Copper-Catalyzed Difluoromethylenation of C (sp²) -H Bonds of

Alkenes

Hui Xu^a, Dejing Wang^a, Yunrong Chen^a, Wen Wan^a, Hongmei Deng^b, Kesen Ma^c, Shaoxiong Wu^{d,*}, Jian Hao^{a*} and Haizhen Jiang^{a,e,*}

^a Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai, 200444, P. R. China.

E-mail: hzjiang@shu.edu.cn; jhao@shu.edu.cn

^b Laboratory for Microstructures, Shanghai University, Shanghai, 200444, P. R. China.

^c Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada.

^d Emory NMR Research Center, Emory University, 201 Dowman Drive, Atlanta, Georgia, 30322, United States.

^e Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, P. R. China.

Contents

	5
7.	Copies of ¹ H, ¹⁹ F and ¹³ C NMR spectra of product 3, 4 and
6.	New compounds characterization14-23
5.	¹ H NOESY experiments of 3j and 3t 13
4.	Preliminary mechanistic study7-12
3.	Monitored the <i>gem</i> -difluoromethylenation reaction by GC-MS 4-6
2.	Optimization of the reaction conditions
1.	General information

1. General information

¹H NMR and ¹³C NMR spectra were recorded on a Bruker AM400 and AM500 spectrometer. ¹⁹F NMR was recorded on a Bruker AM400 spectrometer (CFCl₃ as an external standard and low field is positive). Chemical shifts (δ) are reported in ppm, and coupling constants (J) are in Hertz (Hz). The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad. NMR yield was determined by ¹⁹F NMR using trifluorotoluene as an internal standard before working up the reaction. Infrared spectra (IR) were recorded on AVATAR 370 FT-IR spectrometer, absorbance frequencies are given at maximum of intensity in cm-1. Melting points were obtained on a X-4 digital melting point apparatus without correction. High-resolution mass spectra (HRMS) were measured with JEOL JMX-SX 102A spectrometer (FAB) and electrospray (ESI). Some associative experiments were performed on a Varian Saturn 2200 GC-MS system.

Materials: All reagents were used as received from commercial sources.

2. Optimization of the reaction conditions

2.1 Optimization of reaction time

Table S1. Optimization of reaction time

		Cul(10%mol) 1,10-phen(20%mol)	
1a (1.0equiv.)	2a (2.0equiv.)	K₂CO₃(2.0equiv.) DMF,80℃ reaction time	3a
Entry	Reaction t	ime (h)	3a Yield (%) ^a
1	8		67
2	10		89
3	19 88		88
4	24		91

^a Determined by ¹⁹F NMR spectroscopy using PhCF₃ as an internal standard

Conclusion: From above, the yield of desired product obviously increased when the reaction time changed from 8 hours to 10 hours. However, the yield was almost constant when the time prolonged from 10 h, 19 h to 24 h. Therefore, the reaction time was selected 10 h.

2.2 Optimization of the substrate ratio

 Table S2. Optimization of the substrate ratio

		Cul(10%mol) 1,10-phen(20%mol)	$F_2 \xrightarrow{C} N$	
la	2a	K₂CO₃(2.0equiv.) DMF,80℃,10h		
Entry	2a (equiv.)	1a (equiv.)	3a Yield $(\%)^a$	
1	1.5	1.0	56	
2	2.0	1.0	67	
3	3.0	1.0	90	
4	5.0	1.0	87	

^a Determined by ¹⁹F NMR spectroscopy using PhCF₃ as an internal standard

Conclusion: From above, the yields of product **3a** have obvious change when the amount of the substrate **2a** increased from 2.0 to 3.0 equiv. Continue to increase the amount of substrate **2a** to 5.0 equiv, the yield was slightly lower. Therefore, the substrate ratio (2/1a) = 2:1 was selected in the optimized reaction condition.

2.3 Optimization of reaction temperature

Table S3. Optimization of reaction temperature

+	CF₂Br	Cul(10%mol) 1,10-phen(20%mol)	F ₂ O C
1a (1.0equiv.)	2 (2.0equiv.)	K ₂ CO ₃ (2.0equiv.) DMF, 10h temperature	3a
Entry	temper	rature (℃)	Yield (%) ^a
1		60	54
2		80	90
3		100	87
4		120	68

^a Determined by ¹⁹F NMR spectroscopy using PhCF₃ as an internal standard Conclusion: From above, the lower yield was observed when the reaction was carried at 120°C. Therefore, the 80°C was selected as the best reaction temperature.

2.4 Optimization of ratio between catalyst and ligand

Table S4. Optimization of ratio between catalyst and ligand

ĺ	× +	CE ₂ Br –	Cul 1,10-phen	$F_2 \xrightarrow{C} \xrightarrow{O} \xrightarrow{V}$
(1a	(1.0equiv.)	2a (2.0equiv.)	۲ – را K ₂ CO ₃ (2.0equiv.) DMF,80℃,10h	3a
	Entry	CuI (equiv)	1,10-phen (equiv)) Yield $(\%)^a$
	1	0.005	0.012	38
	2	0.01	0.02	88
	3	0.01	0.015	49
	4	0.01	0.01	42
_	5	0.01	0.03	90

^a Determined by ¹⁹F NMR spectroscopy using $PhCF_3$ as an internal standard Conclusion: From table S4, the combination of 0.01 equiv. CuI and 0.02 equiv. 1,10-phen was selected as the optimized reaction condition.

3. Monitored the gem-difluoromethylenation reaction by GC-MS

3.1 Exploring the reactions of 11 and 2a by GC-MS

Scheme S1. The results of the reaction of 11 and 2a by GC-MS

Conclusion: From scheme S1, the peak at 8.445 min is attributed to the main product **31**, and the peak at 9.095 min is that of **41**.

3.2 Exploring the reaction of 1q and 2a by GC-MS

Scheme S2. The results of the reaction of 1q and 2a by GC-MS

Conclusion: The desired product 3q, the peak at 9.340 min, was obtained in 35% isolated yield. The product 5q (GC-MS at 9.165 min) was formed through the active radical abstracting H. The product 4q, detected by ¹⁹F NMR and GC-MS (8.185 min), was a *gem*-difluoromethylenation/cyclizaion cascade product.

3.3 Exploring the reaction of 2a and 1k by GC-MS

Scheme S3. The results of the reaction of 2 and 1k by GC-MS

Conclusion: The alkane **5k** (GC-MS 7.600 min) arisen from radical abstracting hydrogen atom. The formation of **5k** was deduced that this reaction was to undergo a free radical process. The product **3k'** was isolated and detected by ¹⁹F NMR and GC-MS (7.775 min).

4. Preliminary mechanistic study

4.1 The effect of TEMPO on the standard reaction

Table S5. The effect of TEMPO on the standard reaction

+	CF₂Br	Cul(10%mol) 1,10-phen(20%mol)	F_2		
1a (1.0equiv.)	2 (2.0equiv.)	K ₂ CO ₃ (2.0equiv.), DMF,80℃,10h, TEMPO	3a		
Entry	TE	MPO (equiv)	Yield (%) ^a		
1			94		
2		1.0	51		
-					

^a Determined by ¹⁹F NMR spectroscopy using PhCF₃ as an internal standard

Conclusion: The yield of the desired product 3a was decreased from 94% to 51% when 1 equivalent TEMPO was added in the standard reaction system. Additionally, when 2 equivalents TEMPO was added, 3a was hardly observed. The results implied that the reaction could involve in a radical process.

4.2 The results of standard reaction by GC-MS

Scheme S4. The results of standard reaction by GC-MS

Conclusion: The product **3a''** was obtained in 8% isolated yields which was formed through the radical $ArCF_2$ · adding to **3a**. Evidences of the formation of **3a** and **3a''** further confirmed that the difluoromethylenation of alkenes was *via* intermediate difluoromethylene radical.

4.3 The results of the reaction of 1a, 2a and alkyne 6 by GC-MS

The mixture sample was prepared through the reaction of **6**, **1a**, and **2a** under the standard conditions, then tested by the Instrument model Agilent 7890A-5975C. Gradient temperature was 190-280°C (increasing speed: 3° C/min), and the volume injected was 1µL. The results see Scheme S5.

12	28.239	3124 3158	3164	BV	3829143	253307010	36.77%	14.526%
13	28.448	3164 3184	3225	VB	5323266	380967097	55.31%	21.847%
14	29.839	3344 3355	3379	VV 2	308099	14281667	2.07%	0.819%
15	30.382	3404 3422	3451	BB	658582	33541657	4.87%	1.924%

Scheme S5. The results of the reaction of 1a, 2a and alkyne 6 by GC-MS

Conclusion: Besides the products **3a** and **3a''**, the product **4**, which formed by capturing radical A, was also isolated. The formation of those products further supported the speculated mechanism. The formation of hydroxyl adducts **7** and **8** (GC-MS 27.757 min and 28.236min) could be further inferred that the carbocation was involved in this reaction. The product **9** observed through GC-MS monitoring of the reaction mixture after 8 hours was homo-coupled product of radical **1B**

5. ¹H NOESY experiments of 3j and 3t

Scheme S6¹H, ¹H NOESY spectrum of **3**j

From the NOESY spectrum, the α -H ($\delta_{6.50}$) coupled with γ -H (an aromatic H), while the β -H ($\delta_{5.26}$) (displaying a single peak) had no couple with α -H. These results deduced that the geometric configuration for the double bonds of **3j** is indicated as *Z*.

Scheme S7¹H, ¹H NOESY spectrum of **3t**

The NOESY spectrum showed that the α -H ($\delta_{7.37}$, td) had no couple with β -H ($\delta_{2.39}$, s). Therefore, the geometric configuration for the double bonds of **3t** is indicated as *E*.

6. New compounds characterization

A 25 mL round-bottom flask was charged with CuI (10 mol %), 1,10-phen (20 mol %), K₂CO₃ (2.0 equiv). **2** (0.6 mmol, 2.0 equiv), **1** (0.3 mmol) and DMF (2.5 mL) under air. The reaction mixture was stirred at 80 °C (oil bath) for 10 h. Then the reaction mixture was cooled to room temperature. The crude product was purified with silica gel chromatography (petroleum ether/ethyl acetate = 20/1) to give product **3**.

(E)-2-(1,1-difluoro-3-phenylallyl)benzo[d]oxazole (3a)

Light yellow solid, 86%, mp: 52-54°C; ¹H NMR (500 MHz, CDCl₃) δ 7.85 (d, J = 7.9 Hz, 1H), 7.61 (d, J = 8.0 Hz, 1H), 7.51-7.48 (m, 2H), 7.45 (td, J = 7.4, 1.5 Hz, 1H), 7.41 (td, J = 7.5, 1.3 Hz, 1H), 7.39-7.32 (m, 3H), 7.22 (dt, J = 16.2, 2.4 Hz, 1H), 6.67 (dt, J = 16.2, 11.0 Hz, 1H). ¹⁹F NMR (470 MHz, CDCl₃) δ -94.63 (dd, J = 11.0, 2.4 Hz). ¹³C NMR (125 MHz, CDCl₃) δ 158.0 (t, ² $J_{C-F} = 36.0$ Hz), 150.7, 140.1, 136.8 (t, ³ $J_{C-F} = 9.0$ Hz), 134.1, 129.7, 128.9, 127.6, 126.9, 125.4, 121.3, 119.5 (t, ² $J_{C-F} = 25.1$ Hz), 113.5 (t, ¹ $J_{C-F} = 239.7$ Hz), 111.4. IR: 3060, 1652, 1610, 1443, 1193, 1054, 977, 749cm⁻¹. HRMS (ESI) calcd. for C₁₆H₁₂F₂NO [M+H]⁺ 272.0887, found: 272.0890.

2,2'-(2-benzylidene-1,1,3,3-tetrafluoropropane-1,3-diyl)bis(benzo[d]oxazole) (3a'')

Colorless solid, 8%, mp: 109-110°C; ¹H NMR (500 MHz, CDCl₃) δ 7.94 (s, 1H), 7.87 (d, J = 7.9 Hz, 1H), 7.67 (d, J = 8.1 Hz, 2H), 7.54-7.44 (m, 3H), 7.43-7.38 (m, 1H), 7.38-7.30 (m, 3H), 7.21-7.08 (m, 3H). ¹⁹F NMR (470 MHz, CDCl₃) δ -88.26 (t, J = 7.4 Hz), -93.56 (t, J = 7.4 Hz). ¹³C NMR (125 MHz, CDCl₃) δ 157.5 (t, ² $J_{C-F} = 35.2$ Hz), 156.5 (t, ² $J_{C-F} = 33.5$ Hz), 150.7, 150.3, 143.6-142.6 (m), 140.2, 139.8, 131.9, 129.2, 128.7, 127.9, 126.9, 126.9, 125.3, 125.2, 121.5, 121.3, 112.8 (t, ¹ $J_{C-F} = 246.8$ Hz), 112.6(t, ¹ $J_{C-F} = 246.8$ Hz)111.5, 111.2. IR: 3024, 1651, 1449, 1184, 1082, 752 cm⁻¹. HRMS (ESI) calcd. for C₂₄H₁₅F₄N₂O₂ [M+H]⁺ 438.0991, found: 438.0989.

2-(benzo[d]oxazol-2-yldifluoromethyl)-5-methyl-3-phenyl-1H-inden-1-one (4)

Yellow solid, 16%, mp: 164-166°C; ¹H NMR (500 MHz, CDCl₃) δ 7.79 (d, J = 7.8 Hz, 1H), 7.56 (d, J = 8.0 Hz, 1H), 7.52 (d, J = 7.1 Hz, 2H), 7.44 (m, 6H), 7.19 (d, J = 7.3 Hz, 1H), 6.90 (s, 1H), 2.36 (s, 3H).¹⁹F NMR (470 MHz, CDCl₃) δ -91.51 (s).¹³C NMR (125 MHz, CDCl₃) δ 191.9 (t, ³ $J_{C-F} = 2.4$ Hz), 162.9 (t, ³ $J_{C-F} = 3.9$ Hz), 157.4 (t, ² $J_{C-F} = 34.3$ Hz), 150.6, 145.1, 144.3, 140.1, 130.9, 130.8, 129.9, 128.3, 127.9, 126.7, 125.8, 125.2, 124.9 (t, ² $J_{C-F} = 24.2$ Hz), 124.6, 123.6, 121.5, 121.3, 112.4 (t, ¹ $J_{C-F} = 241.6$ Hz), 111.4, 22.0. IR: 3037, 2926, 1711, 1606, 1514, 1194, 1034, 743 cm⁻¹. HRMS (ESI) calcd. for C₂₄H₁₆F₂NO₂ [M+H]⁺ 388.1149, found: 388.1153.

(E)-2-(1,1-difluoro-3-(p-tolyl)allyl)benzo[d]oxazole (3b)

Light yellow solid, 61%, mp: 38-40°C; ¹H NMR (500 MHz, CDCl₃) δ 7.88-7.85 (m, 1H), 7.67-7.64 (m, 1H), 7.51-7.41 (m, 4H), 7.23-7.17 (m, 3H), 6.62 (dt, *J* = 16.1, 11.0 Hz, 1H), 2.39 (s, 3H). ¹⁹F NMR (470 MHz, CDCl₃) δ -94.24 (d, *J* = 11.0 Hz). ¹³C NMR (125 MHz, CDCl₃) δ 158.2 (t, ²*J*_{C-F} = 36.1 Hz), 150.7, 140.1, 139.9, 136.7 (t, ³*J*_{C-F} = 9.1 Hz), 131.3, 129.6, 127.6, 126.8, 125.3, 121.3, 118.3 (t, ²*J*_{C-F} = 24.8 Hz), 113.6 (t, ¹*J*_{C-F} = 239.5 Hz), 111.4, 21.4. IR: 3013, 2916, 1609, 1448, 1190, 1043, 980, 748 cm⁻¹. HRMS (ESI) calcd. for C₁₇H₁₄F₂NO [M+H]⁺ 286.1043, found: 286.1041.

(E)-2-(1,1-difluoro-3-(4-methoxyphenyl)allyl)benzo[d]oxazole (3c)

Yellow solid, 74%; mp: 81-82°C; ¹H NMR (500 MHz, CDCl₃) δ 7.86 (dd, J = 7.7, 1.5 Hz, 1H), 7.65 (dd, J = 7.7, 1.1 Hz, 1H), 7.52-7.41 (m, 4H), 7.16 (dt, J = 16.1, 2.4 Hz, 1H), 6.96-6.89 (m, 2H), 6.52 (dt, J = 16.1, 11.0 Hz, 1H), 3.85 (s, 3H). ¹⁹F NMR (470 MHz, CDCl₃) δ -93.88 (dd, J = 11.0, 2.4 Hz). ¹³C NMR (125 MHz, CDCl₃) δ 160.8, 158.3 (t, ² $J_{C-F} = 36.4$ Hz), 150.7, 140.1, 136.2 (t, ³ $J_{C-F} = 9.1$ Hz), 129.1, 126.8, 125.3, 121.3, 117.0 (t, ² $J_{C-F} = 25.1$ Hz), 114.2, 113.7 (t, ¹ $J_{C-F} = 239.5$ Hz), 111.4, 55.4. IR: 3029, 2964, 1605, 1511, 1216, 1037, 969, 756 cm⁻¹. HRMS (ESI) calcd. for C₁₇H₁₄F₂NO₂ [M+H]⁺ 302.0993, found: 302.0995.

(E)-2-(3-(4-chlorophenyl)-1,1-difluoroallyl)benzo[d]oxazole (3d)

Light yellow solid, 89%, mp: 89-91°C; ¹H NMR (500 MHz, CDCl₃) δ 7.86 (d, J = 8.1 Hz, 1H), 7.66 (d, J = 8.1 Hz, 1H), 7.54-7.41 (m, 4H), 7.37 (m, 2H), 7.18 (dt, J = 16.1, 2.2 Hz, 1H), 6.65 (dt, J = 16.1, 10.9 Hz, 1H). ¹⁹F NMR (470 MHz, CDCl₃) δ -94.66 (d, J = 10.9 Hz). ¹³C NMR (125 MHz, CDCl₃) δ 157.8 (t, ² $J_{C-F} = 35.8$ Hz), 150.7, 140.0, 135.6, 135.4 (t, ³ $J_{C-F} = 9.1$ Hz), 132.6, 129.1, 128.8, 127.0, 125.4, 121.3, 120.0 (t, ² $J_{C-F} = 25.3$ Hz), 113.3 (t, ¹ $J_{C-F} = 240.1$ Hz), 110.4. IR: 3035, 1658, 1489, 1189, 1077, 1044, 970, 811, 745cm⁻¹. HRMS (ESI) calcd. for C₁₆H₁₁ClF₂NO [M+H]⁺ 306.0497, found: 306.0495.

(E)-2-(1,1-difluoro-3-(4-fluorophenyl)allyl)benzo[d]oxazole (3e)

Light yellow solid, 83%, mp: 67-68°C; ¹H NMR (500 MHz, CDCl₃) δ 7.86 (dd, J = 8.0, 1.2 Hz, 1H), 7.64 (dd, J = 8.1, 1.2 Hz, 1H), 7.59-7.34 (m, 4H), 7.19 (dt, J = 16.2, 2.3 Hz, 1H), 7.11-7.06 (m, 2H), 6.60 (dt, J = 16.2, 11.0 Hz, 1H). ¹⁹F NMR (470 MHz,CDCl₃) δ -94.41 (dd, J = 11.0, 2.3 Hz), -110.72 (ddd, J = 13.6, 8.5, 5.0 Hz). ¹³C NMR (125 MHz,CDCl₃) δ 163.5 (d, ¹ $J_{C-F} = 250.1$ Hz), 157.9 (t, ² $J_{C-F} = 35.9$ Hz), 150.7, 140.0, 135.5 (t, ³ $J_{C-F} = 9.1$ Hz), 130.3, 129.4 (d, ³ $J_{C-F} = 8.4$ Hz), 126.9, 125.4, 121.3, 119.2 (t, ² $J_{C-F} = 25.0$ Hz), 115.9 (d, ² $J_{C-F} = 21.9$ Hz), 112.4 (t, ¹ $J_{C-F} = 239.9$ Hz), 111.4. IR: 3040, 1605, 1059, 1223, 1161, 1044, 970, 746 cm⁻¹. HRMS (ESI) calcd. for C₁₆H₁₁F₃NO [M+H]⁺ 290.0793, found: 290.0798.

(E)-2-(1,1-difluoro-3-(4-nitrophenyl)allyl)benzo[d]oxazole (3f)

Light yellow solid, 49%, mp: 151-152°C; ¹H NMR (500 MHz, CDCl₃) δ 8.26 (d, J = 8.7 Hz, 2H), 7.85 (d, J = 7.9 Hz, 1H), 7.67 (m, 3H), 7.56-7.39 (m, 2H), 7.31 (dt, J = 16.1, 2.3 Hz,1H), 6.84 (dt, J = 16.1, 10.7 Hz, 1H). ¹⁹F NMR (470 MHz, CDCl₃) δ -95.37 (dd, J = 10.7, 2.3 Hz). ¹³C NMR (125 MHz, CDCl₃) δ 157.3 (t, ² J_{C-F} = 35.2 Hz), 150.7, 148.3, 140.2, 139.9, 134.4 (t, ³ J_{C-F} = 9.0 Hz), 128.3, 127.2, 125.5, 124.1, 123.8 (t, ² J_{C-F} = 25.1 Hz), 121.4, 112.8 (t, ¹ J_{C-F} = 240.4 Hz), 111.5. IR: 3024, 1602, 1518, 1343, 1192, 1061, 974, 747cm⁻¹. HRMS (ESI) calcd. for C₁₆H₁₁F₂N₂O₃ [M+H]⁺ 317.0738, found: 317.0741.

(E)-2-(3-(2-bromophenyl)-1,1-difluoroallyl)benzo[d]oxazole (3g)

Light yellow solid, 67%, mp: 68-69°C; ¹H NMR (500 MHz, CDCl₃) δ 7.85 (dd, J = 7.5, 1.0 Hz, 1H),

7.67 - 7.61 (m, 3H), 7.59 (dd, J = 8.0, 1.0 Hz, 1H), 7.47 (td, J = 7.5, 1.2 Hz, 1H), 7.43 (td, J = 7.6, 1.1 Hz, 1H), 7.32 (td, J = 7.2, 0.5 Hz, 1H), 7.20 (td, J = 7.9, 1.5 Hz, 1H), 6.65 (dt, J = 16.0, 10.9 Hz, 1H). ¹⁹F NMR (470 MHz, CDCl₃) δ -94.82 (dd, J = 10.9, 2.5 Hz). ¹³C NMR (125 MHz, CDCl₃) δ 157.7 (t, ² $J_{C-F} = 35.6$ Hz), 150.7, 140.0, 135.5 (t, ³ $J_{C-F} = 9.2$ Hz), 134.1, 133.3, 130.8, 127.7, 127.7, 122.1 (t, ² $J_{C-F} = 24.9$ Hz), 121.3, 113.1 (t, ¹ $J_{C-F} = 240.5$ Hz), 111.4. IR: 3023, 1610, 1457, 1193, 1049, 960, 752, 658cm⁻¹. HRMS (ESI) calcd. for C₁₆H₁₁BrF₂NO [M+H]⁺ 349.9992, found: 349.9996.

(E)-2-(3-(3-bromophenyl)-1,1-difluoroallyl)benzo[d]oxazole (3h)

Yellow oil, 54%; ¹H NMR (500 MHz, CDCl₃) δ 7.85 (dd, J = 8.0, 1.0 Hz, 1H), 7.67–7.61 (m, 2H), 7.51–7.46 (m, 2H), 7.44 (dd, J = 7.8, 1.2 Hz, 1H), 7.41 (dd, J = 7.9, 1.1 Hz,1H), 7.25 (t, J = 7.9 Hz, 1H), 7.15 (dt, J = 16.1, 2.4 Hz, 1H), 6.68 (dt, J = 16.1, 10.8 Hz, 1H). ¹⁹F NMR (470 MHz, CDCl₃) δ -94.77 (dd, J = 10.8, 2.4 Hz). ¹³C NMR (125 MHz, CDCl₃) δ 157.7 (t, ² $J_{C-F} = 35.7$ Hz), 150.7, 140.0, 136.1, 135.2 (t, ³ $J_{C-F} = 9.0$ Hz), 132.6, 130.3, 127.0, 126.3 , 125.4, 123.0, 121.4, 121.0 (t, ² $J_{C-F} = 25.1$ Hz), 113.1 (t, ¹ $J_{C-F} = 240.21$ Hz),111.5. IR: 3023, 1659, 1565, 1195, 1038, 968, 747, 675 cm⁻¹. HRMS (ESI) calcd. for C₁₆H₁₁BrF₂NO [M+H]⁺ 349.9992, found: 349.9987.

(E)-2-(3-(4-bromophenyl)-1,1-difluoroallyl)benzo[d]oxazole (3i)

Yellow solid, 62%, mp: 111-112°C; ¹H NMR (500 MHz, CDCl₃) δ 7.86 (d, *J* = 8.0 Hz, 1H), 7.66 (d, *J* = 8.0 Hz, 1H), 7.57–7.52 (m, 2H), 7.50 (td, *J* = 7.6, 1.2 Hz, 1H), 7.45 (td, *J* = 7.6, 1.1 Hz, 1H), 7.39 (m, 2H), 7.17 (dt, *J* = 16.1, 2.4 Hz, 1H), 6.67 (dt, *J* = 16.1, 10.9 Hz, 1H).¹⁹F NMR (470 MHz, CDCl₃) δ -94.73 (dd, *J* = 10.9, 2.4 Hz).¹³C NMR (125 MHz, CDCl₃) δ 157.7 (t, ²*J*_{C-F} = 35.9 Hz), 150.7, 140.0, 135.5 (t, ³*J*_{C-F} = 9.0 Hz), 133.0, 132.1, 129.1, 127.0, 125.4, 123.9, 121.4, 120.2 (t, ²*J*_{C-F} = 25.2 Hz), 113.2 (t, ¹*J*_{C-F} = 239.7 Hz),111.5. IR: 3037, 1652, 1567, 1187, 1045, 969, 744, 562cm⁻¹. HRMS (ESI) calcd. for C₁₆H₁₁BrF₂NO [M+H]⁺ 349.9992, found: 349.9993.

(Z)-4-(benzo[d]oxazol-2-yl)-4,4-difluoro-2-phenylbut-2-en-1-yl acetate (3j)

Light yellow solid, 51%, mp: 127-129°C; ¹H NMR (500 MHz, CDCl₃) δ 7.86 (d, J = 8.2 Hz, 1H), 7.67 (d, J = 8.2 Hz, 1H), 7.51-7.46 (m, 3H), 7.47-7.39 (m, 4H), 6.50 (t, J = 13.7 Hz, 1H), 5.26 (s, 2H), 1.86 (s, 3H). ¹⁹F NMR (470 MHz, CDCl₃) δ -88.19 (d, J = 13.7 Hz). ¹³C NMR (125 MHz, CDCl₃) δ 170.4, 157.8 (t, ² $_{J_{C-F}} = 35.4$ Hz), 150.8, 146.4 (t, ³ $_{J_{C-F}} = 6.1$ Hz), 140.0, 138.0, 129.2, 128.6, 127.0, 126.9, 125.4, 123.0 (t, ² $_{J_{C-F}} = 26.9$ Hz), 121.4, 113.0 (t, ¹ $_{J_{C-F}} = 240.2$ Hz), 111.5, 60.8 (t, ⁴ $_{J_{C-F}} = 2.4$ Hz), 20.5. IR: 3012, 2925, 1743, 1646, 1514, 1231, 1034, 745, 696cm⁻¹. HRMS (ESI) calcd. for C₁₉H₁₆F₂NO [M+H]⁺ 344.1098, found: 344.1201.

(E)-2-(1,1-difluoro-4-phenylbut-2-en-1-yl)benzo[d]oxazole (3k)

Colorless oil, 40%; ¹H NMR (500 MHz, CDCl₃) δ 7.85 (d, J = 8.0 Hz, 1H), 7.64 (d, J = 7.9 Hz, 1H), 7.48 (td, J = 7.2, 1.2 Hz, 1H), 7.44 (td, J = 7.5, 1.1 Hz, 1H),7.40-7.32 (m, 2H), 7.30-7.27 (m, 1H), 7.26-7.21 (m, 2H), 6.58 (dtt, J = 15.7, 6.9, 2.4 Hz,1H), 6.08 (dtt, J = 15.7, 10.6, 1.5 Hz, 1H), 3.66-3.49 (m, 2H). ¹⁹F NMR (470 MHz, CDCl₃) δ -94.45 (dd, J = 10.6, 2.4 Hz). ¹³C NMR (125 MHz, CDCl₃) δ 158.1 (t, ² $J_{C-F} = 35.6$ Hz), 150.7, 140.0, 138.3 (t, ³ $J_{C-F} = 8.6$ Hz), 137.7, 128.8, 128.7, 126.8, 126.7, 125.3, 122.9 (t, ² $J_{C-F} = 25.3$ Hz), 121.3, 113.0 (t, ¹ $J_{C-F} = 239.2$ Hz), 111.4, 38.1. IR: 3030, 2910, 1610, 1491, 1210, 1041, 975, 750 cm⁻¹. HRMS (ESI) calcd. for C₁₇H₁₄F₂NO [M+H]⁺ 286.1043, found: 286.1041.

(E)-2-(1,1-difluoro-4-phenylbut-3-en-1-yl)benzo[d]oxazole (3k')

Light yellow oil, 15%; ¹H NMR (500 MHz, CDCl₃) δ 7.90 (d, *J* = 7.5 Hz, 1H), 7.64 (dd, *J* = 7.2, 1.2 Hz, 1H), 7.46 (m, 2H), 7.42 (d, *J* = 7.4 Hz, 2H), 7.35 (t, *J* = 7.5 Hz, 2H), 7.33 – 7.25 (m, 1H), 6.71 (d, *J* = 16.0 Hz, 1H), 6.35 (td, *J* = 15.9, 7.2 Hz, 1H), 3.47 (td, *J* = 16.0, 7.2 Hz, 2H). ¹⁹F NMR (470 MHz, CDCl₃) δ -97.22 (t, *J* = 16.0 Hz). ¹³C NMR (125 MHz, CDCl₃) δ 157.85 (t, ²*J*_{C-F} = 33.5 Hz), 150.67 , 140.05 , 136.76 , 136.53 , 128.61 , 127.97 , 126.90 , 126.50 , 125.33 , 121.33 , 118.19 (t, ³*J*_{C-F} = 4.8 Hz), 115.91 (t, ¹*J*_{C-F} = 242.2 Hz), 111.44 , 39.80 (t, ²*J*_{C-F} = 24.3 Hz). IR: 3008, 1606, 1485, 1206, 1030, 968,746 cm⁻¹. HRMS (ESI) calcd. for C₁₇H₁₄F₂NO [M+H]⁺ 286.1043, found: 286.1047. (*E*)-2-(1,1-difluoro-5-phenylpent-2-en-1-yl)benzo[*d*]oxazole (3I)

Light red oil, 58%; ¹H NMR (500 MHz, CDCl₃) δ 7.89 (dd, J = 7.4, 1.5 Hz,1H), 7.67-7.62 (dd, J = 7.8, 1.5 Hz, 1H), 7.52-7.43 (m, 2H), 7.35-7.30 (m, 2H), 7.28-7.21 (m, 3H), 6.51 (dtt, J = 15.8, 6.7, 2.3 Hz, 1H), 6.13 (dt, J = 15.8, 10.5 Hz, 1H), 2.89-2.81 (m, 2H), 2.64-2.52 (m, 2H).¹⁹F NMR (470 MHz, CDCl₃) δ -94.77 (dd, J = 10.9, 2.4 Hz).¹³C NMR (125 MHz, CDCl₃) δ 158.2 (t, ² $_{J_{C-F}}$ = 35.9 Hz), 150.7, 140.8, 140.1, 138.9 (t, ³ $_{J_{C-F}}$ = 8.6 Hz), 128.5, 126.8, 126.2, 125.3, 122.4 (t, ² $_{J_{C-F}}$ = 25.1 Hz), 121.3, 113.1 (t, ¹ $_{J_{C-F}}$ = 239.1 Hz), 111.4, 34.6, 33.7. IR: 3029, 2931, 1676, 1448, 1213, 1032, 969, 749 cm⁻¹. HRMS (ESI) calcd. for C₁₈H₁₆F₂NO [M+H]⁺ 300.1200, found: 300.1205.

2-(2-(2,3-dihydro-1H-inden-1-yl)-1,1-difluoroethyl)benzo[d]oxazole (41)

Light yellow oil, 7%; ¹H NMR (500 MHz, CDCl₃) δ 7.84 (d, J = 7.6 Hz, 1H), 7.65 (d, J = 7.8 Hz, 1H), 7.49 (dtd, J = 22.0, 7.8, 1.1 Hz, 2H), 7.32 – 7.26 (m, 1H), 7.22 (m, 3H), 4.32 (dtd, J = 9.9, 6.7, 4.0 Hz, 1H), 3.25 (qd, J = 15.9, 7.2 Hz, 1H), 3.17 – 3.04 (dtd, J = 17.8, 12.1, 6.0 Hz, 1H), 2.96 (ddd, J = 14.0, 9.1, 5.0 Hz, 1H), 2.82 (ddd, J = 16.0, 9.0, 2.0 Hz, 1H), 2.37 – 2.17 (m, 2H). ¹⁹F NMR (470 MHz, CDCl₃) δ -93.89 (ddd, J = 278.2, 17.3, 12.1 Hz), -99.19 (dt, J = 278.2, 16.5 Hz). ¹³C NMR (125 MHz, CDCl₃) δ 157.11 (t, ² J_{C-F} = 33.1 Hz), 150.58 , 140.21 , 139.90 , 128.53 , 128.49 , 127.02 , 126.25 , 125.41 , 121.36 , 115.51 (t, ¹ J_{C-F} = 243.1 Hz), 111.48 , 45.40 (t, ³ J_{C-F} = 3.8 Hz), 45.02 (t, ² J_{C-F} = 24.0 Hz), 40.60 , 33.32 . IR: 3022, 2927, 1688, 1469, 1223, 1068, 978, 747 cm⁻¹. HRMS (ESI) calcd. for C₁₈H₁₆F₂NO [M+H]⁺ 300.1200, found: 300.1204.

2-(1,1-difluoro-5-phenylpentyl)benzo[d]oxazole (5l)

Light yellow oil, 9%; ¹H NMR (500 MHz, CDCl₃) δ 7.85 (d, J = 7.9 Hz, 1H), 7.65 (d, J = 7.9 Hz, 1H), 7.52 – 7.43 (m, 2H), 7.31 – 7.27 (m, 2H), 7.20 (t, J = 7.8 Hz, 3H), 2.68 (t, J = 7.7 Hz, 2H), 2.58 – 2.44 (m, 2H), 1.77 (m, 2H), 1.69 (m, 2H). ¹⁹F NMR (470 MHz, CDCl₃) δ -98.20 (t, J = 16.7 Hz). ¹³C NMR (125 MHz, CDCl₃) δ 158.17 (t, ² J_{C-F} = 33.9 Hz), 150.57 , 141.87 , 139.98 , 128.35 , 126.77 , 125.85 , 125.26 , 121.24 , 116.88 (t, ¹ J_{C-F} = 241.2 Hz), 114.56 , 111.40 , 35.77 (t, ²J = 23.5 Hz), 35.55 , 30.91 , 21.37 (t, ³J = 3.9 Hz). IR: 3021, 2918, 1648, 1490, 1212, 1049, 972,750 cm⁻¹. HRMS (ESI) calcd. for C₁₈H₁₈F₂NO [M+H]⁺ 302.1356, found: 302.1360.

(E)-2-(1,1-difluoroundec-2-en-1-yl)benzo[d]oxazole (3m)

Yellow oil, 94%; ¹H NMR (500 MHz, CDCl₃) δ 7.83 (dd, J = 7.9, 1.3 Hz, 1H), 7.63-7.60 (m, 1H),

7.49-7.37 (m, 2H), 6.46-6.34 (m, 1H), 6.09-5.98 (m, 1H), 2.28-2.16 (m, 2H), 1.47 (p, J = 7.4 Hz, 2H), 1.39-1.19 (m, 10H), 0.89 (t, J = 7.0 Hz, 3H). ¹⁹F NMR (470 MHz, CDCl₃) δ -94.32 (dd, J = 10.6, 2.8 Hz). ¹³C NMR (125 MHz, CDCl₃) δ 158.2 (t, ² $J_{C-F} = 36.4$ Hz), 150.6, 140.06, 139.8 (t, ³ $J_{C-F} = 7.7$ Hz), 126.6, 125.1, 121.6 (t, ² $J_{C-F} = 25.0$ Hz), 121.2, 113.0 (t, ¹ $J_{C-F} = 238.9$ Hz), 111.2, 31.9, 31.8, 29.3, 29.2, 29.1, 28.1, 22.6, 14.0. IR: 3032, 2926, 1676, 1457, 1228, 1040, 972, 749 cm⁻¹. HRMS (ESI) calcd. for C₁₈H₂₄F₂NO [M+H]⁺ 308.1826, found: 308.1832.

2-(1,1-difluoro-2-(4-phenylcyclohexylidene)ethyl)benzo[d]oxazole (3n)

Light yellow solid, 95%, mp: 99-101°C; ¹H NMR (500 MHz, CDCl₃) δ 7.87 (dd, J = 7.9, 1.1 Hz, 1H), 7.67 (d, J = 7.9 Hz, 1H), 7.50 (td, J = 7.6, 1.3 Hz, 1H), 7.46 (td, J = 7.6, 1.3 Hz, 1H), 7.34–7.28 (m, 2H), 7.25–7.19 (m, 3H), 5.77 (s, 1H), 3.18 (t, J = 17.0 Hz, 2H), 2.84–2.69 (m, 1H), 2.39–2.26 (m, 2H), 2.25–2.10 (m, 2H), 2.00–1.93 (m, 1H), 1.87–1.73 (m, 1H). ¹⁹F NMR (470 MHz, CDCl₃) δ -96.75 (td, J= 17.0, 3.4 Hz). ¹³C NMR (125 MHz, CDCl₃) δ 158.3 (t, ² $J_{C-F} = 33.9$ Hz), 150.6, 146.6, 140.1, 128.4, 128.3 (t, ³ $J_{C-F} = 2.8$ Hz), 126.8, 126.7, 126.1, 125.3, 121.3, 116.4 (t, ¹ $J_{C-F} = 243.8$ Hz), 111.4, 44.0 (t, ² $J_{C-F} = 23.7$ Hz), 39.4, 33.6, 30.0, 29.9. IR: 3026, 2918, 1609, 1489, 1445, 1198, 1022, 754 cm⁻¹. HRMS (ESI) calcd. for C₂₁H₂₀F₂NO [M+H]⁺ 340.1513, found: 340.1515.

(E)-2-(1,1-difluoro-7-(naphthalen-2-yloxy)hept-2-en-1-yl)benzo[d]oxazole (30)

Light yellow solid, 52%, mp: 70-72°C; ¹H NMR (500 MHz, CDCl₃) δ 7.87 (d, J = 7.4 Hz, 1H), 7.83-7.73 (m, 3H), 7.65 (d, J = 7.7 Hz, 1H), 7.52-7.42 (m, 3H), 7.37 (t, J = 7.4 Hz, 1H), 7.22-7.12 (m, 2H), 6.48 (dt, J = 15.7, 6.8 Hz, 1H), 6.13 (dt, J = 15.7, 10.7 Hz, 1H), 4.12 (t, J = 6.4Hz, 2H), 2.39-2.33 (m, 2H), 1.93 (m, 2H), 1.75 (m, 2H).¹⁹F NMR (470 MHz, CDCl₃) δ -94.79 (dd, J = 10.8, 2.1 Hz).¹³C NMR (125 MHz, CDCl₃) δ 158.2 (t, ² $J_{C-F} = 36.0$ Hz), 157.0, 150.7, 140.1, 139.4 (t, ³ $J_{C-F} = 8.5$ Hz), 134.6, 129.4, 129.0, 127.7, 126.8, 126.4, 125.3, 123.6, 122.1 (t, ² $J_{C-F} = 25.0$ Hz), 121.3, 119.0, 113.1 (t, ¹ $J_{C-F} = 238.7$ Hz), 111.4, 106.6, 67.5, 31.7, 28.7, 24.9. IR: 3024, 2939, 1625, 1508, 1176, 1132, 1059,970, 750 cm⁻¹. HRMS (ESI) calcd. for C₂₄H₂₂F₂NO₂ [M+H]⁺ 394.1619, found: 394.1621. (*E*)-2-(1,1-difluoro-5-(*p*-tolyloxy)pent-2-en-1-yl)benzo[*d*]oxazole (3p)

Yellow oil, 44%; ¹H NMR (500 MHz, CDCl₃) δ 7.87 (d, J = 8.0 Hz, 1H), 7.65 (d, J = 7.9 Hz, 1H), 7.49 (td, J = 7.8, 1.4 Hz, 1H), 7.45 (td, J = 7.8, 1.4 Hz, 1H), 7.11 (d, J = 8.6 Hz, 2H), 6.84-6.82 (m, 2H), 6.54 (dtt, J = 15.8, 6.8, 2.3 Hz, 1H), 6.22 (dt, J = 15.8, 10.6 Hz,1H), 4.09 (t, J = 6.4 Hz, 2H), 2.87-2.61 (m, 2H), 2.32 (s, 3H).¹⁹F NMR (470 MHz, CDCl₃) δ -94.90 (d, J = 10.6 Hz). ¹³C NMR (125 MHz, CDCl₃) δ 158.0 (t, ² $J_{C-F} = 35.7$ Hz), 156.5, 150.7, 140.0, 135.7 (t, ³ $J_{C-F} = 8.8$ Hz), 130.2, 129.9, 126.9, 125.3, 123.8 (t, ² $J_{C-F} = 25.0$ Hz), 121.3, 114.5, 112.9 (t, ¹ $J_{C-F} = 239.3$ Hz), 111.4, 66.2, 31.9, 20.5. IR: 3024, 2924, 1681, 1513, 1237, 1039, 968, 745 cm⁻¹. HRMS (ESI) calcd. for C₁₉H₁₈F₂NO₂ [M+H]⁺ 330.1306, found: 330.1311.

2-[1,1-Difluoro-2-(6-methyl-chroman-4-yl)-ethyl]-benzooxazole (4p)

Yellow oil, 14%; ¹H NMR (500 MHz, CDCl₃) δ 7.87 (d, J = 8.0 Hz, 1H), 7.67 (d, J = 7.9 Hz, 1H), 7.51 (td, 1H), 7.47 (td, J = 7.4, 1.1 Hz, 1H), 7.01 (s, 1H), 6.93 (dd, J = 8.3, 1.5 Hz, 1H), 6.74 (d, J = 8.3 Hz, 1H), 4.26–4.15 (m, 2H), 3.42–3.30 (m, 1H), 3.01 (dtd, J = 22.3, 15.8, 2.9 Hz, 1H), 2.74 (m, 1H), 2.27 (s, 3H), 2.26–2.19 (m, 1H), 2.11–2.00 (m, 1H). ¹⁹F NMR (470 MHz, CDCl₃) δ -94.22 (ddd, J = 276.2, 22.4, 10.9 Hz), -98.61 (ddd, J = 276.1, 21.2, 16.4 Hz). ¹³C NMR (125 MHz, CDCl₃) δ 157.9 (t, ² $_{J_{C-F}} = 33.6$ Hz), 152.4, 150.6, 139.9, 129.7, 129.3, 128.7, 127.0, 125.4, 123.9, 121.3, 116.9, 116.8 (t, ¹ $_{J_{C-F}} = 242.9$ Hz), 111.4, 62.9, 42.6 (t, ² $_{J_{C-F}} = 22.3$ Hz), 28.2 (t, ³ $_{J_{C-F}} = 2.7$ Hz), 27.8, 20.6. IR: 3012, 2929, 1691, 1502, 1229, 1098, 1046, 745 cm⁻¹. HRMS (ESI) calcd. for C₁₉H₁₈F₂NO₂ [M+H]⁺ 330.1306, found: 330.1310.

(E)-2-(1,1-difluoro-4-(p-tolyloxy)but-2-en-1-yl)benzo[d]oxazole (3q)

Light yellow solid, 35%, mp: 76-78°C; ¹H NMR (500 MHz, CDCl₃) δ 7.86 (dd, J = 8.0, 1.1 Hz, 1H), 7.66 (d, J = 8.1 Hz, 1H), 7.50 (td, J = 7.5, 1.3 Hz, 1H), 7.45 (td, J = 7.7, 1.2 Hz, 1H), 7.15–7.10 (m, 2H), 6.90–6.83 (m, 2H), 6.68–6.60 (m, 1H), 6.49 (dtt, J = 15.8, 10.4, 1.5 Hz, 1H), 4.78–4.56 (m, 2H), 2.32 (s, 3H). ¹⁹F NMR (470 MHz, CDCl₃) δ -95.52 (dd, J = 10.4, 3.1 Hz). ¹³C NMR (125 MHz, CDCl₃) δ 157.6 (t, ² $_{J_{C-F}} = 35.4$ Hz), 156.0, 150.7, 140.0, 134.2 (t, ³ $_{J_{C-F}} = 8.5$ Hz), 130.7, 130.0, 126.9, 125.4, 122.7 (t, ² $_{J_{C-F}} = 25.5$ Hz), 121.3, 114.6, 112.9 (t, ¹ $_{J_{C-F}} = 239.7$ Hz), 111.4, 66.3, 20.5. IR: 3025, 2918, 1609, 1488, 1197, 1058, 1022, 936, 755 cm⁻¹. HRMS (ESI) calcd. for C₁₈H₁₆F₂NO₂ [M+H]⁺ 316.1149, found: 316.1152.

(E)-6-(benzo[d]oxazol-2-yl)-6,6-difluorohex-4-en-1-yl 4-iodobenzoate (3r)

Yellow oil, 96%; ¹H NMR (500 MHz, CDCl₃) δ 7.80 (d, J = 8.0 Hz,1H), 7.78–7.68 (m, 4H), 7.59 (d, J= 8.1 Hz, 1H), 7.43 (t, J = 7.3 Hz, 1H), 7.40 (t, J = 7.5 Hz, 1H), 6.45 (dtt, J = 15.8, 6.8, 2.4 Hz, 1H), 6.11 (dt, J = 15.8, 10.6 Hz, 1H), 4.35 (t, J = 6.3 Hz, 2H), 2.43 - 2.33 (m, 2H), 2.01 - 1.92 (m, 2H). ¹⁹F NMR (470 MHz, CDCl₃) δ -94.28 (dd, J = 10.6, 2.4 Hz). ¹³C NMR (125 MHz, CDCl₃) δ 166.0, 158.0 (t, ${}^{2}J_{C-F} = 35.7$ Hz), 150.6, 139.9, 138.3 (t, ${}^{3}J_{C-F} = 8.6$ Hz), 137.7, 131.7, 131.0, 129.6, 126.9, 125.3, 122.5 (t, ${}^{2}J_{C-F} = 24.9$ Hz), 121.3, 112.8 (t, ${}^{1}J_{C-F} = 238.8$ Hz), 111.4, 100.8, 64.4, 28.6, 27.3. IR: 3015, 2954, 1720, 1678, 1583, 1182, 1040, 972, 751 cm⁻¹. HRMS (ESI) calcd. for C₂₀H₁₇F₂INO₃ [M+H]⁺ 484.0221, found: 484.0225.

2-(benzo[d]oxazol-2-yldifluoromethyl)-3-methylbut-2-en-1-yl 4-bromobenzoate (3s)

Yellow oil, 46%; ¹H NMR (500 MHz, CDCl₃) δ 7.84 (s, 1H), 7.82 (s, 1H), 7.78 (d, J = 7.2 Hz, 1H), 7.53-7.47 (m, 3H), 7.46-7.36 (m, 2H), 5.18 (s, 2H), 2.08 (s, 3H), 1.94 (s, 3H).¹⁹F NMR (470 MHz, CDCl₃) δ -90.94 (s).¹³C NMR (125 MHz, CDCl₃) δ 165.6, 158.66 (t, ²J_{C-F} = 36.7 Hz), 150.6, 149.0 (t, ${}^{3}J_{C-F} = 4.9$ Hz), 140.0, 131.6, 131.2, 129.0, 128.0, 126.8, 125.3, 122.7 (t, ${}^{2}J_{C-F} = 24.0$ Hz), 121.3, 114.8 $(t, {}^{1}J_{C-F} = 244.6 \text{ Hz}), 111.3, 60.6 (t, {}^{3}J_{C-F} = 4.5 \text{ Hz}), 22.9, 22.4 (t, {}^{4}J_{C-F} = 2.7 \text{ Hz}).$ IR: 3027, 2924, 1723, 1659, 1514, 1271, 1182, 1097, 751, 697 cm⁻¹. HRMS (ESI) calcd. for C₂₀H₁₇BrF₂NO₃ [M+H]⁺ 436.0360, found: 436.0358.

(E)-p-tolyl -4-(benzo[d]oxazol-2-yl)-4,4-difluoro-2-methylbut-2-enoate (3t)

Yellow oil, 51%; ¹H NMR (500 MHz, CDCl₃) δ 7.89 (d, J = 8.0 Hz, 1H), 7.68 (d, J = 8.1 Hz, 1H), 7.53 8.3Hz, 2H), 7.10–7.04 (m, 2H), 2.39 (s, 3H), 2.25 (dd, J = 4.4, 2.9 Hz, 3H). ¹⁹F NMR (470 MHz, CDCl₃) δ -91.97 (d, J = 13.0 Hz). ¹³C NMR (125 MHz, CDCl₃) δ 165.2, 157.1 (t, ²J_{C-F} =33.9 Hz), 150.8, 148.4, 139.9, 138.4 (t, ${}^{3}J_{C-F} = 5.8$ Hz), 135.9, 131.0 (t, ${}^{2}J_{C-F} = 27.1$ Hz), 130.1, 127.2, 125.5, 121.5, 121.1, 113.0 (t, ¹*J*_{C-F} =241.2 Hz), 111.5, 20.9, 14.1. IR: 3019, 2927, 1741, 1659, 1510, 1192, 1038, 985, 745 cm⁻¹. HRMS (ESI) calcd. for $C_{19}H_{16}F_2NO_3 [M+H]^+$ 344.1098, found: 344.1101.

Light yellow solid, 96%, mp: 167-168°C; ¹H NMR (500 MHz, CDCl₃) δ 7.66 (d, J = 7.3 Hz, 1H), 7.47 (d, J = 7.7 Hz, 1H), 7.39 (dd, J = 7.4, 1.2 Hz, 1H), 7.35 (dd, J = 7.5, 1.1 Hz, 1H), 7.04 (td, J = 7.7, 1.1 Hz, 1H), 6.95 (d, J = 7.3 Hz, 1H), 6.77 (d, J = 7.8 Hz, 1H), 6.57 (td, J = 7.5, 0.8 Hz, 1H), 3.25 (td, J = 15.5, 11.5 Hz, 1H), 3.19 (s, 3H), 3.09 (dt, J = 20.9, 14.3 Hz, 1H), 1.42 (s, 3H). ¹⁹F NMR (470 MHz, CDCl₃) δ -90.46 (dt, J = 277.6, 12.4 Hz), -101.16 (ddd, J = 277.6, 20.9, 16.4 Hz). ¹³C NMR (125 MHz, CDCl₃) δ 178.7, 157.3 (t, ² $_{J_{C-F}} = 33.5$ Hz), 150.4, 142.9, 139.9, 130.6, 128.1, 126.6, 125.1, 123.2, 121.9, 121.0, 115.4 (t, ¹ $_{J_{C-F}} = 244.6$ Hz), 111.2, 108.3, 44.6, 43.1 (t, ² $_{J_{C-F}} = 24.1$ Hz), 26.4, 25.6. IR: 3021, 2928, 1708, 1610, 1483, 1190, 1047, 748 cm⁻¹. HRMS (ESI) calcd. for C₁₉H₁₇F₂N₂O₂ [M+H]⁺ 343.1258, found: 343.1261.

2-(benzofuran-3-yldifluoromethyl)benzo[d]oxazole (3v)

Light yellow solid, 48%, mp: 97-99°C; ¹H NMR (500 MHz, CDCl₃) δ 7.89 (dd, J = 7.4, 0.9 Hz,1H), 7.70 (d, J = 7.8 Hz, 1H), 7.67 (d, J = 8.0 Hz, 1H), 7.58 (dd, J = 8.3, 0.8 Hz,1H), 7.51 (m, 1H), 7.46 (m, 1H), 7.44–7.40 (m, 1H), 7.36–7.31 (m, 2H). ¹⁹F NMR (470 MHz, CDCl₃) δ -96.10 (d, J = 4.6 Hz). ¹³C NMR (125 MHz, CDCl₃) δ 156.4 (t, ² $J_{C-F} = 34.8$ Hz), 155.6, 150.8, 146.7 (t, ² $J_{C-F} = 33.8$ Hz), 140.1, 127.2, 126.6, 126.51 , 125.5, 123.8, 122.4, 121.6, 112.1, 111.5, 109.9 (t, ¹ $J_{C-F} = 240.8$ Hz), 108.6 (t, ³ $J_{C-F} = 3.7$ Hz). IR: 3015, 1609, 1447, 1158, 1004, 750 cm⁻¹. HRMS (ESI) calcd. for C₁₆H₁₀F₂NO₂ [M+H]⁺ 286.0680, found: 286.0677.

(E)-2-(1,1-difluoro-3-phenylallyl)-5-methylbenzo[d]oxazole (3w)

Light yellow solid, 85%, mp: 71-73 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.64 (s, 1H), 7.55-7.49 (m, 3H), 7.44-7.34 (m, 3H), 7.29 (d, J = 8.1 Hz, 1H), 7.22 (d, J = 16.1 Hz, 1H), 6.67 (dt, J = 16.1, 10.8 Hz, 1H), 2.52 (s, 3H). ¹⁹F NMR (470 MHz, CDCl₃) δ -94.44 (d, J = 10.7 Hz). ¹³C NMR (125 MHz, CDCl₃) δ 158.1 (t, ² $J_{C-F} = 35.7$ Hz), 149.0, 140.3, 136.7 (t, ³ $J_{C-F} = 8.9$ Hz), 135.3, 134.1, 129.7, 128.8, 128.1, 127.6, 121.0, 119.6 (t, ² $J_{C-F} = 25.3$ Hz), 113.5 (t, ¹ $J_{C-F} = 239.4$ Hz), 110.8, 21.5. IR: 3010, 1661, 1612, 1453, 1214, 1067, 979 cm⁻¹. HRMS (ESI) calcd. for C₁₇H₁₄F₂NO [M+H]⁺ 286.1043, found: 286.1047.

(*E*)-2-(1,1-difluoro-3-phenylallyl)benzo[d]thiazole (3x)

Yellow oil, 49%; ¹H NMR (500 MHz, CDCl₃) δ 8.18 (d, J = 8.3 Hz, 1H), 7.99 (d, J = 8.0 Hz, 1H), 7.59 (m, 1H), 7.55-7.49 (m, 3H), 7.43-7.36 (m, 3H), 7.21 (dt, J = 16.1, 2.5 Hz, 1H), 6.75 (dt, J = 16.1, 11.0 Hz, 1H). ¹⁹F NMR (470 MHz, CDCl₃) δ -86.68 (dd, J = 11.0, 2.5 Hz). ¹³C NMR (125 MHz, CDCl₃) δ 164.6 (t, ² J_{C-F} = 36.4 Hz), 152.8, 135.9 (t, ³ J_{C-F} = 9.3 Hz), 135.0, 134.4, 129.5, 128.8, 127.6, 126.8, 126.6, 124.4, 122.0, 120.9 (t, ² J_{C-F} = 26.2 Hz), 116.6 (t, ¹ J_{C-F} = 239.9 Hz). IR: 3011, 1647, 1598, 1436, 1186, 1029, 974, 741cm⁻¹. HRMS (ESI) calcd. for C₁₆H₁₂F₂NS [M+H]⁺ 288.0659, found: 288.0663.

(*E*)-2-(1,1-difluoroundec-2-en-1-yl)-5-methylbenzo[*d*]oxazole (3y)

Yellow oil, 90%; ¹H NMR (500 MHz, CDCl₃) δ 7.61 (s, 1H), 7.48 (d, *J* = 8.5 Hz, 1H), 7.26 (dd, *J* = 8.5, 1.2 Hz,1H), 6.39 (dtt, *J* = 15.7, 6.9, 2.5 Hz, 1H), 6.02 (dtt, *J* = 15.7, 10.6, 1.5 Hz,1H), 2.50 (s, 3H), 2.27-2.18 (m, 2H), 1.52-1.43 (m, 2H), 1.37-1.23 (m, 10H), 0.90 (t, *J* = 7.0 Hz, 3H). ¹⁹F NMR (470 MHz, CDCl₃) δ -94.23 (dd, *J* = 10.6, 2.9 Hz). ¹³C NMR (125 MHz, CDCl₃) δ 158.3 (t, ²*J*_{C-F} = 35.7 Hz), 148.93, 140.3, 139.9 (t, ³*J*_{C-F} = 8.6 Hz), 135.2 , 127.9, 121.7 (t, ²*J*_{C-F} = 25.1 Hz), 121.0 , 113.1 (t, ¹*J*_{C-F} = 238.8 Hz), 110.7, 31.9, 31.8, 29.3, 29.2, 29.1, 28.1, 22.7, 21.43 , 14.1. IR: 3018, 2930, 1679, 1461, 1232, 1044, 975, 953 cm⁻¹ HRMS (ESI) calcd. for C₁₉H₂₆F₂NO [M+H]⁺ 322.1982, found: 322.1986.

7. Copies of ¹H NMR, ¹⁹F NMR, ¹³C NMR spectra of product 3, 4

2,2'-(2-benzylidene-1,1,3,3-tetrafluoropropane-1,3-diyl)bis(benzo[d]oxazole) (3a'')

2-(benzo[d]oxazol-2-yldifluoromethyl)-5-methyl-3-phenyl-1H-inden-1-one (4)

(E)-2-(1,1-difluoro-3-(p-tolyl)allyl)benzo[d]oxazole (3b)

(E)-2-(1,1-difluoro-3-(4-methoxyphenyl)allyl)benzo[d]oxazole (3c)

(*E*)-2-(3-(4-chlorophenyl)-1,1-difluoroallyl)benzo[*d*]oxazole (3d)

(E)-2-(1,1-difluoro-3-(4-fluorophenyl)allyl)benzo[d]oxazole (3e)

(E)-2-(1,1-difluoro-3-(4-nitrophenyl)allyl)benzo[d]oxazole (3f)

(E)-2-(3-(2-bromophenyl)-1,1-difluoroallyl)benzo[d]oxazole (3g)

(E)-2-(3-(3-bromophenyl)-1,1-difluoroallyl)benzo[d]oxazole (3h)

(E)-2-(3-(4-bromophenyl)-1,1-difluoroallyl)benzo[d]oxazole (3i)

(Z)-4-(benzo[d]oxazol-2-yl)-4,4-difluoro-2-phenylbut-2-en-1-yl acetate (3j)

(E)-2-(1,1-difluoro-4-phenylbut-2-en-1-yl)benzo[d]oxazole (3k)

(E)-2-(1,1-difluoro-4-phenylbut-3-en-1-yl)benzo[d]oxazole (3k')

(E)-2-(1,1-difluoro-5-phenylpent-2-en-1-yl)benzo[d]oxazole (3l)

2-(2-(2,3-dihydro-1H-inden-1-yl)-1,1-difluoroethyl)benzo[d]oxazole (4l)

(E)-2-(1,1-difluoroundec-2-en-1-yl)benzo[d]oxazole (3m)

2-(1,1-difluoro-2-(4-phenylcyclohexylidene)ethyl)benzo[d]oxazole (3n)

(E)-2-(1,1-difluoro-7-(naphthalen-2-yloxy)hept-2-en-1-yl)benzo[d]oxazole (30)

(E)-2-(1,1-difluoro-5-(p-tolyloxy)pent-2-en-1-yl)benzo[d]oxazole (3p)

2-(2-(chroman-4-yl)-1,1-difluoroethyl)benzo[d]oxazole (4p)

(E)-2-(1,1-difluoro-4-(p-tolyloxy)but-2-en-1-yl)benzo[d]oxazole (3q)

(E)-6-(benzo[d]oxazol-2-yl)-6,6-difluorohex-4-en-1-yl 4-iodobenzoate (3r)

2-(benzo[d]oxazol-2-yldifluoromethyl)-3-methylbut-2-en-1-yl 4-bromobenzoate (3s)

p-tolyl (E)-4-(benzo[d]oxazol-2-yl)-4,4-difluoro-2-methylbut-2-enoate (3t)

3-(2-(benzo[d]oxazol-2-yl)-2,2-difluoroethyl)-1,3-dimethylindolin-2-one (4u)

2-(benzofuran-3-yldifluoromethyl)benzo[d]oxazole (3v)

(E)-2-(1,1-difluoro-3-phenylallyl)-5-methylbenzo[d]oxazole (3w)

(E)-2-(1,1-difluoro-3-phenylallyl)benzo[d]thiazole (3x)

(E)-2-(1,1-difluoroundec-2-en-1-yl)-5-methylbenzo[d]oxazole (3y)

