcd for C₁₇H₁₄F₂NaO (M+Na): 295.0905; Found: 295.0907.

Wu, X-F.; Neumann, H.; Beller, M. Chem. Asian. J. 2012, 7, 1199

Table 3, 8f

Colorless oil; IR (film) 1686, 1610 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, *J* = 16.2 Hz, 1H), 7.36-7.27 (m, 3H), 7.23-7.17 (m, 2H), 7.07-7.00 (m, 3H), 6.72 (d, *J* = 16.2 Hz, 1H), 2.99 (br s, 4H), 2.38 (s, 3H), 2.34 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 199.7, 143.1, 141.4, 138.8, 138.3, 134.6, 131.5, 129.4, 129.1, 129.0, 128.6, 127.1, 126.2, 125.7, 125.6, 42.7, 30.3, 21.6, 21.5; HRMS (ESI) Calcd for C₁₉H₂₀NaO (M+Na): 287.1406; Found: 287.1409.

Wu, X-F.; Neumann, H.; Beller, M. Chem. Asian. J. 2012, 7, 1199

Table 3, 8g

Colorless oil; IR (film) 1689, 1610 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, *J* = 16.2 Hz, 1H), 7.30 (t, *J* = 7.9 Hz, 1H), 7.22 (t, *J* = 7.8 Hz, 1H), 7.12 (d, *J* = 7.6 Hz, 1H), 7.04 (t, *J* = 2.3 Hz, 1H), 6.94 (ddd, *J* = 8.2, 2.5, 0.8 Hz, 1H), 6.83 (d, *J* = 7.6 Hz, 1H), 6.79 (t, *J* = 2.3 Hz, 1H), 6.75 (ddd, *J* = 8.2, 2.6, 0.8 Hz, 1H), 6.71 (d, *J* = 16.2 Hz, 1H), 3.83 (s, 3H), 3.80 (s, 3H), 3.00 (br s, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 199.5, 160.1, 159.9, 143.0, 142.9, 136.0, 130.1, 129.7, 126.6, 121.2, 120.9, 116.6, 114.4, 113.3, 111.6, 55.5, 55.4, 42.5, 30.4; HRMS (ESI) Calcd for C₁₉H₂₀NaO₃ (M+Na): 319.1305; Found: 319.1309.

Table 3, 8h

Colorless oil; IR (film) 1691, 1610 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.51 (t, *J* = 1.7 Hz, 1H), 7.47 (d, *J* = 16.2 Hz, 1H), 7.42-7.30 (m, 3H), 7.25-7.16 (m, 3H), 7.11 (dt, *J* = 7.2, 1.6 Hz, 1H), 6.72 (d, *J* = 16.2 Hz, 1H), 2.99 (s, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 198.5, 143.3, 141.3, 136.4, 135.2, 134.4, 130.6, 130.4, 130.0, 128.7, 128.1, 127.2, 126.8, 126.7, 126.6, 42.4, 29.7; HRMS (ESI) Calcd for C₁₇H₁₅Cl₂O (M+H): 305.0494; Found: 305.0498.

Wu, X-F.; Neumann, H.; Beller, M. Chem. Asian. J. 2012, 7, 1199

Table 3, 8i

Colorless oil; IR (film) 1691, 1614 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, *J* = 16.2 Hz, 1H), 7.40-7.33 (m, 1H), 7.32-7.20 (m, 3H), 7.13-7.06 (m, 1H), 7.03-6.99 (m, 1H), 6.97-6.86 (m, 2H), 6.71 (d, *J* = 16.2 Hz, 1H), 3.00 (br s, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 198.7, 163.2 (d, *J* = 245.0 Hz), 163.1 (d, *J* = 245.0 Hz), 143.8 (d, *J* = 8.0 Hz), 141.5 (d, *J* = 2.0 Hz), 136.9 (d, *J* = 7.0 Hz), 130.7 (d, *J* = 9.0 Hz), 130.1 (d, *J* = 8.0 Hz), 127.2, 124.5 (d, *J* = 3.0 Hz), 124.3 (d, *J* = 3.0 Hz), 117.6 (d, *J* = 21.0 Hz), 115.5 (d, *J* = 20.0 Hz), 114.6 (d, *J* = 22.0 Hz), 113.3 (d, *J* = 21.0 Hz), 42.4, 29.8 (d, *J* = 1.0 Hz); HRMS (ESI) Calcd for C₁₇H₁₄F₂NaO (M+Na): 295.0905; Found: 295.0909.

Wu, X-F.; Neumann, H.; Beller, M. Chem. Asian. J. 2012, 7, 1199

White solid; mp. 97-98 °C; IR (film) 2221, 1663, 1610 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.81 (t, J = 1.6 Hz, 1H), 7.77-7.72 (m, 1H), 7.68 (dt, J = 7.8, 1.3 Hz, 1H), 7.56-7.47 (m, 5H), 7.40 (t, J = 7.8 Hz, 1H), 6.76 (d, J = 16.2 Hz, 1H), 3.09-3.00 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 197.7, 142.6, 140.3, 135.8, 133.7, 133.4, 132.4, 132.2, 131.7, 130.3, 130.1, 129.5, 127.9, 119.1, 118.2, 113.7, 112.8, 42.4, 29.4; HRMS (ESI) Calcd for C₁₉H₁₄N₂NaO (M+Na): 309.0998; Found: 309.1004.

Table 3, 8k

White solid; mp. 85-87 °C; IR (film) 1692, 1610 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, J = 16.5 Hz, 1H), 7.53 (dd, J = 7.7, 1.6 Hz, 1H), 7.38-7.32 (m, 1H), 7.23-7.17 (m, 2H), 6.96 (t, J = 7.6 Hz, 1H), 6.93-6.84 (m, 3H), 6.77 (d, J = 16.5 Hz, 1H), 3.88 (s, 3H), 3.84 (s, 3H), 2.99 (br s, 4H); ¹³C NMR (100 MHz, CDCl₃) δ

201.0, 158.5, 157.7, 138.0, 131.8, 130.3, 129.9, 128.5, 127.6, 127.3, 123.8, 121.0, 120.7, 111.3, 110.4, 55.7, 55.4, 40.5, 25.9; HRMS (ESI) Calcd for C₁₉H₂₀NaO₃ (M+Na): 319.1305; Found: 319.1308.

Table 3, 8l

White solid; mp. 65-66 °C; IR (film) 1679, 1601 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, J = 16.2 Hz, 1H), 7.31-7.25 (m, 2H), 7.15 (d, J = 7.8 Hz, 1H), 7.06 (d, J = 7.6 Hz, 1H), 7.01 (s, 1H), 6.98-6.95 (m, 1H), 6.69 (d, J = 16.2 Hz, 1H), 3.00-2.90 (m, 4H), 2.28 (s, 6H), 2.24 (s, 3H), 2.23 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 199.9, 143.1, 139.9, 138.9, 137.4, 136.8, 134.4, 132.4, 130.4, 130.0, 129.7, 126.1, 125.9, 125.4, 42.8, 30.0, 20.0, 19.9, 19.5; HRMS (ESI) Calcd for C₂₁H₂₄NaO (M+Na): 315.1719; Found: 315.1722.

Procedures for reduction of 1,5-diphenylpent-1-en-3-one (Scheme 6)

To a mixture of Pd(TFA)₂ (0.0017 g, 0.0050 mmol), dppp (0.0041 g, 0.010 mmol), and CH₃CN (0.05 mL) in a vial (4.0 mL) were added 1,5-diphenylpent-1-en-3-one (**8a**) (0.0473 g, 0.20 mmol), Ac₂O (0.0306 g, 0.30 mmol), and HCOOH (0.0276 g, 0.60 mmol) successively via syringe. The vial was purged with Ar to remove the air and tightly sealed with a septum cap. The reaction mixture was stirred at 60 °C for 24 h, cooled to rt, and purified by flash chromatography (silica gel, eluent: petroleum ether /diethyl ether = 50/1) to give compound **6a** as a colorless oil (0.0466 g, 98% yield).

The X-ray structure of compound 6l

Table 1. Crystal data and structure refinement for **6**l.

Identification code	61
Empirical formula	C ₁₉ H ₂₂ O ₃
Formula weight	298.37
Temperature	293(2) K
Wavelength	0.71073 A
Crystal system, space group	Monoclinic, C2/C
Unit cell dimensions	a = 28.543(6) A alpha = 90 deg.
	b = 7.3090(15) A beta = 105.04(3) deg.
	c = 16.361(3) A gamma = 90 deg.
Volume	3296.3(12) A^3
Z, Calculated density	8,1.202 Mg/m^3
Absorption coefficient	0.080 mm^-1
F(000)	1280
Crystal size	0.30 x 0.20 x 0.10 mm
Theta range for data collection	1.48 to 25.38 deg.
Limiting indices	0<=h<=34, 0<=k<=8, -18<=l<=19
Reflections collected /unique	3093 / 3030 [R(int) = 0.0929]
Completeness to theta $= 25.38$	100.0 %
Absorption correction	Psi-scan
Max. and min. transmission	0.9920 and 0.9764
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	3030 / 0 / 199
Goodness-of-fit on F ²	1.002
Final R indices [I>2sigma (I)]	R1 = 0.0639, $wR2 = 0.1064$
R indices (all data)	R1 = 0.1583, $wR2 = 0.1411$
Largest diff. peak and hole	0.147 and -0.177 e.A^-3

	Х	у	Z	U(eq)
O(1)	1876(1)	1838(3)	7390(2)	63(1)
C(1)	1387(1)	1557(4)	7156(2)	46(1)
O(2)	1795(1)	7584(3)	5862(2)	75(1)
C(2)	1158(1)	75(5)	7415(2)	56(1)
O(3)	1889(1)	13246(3)	4395(2)	69(1)
C(3)	659(2)	-67(5)	7156(2)	61(1)
C(4)	385(1)	1234(5)	6644(2)	57(1)
C(5)	619(1)	2706(5)	6393(2)	48(1)
C(6)	1118(1)	2919(4)	6643(2)	39(1)
C(7)	1382(1)	4544(4)	6403(2)	46(1)
C(8)	1070(1)	5998(4)	5870(2)	45(1)
C(9)	1358(1)	7549(5)	5637(2)	45(1)
C(10)	1069(1)	9059(4)	5119(2)	44(1)
C(11)	1383(1)	10547(4)	4892(2)	48(1)
C(12)	1120(1)	12138(4)	4391(2)	42(1)
C(13)	623(1)	12340(5)	4153(2)	49(1)
C(14)	403(1)	13817(5)	3675(2)	57(1)
C(15)	679(2)	15133(5)	3434(2)	61(1)
C(16)	1179(2)	14995(5)	3670(2)	59(1)
C(17)	1401(1)	13506(5)	4142(2)	49(1)
C(18)	2179(1)	469(5)	7880(3)	86(1)
C(19)	2201(1)	14630(6)	4217(3)	98(2)

Table 2. Atomic coordinates ($x \ 10^{4}$) and equivalent isotropic displacement parameters (A² x 10³) for **6**l. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

O(1)-C(1)	1.366(4)
O(1)-C(18)	1.425(4)
C(1)-C(2)	1.387(4)
C(1)-C(6)	1.396(4)
O(2)-C(9)	1.206(3)
C(2)-C(3)	1.382(4)
C(2)-H(2A)	0.93
O(3)-C(17)	1.360(4)
O(3)-C(19)	1.426(4)
C(3)-C(4)	1.369(5)
C(3)-H(3A)	0.93
C(4)-C(5)	1.384(4)
C(4)-H(4A)	0.93
C(5)-C(6)	1.383(4)
C(5)-H(5A)	0.93
C(6)-C(7)	1.513(4)
C(7)-C(8)	1.509(4)
C(7)-H(7A)	0.97
C(7)-H(7B)	0.97
C(8)-C(9)	1.505(4)
C(8)-H(8A)	0.97
C(8)-H(8B)	0.97
C(9)-C(10)	1.501(4)
C(10)-C(11)	1.516(4)
C(10)-H(10A)	0.97
C(10)-H(10B)	0.97
C(11)-C(12)	1.505(4)
C(11)-H(11A)	0.97
C(11)-H(11B)	0.97
C(12)-C(13)	1.378(4)
C(12)-C(17)	1.406(4)
C(13)-C(14)	1.385(4)
C(13)-H(13A)	0.93
C(14)-C(15)	1.364(4)
C(14)-H(14A)	0.93
C(15)-C(16)	1.384(5)
C(15)-H(15A)	0.93
C(16)-C(17)	1.388(4)
C(16)-H(16A)	0.93
C(18)-H(18A)	0.96
C(18)-H(18B)	0.96
C(18)-H(18C)	0.96

Table 3. Bond lengths [A] and angles [deg] for **6**l.

C(19)-H(19A)	0.96
C(19)-H(19B)	0.96
C(19)-H(19C)	0.96
C(1)-O(1)-C(18)	118.7(3)
O(1)-C(1)-C(2)	124.0(3)
O(1)-C(1)-C(6)	115.1(3)
C(2)-C(1)-C(6)	120.8(3)
C(3)-C(2)-C(1)	119.6(3)
C(3)-C(2)-H(2A)	120.2
C(1)-C(2)-H(2A)	120.2
C(17)-O(3)-C(19)	118.9(3)
C(4)-C(3)-C(2)	120.9(3)
C(4)-C(3)-H(3A)	119.5
C(2)-C(3)-H(3A)	119.5
C(3)-C(4)-C(5)	118.7(4)
C(3)-C(4)-H(4A)	120.7
C(5)-C(4)-H(4A)	120.7
C(6)-C(5)-C(4)	122.6(3)
C(6)-C(5)-H(5A)	118.7
C(4)-C(5)-H(5A)	118.7
C(5)-C(6)-C(1)	117.4(3)
C(5)-C(6)-C(7)	123.7(3)
C(1)-C(6)-C(7)	118.8(3)
C(8)-C(7)-C(6)	116.4(3)
C(8)-C(7)-H(7A)	108.2
C(6)-C(7)-H(7A)	108.2
C(8)-C(7)-H(7B)	108.2
C(6)-C(7)-H(7B)	108.2
H(7A)-C(7)-H(7B)	107.3
C(9)-C(8)-C(7)	113.5(3)
C(9)-C(8)-H(8A)	108.9
C(7)-C(8)-H(8A)	108.9
C(9)-C(8)-H(8B)	108.9
C(7)-C(8)-H(8B)	108.9
H(8A)-C(8)-H(8B)	107.7
O(2)-C(9)-C(10)	122.1(3)
O(2)-C(9)-C(8)	121.8(3)
C(10)-C(9)-C(8)	116.1(3)
C(9)-C(10)-C(11)	113.1(3)
C(9)-C(10)-H(10A)	109
C(11)-C(10)-H(10A)	109
C(9)-C(10)-H(10B)	109
C(11)-C(10)-H(10B)	109

H(10A)-C(10)-H(10B)	107.8
C(12)-C(11)-C(10)	116.5(3)
C(12)-C(11)-H(11A)	108.2
C(10)-C(11)-H(11A)	108.2
C(12)-C(11)-H(11B)	108.2
C(10)-C(11)-H(11B)	108.2
H(11A)-C(11)-H(11B)	107.3
C(13)-C(12)-C(17)	117.6(3)
C(13)-C(12)-C(11)	124.6(3)
C(17)-C(12)-C(11)	117.8(3)
C(12)-C(13)-C(14)	121.8(3)
C(12)-C(13)-H(13A)	119.1
C(14)-C(13)-H(13A)	119.1
C(15)-C(14)-C(13)	120.1(4)
C(15)-C(14)-H(14A)	120
C(13)-C(14)-H(14A)	120
C(14)-C(15)-C(16)	120.0(3)
C(14)-C(15)-H(15A)	120
C(16)-C(15)-H(15A)	120
C(15)-C(16)-C(17)	120.0(3)
C(15)-C(16)-H(16A)	120
C(17)-C(16)-H(16A)	120
O(3)-C(17)-C(16)	124.2(3)
O(3)-C(17)-C(12)	115.3(3)
C(16)-C(17)-C(12)	120.5(3)
O(1)-C(18)-H(18A)	109.5
O(1)-C(18)-H(18B)	109.5
H(18A)-C(18)-H(18B)	109.5
O(1)-C(18)-H(18C)	109.5
H(18A)-C(18)-H(18C)	109.5
H(18B)-C(18)-H(18C)	109.5
O(3)-C(19)-H(19A)	109.5
O(3)-C(19)-H(19B)	109.5
H(19A)-C(19)-H(19B)	109.5
O(3)-C(19)-H(19C)	109.5
H(19A)-C(19)-H(19C)	109.5
H(19B)-C(19)-H(19C)	109.5

Symmetry transformations used to generate equivalent atoms:

	U11	U22	U33	U23	U13	U12	
O(1)	51(2)	58(2)	72(2)	19(1)	1(1)	-1(1)	_
C(1)	60(2)	41(2)	38(2)	0(2)	15(2)	-5(2)	
O(2)	48(2)	61(2)	108(2)	36(2)	8(2)	-3(1)	
C(2)	79(3)	45(2)	45(2)	9(2)	17(2)	-4(2)	
O(3)	58(2)	60(2)	97(2)	29(2)	34(2)	2(1)	
C(3)	79(3)	50(2)	60(2)	-6(2)	31(2)	-22(2)	
C(4)	58(2)	51(2)	67(2)	-8(2)	25(2)	-16(2)	
C(5)	49(2)	43(2)	53(2)	-7(2)	14(2)	-2(2)	
C(6)	52(2)	31(2)	37(2)	-2(1)	16(2)	-6(2)	
C(7)	53(2)	38(2)	44(2)	6(2)	7(2)	-6(2)	
C(8)	50(2)	35(2)	50(2)	1(2)	14(2)	-4(2)	
C(9)	48(2)	41(2)	46(2)	1(2)	10(2)	2(2)	
C(10)	48(2)	32(2)	49(2)	-2(2)	7(2)	4(2)	
C(11)	47(2)	40(2)	61(2)	9(2)	19(2)	3(2)	
C(12)	54(2)	32(2)	39(2)	2(1)	12(2)	1(2)	
C(13)	48(2)	46(2)	51(2)	-6(2)	10(2)	-3(2)	
C(14)	57(2)	54(2)	54(2)	0(2)	0(2)	13(2)	
C(15)	80(3)	50(2)	50(2)	11(2)	12(2)	20(2)	
C(16)	82(3)	51(2)	49(2)	14(2)	24(2)	2(2)	
C(17)	55(2)	50(2)	45(2)	6(2)	17(2)	5(2)	
C(18)	74(3)	77(3)	94(3)	25(3)	0(2)	13(3)	
C(19)	69(3)	103(4)	130(4)	46(3)	38(3)	-17(3)	

Table 4. Anisotropic displacement parameters (A² x 10³) for **6**l. The anisotropic displacement factor exponent takes the form: -2 pi² [h² a^{*2} U11 + ... + 2 h k a^{*} b^{*} U12]

	X	У	Z	U(eq)
H(2A)	1340	-819	7762	68
H(3A)	506	-1060	7332	73
H(4A)	49	1131	6469	68
H(5A)	434	3587	6043	58
H(7A)	1571	5113	6919	55
H(7B)	1608	4096	6098	55
H(8A)	876	5439	5355	54
H(8B)	850	6486	6178	54
H(10A)	858	9598	5434	53
H(10B)	864	8543	4603	53
H(11A)	1594	11019	5412	58
H(11B)	1588	9995	4571	58
H(13A)	431	11461	4318	59
H(14A)	67	13913	3518	69
H(15A)	530	16122	3112	73
H(16A)	1368	15901	3512	71
H(18A)	2512	847	7994	129
H(18B)	2137	-662	7571	129
H(18C)	2093	300	8404	129
H(19A)	2533	14258	4433	147
H(19B)	2147	15753	4483	147
H(19C)	2132	14808	3617	147

Table 5. Hydrogen coordinates (x 10^{4}) and isotropic displacement parameters (A² x 10^{3}) for **6**.

C(18)-O(1)-C(1)-C(2)	4.9(5)
C(18)-O(1)-C(1)-C(6)	-177.0(3)
O(1)-C(1)-C(2)-C(3)	178.7(3)
C(6)-C(1)-C(2)-C(3)	0.7(5)
C(1)-C(2)-C(3)-C(4)	0.2(5)
C(2)-C(3)-C(4)-C(5)	-0.4(5)
C(3)-C(4)-C(5)-C(6)	-0.4(5)
C(4)-C(5)-C(6)-C(1)	1.2(5)
C(4)-C(5)-C(6)-C(7)	-177.9(3)
O(1)-C(1)-C(6)-C(5)	-179.5(3)
C(2)-C(1)-C(6)-C(5)	-1.4(4)
O(1)-C(1)-C(6)-C(7)	-0.4(4)
C(2)-C(1)-C(6)-C(7)	177.8(3)
C(5)-C(6)-C(7)-C(8)	0.9(4)
C(1)-C(6)-C(7)-C(8)	-178.2(3)
C(6)-C(7)-C(8)-C(9)	-178.6(3)
C(7)-C(8)-C(9)-O(2)	0.3(5)
C(7)-C(8)-C(9)-C(10)	-179.0(3)
O(2)-C(9)-C(10)-C(11)	2.1(5)
C(8)-C(9)-C(10)-C(11)	-178.6(3)
C(9)-C(10)-C(11)-C(12)	-178.5(3)
C(10)-C(11)-C(12)-C(13)	1.8(4)
C(10)-C(11)-C(12)-C(17)	-177.5(3)
C(17)-C(12)-C(13)-C(14)	0.9(5)
C(11)-C(12)-C(13)-C(14)	-178.5(3)
C(12)-C(13)-C(14)-C(15)	-0.7(5)
C(13)-C(14)-C(15)-C(16)	-0.2(5)
C(14)-C(15)-C(16)-C(17)	0.9(5)
C(19)-O(3)-C(17)-C(16)	4.2(5)
C(19)-O(3)-C(17)-C(12)	-175.8(3)
C(15)-C(16)-C(17)-O(3)	179.4(3)
C(15)-C(16)-C(17)-C(12)	-0.6(5)
C(13)-C(12)-C(17)-O(3)	179.8(3)
C(11)-C(12)-C(17)-O(3)	-0.8(4)
C(13)-C(12)-C(17)-C(16)	-0.2(5)
C(11)-C(12)-C(17)-C(16)	179.2(3)

Table 6.Torsion angles [deg] for 6l.

Symmetry transformations used to generate equivalent atoms:

Table 7. Hydrogen bonds for **61** [A and deg.].

 $D-H...A \quad d(D-H) \quad d(H...A) \quad d(D...A) \quad <\!\!(DHA)$

