Supplementary information

The effect of a highly twisted C=C double bond on the electronic structures of 9,9'-bifluorenylidene derivatives in the ground and excited states

Atsuro Takai,*^a Dylan J. Freas,^a Toshikane Suzuki,^{a,b} Manabu Sugimoto,^c Jan Labuta,^d

Rie Haruki,^e Reiji Kumai,^e Shin-ichi Adachi,^e Hayato Sakai,^f Taku Hasobe,^f Yoshitaka Matsushita^a and Masayuki Takeuchi*^{ab}

^a Molecular Design and Function Group, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan.

^b Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan

^c Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan

^d International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0047, Japan

^e Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801, Japan

^f Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Yokohama, Kanagawa 223-8522, Japan

Table of contents	
1. Experimental section	Page S2
2. Supporting data (Fig. S1–S9, Table S1–S7)	Page S10
3. References	Page S25

1. Experimental section

General procedure. Target compounds were purified by a recycling preparative HPLC (LC-9201, Japan Analytical Industry) equipped with gel permeation chromatography columns (JAIGEL-1H + 2H). NMR spectra were recorded on a JEOL ECS-400 spectrometer. Chemical shifts are expressed in ppm relative to CHCl₃ (7.26 ppm) and tetramethylsilane (0 ppm) for ¹H NMR and CDCl₃ (77.16 ppm) for ¹³C NMR.¹ ESR spectra were measured on a JEOL X-band spectrometer (JES-FA100) in 1,2-dichlorobenzene using ESR tubes ($\phi = 2$ mm). The sample solutions for both variable-temperature NMR and ESR measurements (25-150 °C) were deaerated by three consecutive freeze-pump-thaw cycles prior to the measurements. MALDI/TOF-MS measurements were performed on a Shimadzu AXIMA-CFR Plus. Absorption and photoluminescence spectra were recorded on a JASCO V-670 spectrophotometer and a PerkinElmer LS-55 spectrofluorophotometer, respectively. Nanosecond laser flash photolysis was carried out with an Unisoku TSP-2000 flash spectrometer. A Surelite-I Nd-YAG (Continuum, 4-6 ns FWHM) laser with the third harmonic at 355 nm was employed for the flash photoirradiation exposure with a xenon lamp (150 W) as probe light and a photomultiplier tube (Hamamatsu R-2949) as detector. Each sample in toluene was purged with Ar prior to the measurement at 25 °C.

Electronic-structure calculation. Computational analysis and graphical representation were carried out with Gaussian 09, revision D.01 and Gauss View software program (version 5), respectively.² Molecular orbitals of the single crystal Optimized structures were obtained by M06-2X functional with the 6-31G(d,p) basis set. We also applied the B3LYP and ω B97XD functionals to see the functional dependence of the numerical results, and confirmed that the results are essentially similar. The lower 10 excited states of the compound were studied using time-dependent DFT (TDDFT) method with the same DFT functional and the basis set.

Single crystal X-ray diffraction analysis. A single crystal of 1 was attained by recrystallization from CHCl₃ with vapor diffusion of MeOH. All measurements were carried out using a Rigaku AFC11 Saturn724+ diffractometer under 1 atm at 213 K with Mo K₄ radiation ($\lambda = 0.71073$ Å). Cell refinement and data reduction were carried out by using the program d*trek package in CrystalClear software suite.³ Preliminary structures were solved using SHELXT⁴ and refined by full-matrix least squares on F^2 using the SHELXL-2016⁵ in WinGX program package.⁶ All non-hydrogen atoms were refined anisotropically. An alert (level B) of low bond precision on C–C bonds is found in checkCIF report

(http://checkcif.iucr.org/), which results from the low crystallinity of **1** probably because of the *cis–trans* equilibrium and severely shadowed diffraction points of **1** by the beam stopper.

Pressure dependent single crystal X-ray diffraction analysis. High pressure was generated using a diamond anvil cell (DAC) with a stainless steel gasket and 0.8 mm culet diamond anvils. The thickness of the gasket was 0.4 mm and the aperture was 90°. Pressure was determined by a conventional ruby-fluorescence method. The DAC was pressurized using a MeOH–EtOH (4:1) mixture saturated with compound 1 as a pressure transmitting medium, because 1 dissolves in the medium at high pressure. Synchrotron X-ray diffraction was performed at room temperature under high pressure up to 4.5 GPa at NE1A of Photon Factory Advanced Ring, KEK. The measured wavelength was $\lambda = 0.4160$ Å.

Electrochemical measurement. Cyclic voltammetry was performed with an Eco Chemie AUTOLAB PGSTAT12 potentiostat in deaerated CH_2Cl_2 containing TBAPF₆ (0.10 M) as a supporting electrolyte at 298 K. A conventional three-electrode cell was used with a glassy carbon working electrode and a platinum wire as a counter electrode. The redox potentials were measured with respect to a reference electrode: Ag/AgNO₃ (1.0 × 10⁻² M) with TBAPF₆ (0.10 M) in acetonitrile. Deaerated fresh solvents were used for measurements. The oxidation potential of ferrocene as an external standard was 0.16 V (*vs.* Ag/AgNO₃) in CH₂Cl₂.

Fitting of ¹H NMR spectra of two-site asymmetric exchange. Spectrum of two (A and B) exchanging $\frac{1}{2}$ -spins $S(\omega)$ is given in complex form by eqn (S1), identical to eqn (2) in the main manuscript;

$$S(\omega) = \frac{M_A^0 k_A + M_B^0 k_B + M_A^0 \alpha_B + M_B^0 \alpha_A}{\alpha_A \alpha_B - k_A k_B}$$

$$\alpha_A = R_{2A} + k_A - i(\omega - \omega_A)$$

$$\alpha_B = R_{2B} + k_B - i(\omega - \omega_B)$$

$$K_r = \frac{M_B^0}{M_A^0} = \frac{p_B}{p_A} = \frac{k_A}{k_B}$$
(S1)

where M_A^0 and M_B^0 are equilibrium magnetizations of A and B state, respectively. Relative populations of these states are $p_A = M_A^0/(M_A^0 + M_B^0)$, $p_B = M_B^0/(M_A^0 + M_B^0)$ and $p_A + p_B = 1$. R_{2A} and R_{2B} (s⁻¹) are spin-spin relaxation rates of each state, ω_A and ω_B (rad s⁻¹) are resonance frequencies of each state when no exchange is present ($k_A = k_B = 0 \text{ s}^{-1}$), $\omega_A - \omega_B$ is kept constant throughout the fitting, ω (rad s⁻¹) is the angular frequency (an independent variable), *i* is the unit imaginary number and K_r is (temperature dependent) equilibrium constant of reaction. Experimentally, the real part Re{ $S(\omega)$ }, which corresponds to absorption spectrum, of eqn (S1) is observed. After some algebraic manipulations the real part has the form of eqn (S2), which is fitted to experimentally recorded spectra.

$$Re{S(\omega)} = \frac{(M_{A}^{0}B + M_{B}^{0}A)C + (M_{A}^{0}(\omega - \omega_{B}) + M_{B}^{0}(\omega - \omega_{A}))D}{C^{2} + D^{2}}$$

$$A = R_{2A} + k_{A} + k_{B}$$

$$B = R_{2B} + k_{A} + k_{B}$$

$$C = (R_{2A} + k_{A})(R_{2B} + k_{B}) - k_{A}k_{B} - (\omega - \omega_{A})(\omega - \omega_{B})$$

$$D = (R_{2A} + k_{A})(\omega - \omega_{B}) + (R_{2B} + k_{B})(\omega - \omega_{A})$$

$$k_{B} = k_{A}\frac{M_{A}^{0}}{M_{B}^{0}}$$
(S2)

During the fitting procedure using eqn (S2) the ω , ω_A and ω_B values (rad s⁻¹) are converted to δ , δ_A and δ_B values (ppm) using the relation $\omega = 2\pi v_0 \delta$, where v_0 is the operating frequency of the spectrometer (MHz); in the present case 399.78 MHz. The difference between ω_A and ω_B is kept constant during the fitting process. Linear function was used as a baseline. After fitting spectra at low temperatures (25–50 °C) initial values of R_{2A} , R_{2B} and $\omega_A - \omega_B$ are determined and kept constant during subsequent fitting. From fitting of remaining spectra these independent parameters are obtained: M_A^0 , M_B^0 , k_A and ω_A (i.e. δ_A).

Linear plots of Eyring and van't Hoff equations. Eyring equation for mean exchange rate k (s⁻¹) of unimolecular reaction in solution is:

$$k = \frac{k_{\text{Boltz}}T}{h}e^{-\frac{\Delta G_0^{\ddagger}}{RT}}$$

(S3)

where

$$\Delta G_0^{\ddagger} = E_{\exp} - RT - T\Delta S_0^{\ddagger} \tag{S4}$$

where *e* is Euler number, k_{Boltz} is Boltzmann constant, *h* is Planck constant, *R* is gas constant and *T* is absolute temperature. ΔG_0^{\ddagger} is standard Gibbs energy change of activation to transition state (TS[‡]). E_{exp} is experimental activation energy (per mole) and ΔS_0^{\ddagger} is standard entropy changes of activation. Substitution of eqn (S4) into eqn (S3) and linearization yields following formula;

$$\ln\frac{k}{T} = \ln\frac{e\ k_{\rm Boltz}}{h} + \frac{\Delta S_0^{\ddagger}}{R} - \frac{1}{T}\frac{E_{\rm exp}}{R}$$
(S5)

where slope $p = -E_{exp}/R$ and intercept $q = \ln(e k_{Boltz}/h) + \Delta S_0^{\ddagger}/R$. Plot of $\ln(k/T)$ vs. 1/T gives p and q. Values of E_{exp} and ΔS_0^{\ddagger} are then given by:

$$E_{\exp} = -Rp \tag{S6}$$

$$\Delta S_0^{\ddagger} = R \left(q - \ln \frac{e \, k_{\text{Boltz}}}{h} \right) \tag{S7}$$

van't Hoff equation for equilibrium constant of reaction K_r has following form:

$$K_{\rm r} = e^{-\frac{\Delta G_{\rm Or}}{RT}}$$

(S8)

(S9)

where

$$\Delta G_{\rm 0r} = \Delta H_{\rm 0r} - T \Delta S_{\rm 0r}$$

where ΔG_{0r} is standard Gibbs energy change of reaction. ΔH_{0r} and ΔS_{0r} are standard enthalpy and entropy change of reaction, respectively. Substitution of eqn (S9) into eqn (S8)

and linearization yields following formula:

$$-R\ln K_{\rm r} = -\Delta S_{\rm 0r} + \frac{1}{T} \Delta H_{\rm 0r}$$
(S10)

where slope $r = \Delta H_0^{\ddagger}$ and intercept $s = -\Delta S_{0r}$. Plot of $-R\ln(K_r)$ vs. 1/T gives r and s. Values of ΔH_{0r} and ΔS_{0r} are then given by:

$$\Delta H_{
m or} = r$$

(S11)

(S12)

$$\Delta S_{0r} = -s$$

Materials. Reagents and solvents were commercially supplied (Tokyo Chemical Industry, Sigma-Aldrich, Wako Pure Chemical Industries and Kanto Chemical) and used as received unless otherwise noted. Ferrocene and tetrabutylammonium hexafluorophosphate (TBAPF₆) were purified according to the literature.⁷ The synthetic methods and characterization data for 9,9'-BF derivatives (**1** and **2**) are shown below. Pristine 9,9'-BF (**3**) is commercially available from Wako Pure Chemical Industries, and also obtained as a side product during the synthesis of **2**. The NMR spectra (in CDCl₃ at 25 °C) of **1** and **2** are shown in Fig. S1 and S2.

Under argon, a mixture of 2-(methoxycarbonyl)phenylboronic acid (729 mg, 4.05 mmol), 2-bromo-*p*-xylene (500 mg, 2.70 mmol), dichloro[1,1'-bis(diphenylphosphino)-ferrocene] palladium (PdCl₂(dppf); 99 mg, 0.14 mmol) and cesium carbonate (Cs₂CO₃; 1320 mg, 4.05 mmol) in anhydrous dioxane (11 mL) was stirred at 95 °C for 16 h. Upon cooling to r.t., the mixture was extracted with CH₂Cl₂ and the organic layer was dried over Na₂SO₄. Rotary evaporation gave a brown oil, which was purified by silica gel column chromatography (CH₂Cl₂) to yield the yellow oil product (379 mg, 58%). ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 2.02 (s, 3H), 2.33 (s, 3H), 3.63 (s, 3H), 6.90 (s, 1H), 7.09 (m, 2H), 7.23 (d, *J* = 7.8 Hz, 1H), 7.41 (t, J = 7.8 Hz, 1H), 7.53 (t, J = 7.8 Hz, 1H), 7.94 (d, J = 7.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃): δ (ppm) = 19.61, 21.08, 52.00, 127.14, 128.09, 129.30, 129.43, 130.00, 130.51, 131.11, 131.64, 132.31, 134.67, 141.38, 143.21, 168.02.

To a solution of the resultant ester (377 mg, 1.57 mmol) was added 4 mL of a NaOH aqueous solution (2.61 M) in 6 mL EtOH, and the mixture was refluxed for 3 h. The reaction mixture was cooled to r.t., followed by adding conc. HCl until the pH value of the solution was 3–4. The mixture was extracted with CH₂Cl₂ and the organic layer was dried over Na₂SO₄. Rotary evaporation afforded a yellow oil product (380 mg, quantitative). Characterization data are in accordance with published data.⁸ ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 2.03 (s, 3H), 2.33 (s, 3H), 6.91 (m, 1H), 7.07 (dd, *J* = 1.6 Hz, 7.8 Hz, 1H), 7.11 (d, *J* = 7.8 Hz, 1H), 7.23 (dd, *J* = 1.3 Hz, 7.6 Hz, 1H), 7.42 (td, *J* = 1.3 Hz, 7.6 Hz, 1H), 7.56 (td, *J* = 1.4 Hz, 7.5 Hz, 1H), 8.04 (m, 1H). The signal for the acid proton was not clearly observed, probably because of the fast exchange between the acid proton and H₂O (D₂O) in the CDCl₃ solution. ¹³C NMR (101 MHz, CDCl₃): δ (ppm) = 19.64, 21.08, 127.26, 128.27, 129.19, 129.37, 129.61, 130.92, 131.46, 132.41, 132.46, 134.81, 141.03, 143.70, 171.73.

A stirred solution of the resultant carboxylic acid (370 mg, 1.63 mmol) and anhydrous dimethylformamide (DMF; 0.15 mL) in CHCl₃ (10 mL) was treated dropwise with SOCl₂ (0.44 mL, 722 mg, 6.06 mmol), and it was refluxed for 5 h. The reaction mixture was cooled and concentrated in vacuo to a brown oil, which solidified upon further standing. The low-melting solid was collected and used without further purification in the next reaction step. A mixture of the brown solid and aluminium chloride (AlCl₃; 586 mg, 4.41 mmol) in 1,2-dichloroethane (DCE; 5 mL) was stirred at 42 °C for 17 h, refluxed for 2 h, and then poured into cold water. The mixture was extracted with CH₂Cl₂ and the organic layer was dried over Na₂SO₄. Rotary evaporation gave an orange solid, which was purified by silica gel column chromatography (CH₂Cl₂) to yield the yellow low-melting solid product (252 mg,

74%). Characterization data are in accordance with published data.⁸ ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 2.56 (s, 3H), 2.60 (s, 3H), 6.95 (d, *J* = 7.8 Hz, 1H), 7.12 (d, *J* = 7.8 Hz, 1H), 7.27 (m, 1H), 7.47 (td, *J* = 1.2 zHz, 7.6 Hz, 1H), 7.62 (d, *J* = 7.6 Hz, 1H), 7.66 (ddd, *J* = 0.68 Hz, 1.2 Hz, 7.3 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃): δ (ppm) = 17.84, 20.27, 123.37, 123.98, 128.37, 131.20, 131.25, 131.81, 134.39, 134.87, 137.01, 137.13, 142.60, 144.80, 195.58.

1,4-dimethyl-9-diazofluorenone was synthesized from the resultant fluorenone, according to the literature.⁹ The diazo compound (120 mg, 0.55 mmol) was refluxed under Ar atmosphere for 30 min in CH₂Cl₂ (6 mL) in the presence of a catalytic amount of CuBr (2.3 mg, 0.016 mmol). Upon cooling to r.t., the reaction mixture was evaporated under reduced pressure, then the crude was purified by silica gel column chromatography (hexane:CH₂Cl₂ = 10:1) to yield a red solid. The solid was further purified by recycling preparative HPLC and recrystallization from CHCl₃ and MeOH to give the dark-red crystalline product (53 mg, 50%). ¹H NMR (400 MHz, CDCl₃): *trans*-state, δ (ppm) = 2.41 (s, 6H), 2.74 (s, 6H), 7.12 (m, 6H), 7.23 (m, 4H), 7.85 (d, *J* = 7.5 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃): *trans*-state, δ (ppm) = 21.09, 23.38, 123.30, 126.04, 126.48, 127.69, 130.49, 130.88, 132.22, 135.49, 137.94, 139.55, 140.34, 140.86, 141.03. Elemental analysis (calcd for C₃₀H₂₄: C, 93.71; H, 6.29): found C, 93.72; H, 6.25.

A mixture of 1,4-dimethylfluorenone (50 mg, 0.24 mmol) and Lawesson's reagent (97 mg, 0.24 mmol) in toluene anhydrous (2 mL) was refluxed under Ar atmosphere for 4 h. The formation of thicketone was checked by thin-layer chromatography and the resulting solution was used without further purification, because the thicketone is not very stable under ambient

conditions. A toluene solution (4.5 mL) of 9-diazofluorenone (60 mg, 0.31 mmol) and triphenylphosphine (PPh₃; 26 mg, 0.10 mmol) was added dropwise to the resulting solution, and the mixture was refluxed under Ar atmosphere for 72 h. Upon cooling to r.t., the reaction mixture was extracted from CH₂Cl₂, and purified by silica gel column chromatography (hexane: $CH_2Cl_2 = 1:1$) to yield an orange-red solid. The solid containing 2 (heterodimer) and 3 (homodimer) was further purified by recycling preparative HPLC to isolate a dark-red solid of 2 (4.7 mg, 5%) and an orange-red solid of 3 (5.6 mg, 11%), respectively. The characterization data of **3** are in good accordance with those previously reported.¹⁰ The characterization data of **2** are as follows. ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 2.26 (s, 3H), 2.73 (s, 3H), 7.05 (d, J = 7.8 Hz, 1H), 7.14 (m, 3H), 7.20 (m, 1H), 7.28 (td, J = 7.4 Hz and 1.1 Hz, 3H), 7.36 (td, J = 7.4 Hz and 1.1 Hz, 1H), 7.70 (dt, J = 7.5 Hz and 0.8 Hz, 1H), 7.73 (m, 1H), 7.86 (d, J = 7.6 Hz, 1H), 8.34 (d, J = 7.7 Hz, 1H), 8.52 (d, J = 7.9 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃): δ (ppm) = 21.16, 23.91, 119.89, 120.21, 123.50, 124.72, 126.43, 126.73, 126.89, 127.15, 127.83, 128.29, 128.70, 128.99, 130.68, 130.86, 132.58, 135.47, 137.59, 138.59, 139.82, 140.01, 140.27, 140.32, 140.70, 141.24, 141.32, 141.61. Elemental analysis (calcd for C₂₈H₂₀: C, 94.34; H, 5.66): found C, 94.57; H, 5.68.

2. Supporting data

Fig. S1 ¹H NMR (top) and ¹³C NMR (bottom) spectra of **1** in CDCl₃ at 25 °C. Major peaks are assigned to the *trans*-state, while small peaks (*) are assigned to the *cis*-state.

Fig. S2 ¹H NMR (top) and ¹³C NMR (bottom) spectra of **2** in CDCl₃ at 25 °C. Small peaks (x) indicate impurities.

Fig. S3 MALDI/TOF-MS (positive ion, reflective mode) and the calculated isotopic distribution of (a) 1 (calcd for $C_{30}H_{24}$; $[M-1]^+$) and (b) 2 (calcd for $C_{28}H_{20}$; $[M-1]^+$).

Fig. S4 Optimized structure and dihedral angle of the two fluorene π -planes of (a) **1**, (b) **2** and (c) **3** calculated by DFT at the B3LYP/6-31G(d,p) level. The dihedral angle (ϕ) between the two fluorene π -planes in each optimized geometry is also shown.

Fig. S5 Experimental pressure dependence of the normalized unit cell axes and β angle upon hydrostatic compression of **1**. Note that the angle parameters (α and γ) kept constant at 90° in the measurement pressure range.

Fig. S6 Cyclic voltammogram (scan rate: 100 mV s⁻¹) of fluorenone (top) and 1,4-dimethylfluorenone (bottom) in deaerated CH_2Cl_2 (5.0 × 10⁻⁴ M) containing 0.1 M TBAPF₆.

Fig. S7 Plot of HOMO–LUMO gap ($E_{ox}-E_{red}$ / eV) obtained from cyclic voltammetry versus cos ϕ of 9,9'-BF derivatives. Red circles correspond to 1, 2 and 3, while gray squares (3', 4 and 5) correspond to the extracted data from a literature of 9,9'-BF, 3,6,3',6'-tetra*tert*-Bu-9,9'-BF and 2,7,2',7'-tetra-*tert*-Bu-9,9'-BF, respectively.¹¹

Fig. S8 (a) HOMO and (b) LUMO of 1 at the S_0 -state geometry optimized using the DFT(M06-2X) method.

Fig. S9 The spin density distribution in the T_1 state of 1 at the (a) S_0 - and (b) T_1 -state geometries.

Formula	$C_{30}H_{24}$
Formula weight	384.49
Crystal system	monoclinic
Space group	Сс
T/K	213(2)
<i>a</i> / Å	21.7066(8)
<i>b</i> / Å	21.7067(8)
<i>c</i> / Å	20.1949(13)
eta / deg.	122.509(3)
V / Å ³	8024.4(7)
Ζ	16
No. of reflections measured	25013
No. of observations	12072
No. of parameters refined	1098
<i>R</i> 1	0.0776
υ.P?	0.1578
WKZ	$(I > 2.0\sigma(I))$
GOF	0.874
CCDC no.	1531665

Table S1X-ray crystallographic data for 1 at 1 atm

Table S2Synchrotron X-ray crystallographic data for 1 under variable hydrostaticpressure

Pressure / GPa	<i>a</i> / Å	<i>b</i> / Å	c / Å a	eta / deg.
0.3	22.008(12)	21.920(11)	40.701(22)	122.602(8)
0.5	21.668(11)	21.604(10)	40.250(20)	122.500(7)
1.1	21.085(2)	21.157(17)	39.597(3)	122.183(5)
2.2	20.671(9)	20.799(10)	38.963(16)	122.005(2)
3.3	20.495(11)	20.349(9)	38.463(17)	122.061(7)
4.0	20.262(9)	20.425(11)	38.260(16)	121.958(2)
4.2	20.327(17)	20.154(13)	38.157(25)	122.197(11)
4.5	20.157(9)	20.234(51)	38.055(11)	121.979(21)

^{*a*} The *c* axis determined in this experimental setup (0–4.5 GPa) is double that obtained from the single crystal X-ray structural analysis at 1 atm.

Temperature / °C	$k_{\rm A}$ / ${ m s}^{-1}$	$k_{ m B}$ / ${ m s}^{-1}$	$K_{ m r}$	p_{A}	p_{B}
150	3338	12008	0.278	0.782^{a}	0.218 ^{<i>a</i>}
140	2011	7418	0.271	0.787^{a}	0.213 ^{<i>a</i>}
130	1077	4080	0.264	0.791 ^{<i>a</i>}	0.209^{a}
110	294	1174	0.250	0.800	0.200
100	144	581	0.247	0.802	0.198
90	71	296	0.239	0.807	0.193
75	20	94	0.213	0.824	0.176
50	2.7	14	0.203	0.832	0.168
35	< 1	2.7	0.189	0.841	0.159
25	< 1	< 1	0.182	0.846	0.154

Table S3 Data (at selected temperatures) obtained from NMR spectral fitting of A $(\mathbf{1}_{trans})$ and B $(\mathbf{1}_{cis})$ exchange

^{*a*} Extrapolated values where K_r is not possible to retrieve from fits.

Solution	Snin State	$\Lambda E / eV$	λ/nm	Oscillator	Configuration			
Solution	Spin State		<i>n</i> / IIII	strength	Occupied a	and unoc	cupied MO	Coeff.
1	Т	1.607	771.6	0.000	102	\rightarrow	103	0.690
					102	\leftarrow	103	0.113
2	Т	2.778	446.2	0.000	101	\rightarrow	103	0.655
					100	\rightarrow	104	-0.148
					98	\rightarrow	103	0.126
3	Т	2.796	443.5	0.000	100	\rightarrow	103	0.644
					99	\rightarrow	103	0.168
					101	\rightarrow	104	-0.149
4	S	2.865	432.8	0.467	102	\rightarrow	103	0.702
5	S	3.180	389.9	0.001	101	\rightarrow	103	0.692
6	S	3.208	386.4	0.012	100	\rightarrow	103	0.683
					99	\rightarrow	103	0.142
7	Т	3.575	346.8	0.000	99	\rightarrow	103	0.635
					100	\rightarrow	103	-0.189
					102	\rightarrow	106	-0.147
					98	\rightarrow	108	-0.105
8	Т	3.678	337.1	0.000	98	\rightarrow	103	0.636
					102	\rightarrow	107	-0.167
					101	\rightarrow	103	-0.150
					99	\rightarrow	108	-0.110
9	Т	4.008	309.4	0.000	100	\rightarrow	105	0.405
					101	\rightarrow	104	0.405
					102	\rightarrow	105	0.249
					100	\rightarrow	103	0.153
					98	\rightarrow	104	-0.115
10	Т	4.012	309.1	0.000	101	\rightarrow	105	0.424
					100	\rightarrow	104	0.406
					102	\rightarrow	104	0.221
					101	\rightarrow	103	0.156
					98	\rightarrow	105	-0.114

Solution	Spin State	$\Lambda F / \Delta V$	2 / nm	Oscillator				
Solution	Spin State		X / IIII	strength	Occupied a	nd unoc	cupied MO	Coeff.
1	Т	-0.333	-3724.2	0.000	102B	\rightarrow	103B	-0.844
					102A	\rightarrow	103A	0.844
					102B	\leftarrow	103B	0.476
					102A	\leftarrow	103A	-0.476
2	S	0.414	2998.3	0.023	102B	\rightarrow	103B	0.900
					102A	\rightarrow	103A	0.900
					102B	\leftarrow	103B	-0.570
					102A	\leftarrow	103A	-0.570
					94B	\rightarrow	103B	0.107
					94A	\rightarrow	103A	0.107
3	Т	1.721	720.6	0.000	101B	\rightarrow	103B	-0.688
					101A	\rightarrow	103A	0.688
					98B	\rightarrow	103B	-0.124
					98A	\rightarrow	103A	0.124
4	Т	1.803	687.8	0.000	100B	\rightarrow	103B	-0.680
					100A	\rightarrow	103A	0.680
					99B	\rightarrow	103B	-0.159
					99A	\rightarrow	103A	0.159
5	S	1.962	631.9	0.001	101B	\rightarrow	103B	0.698
					101A	\rightarrow	103A	0.698
6	S	2.038	608.4	0.000	100B	\rightarrow	103B	0.692
					100A	\rightarrow	103A	0.692
					99B	\rightarrow	103B	0.126
					99A	\rightarrow	103A	0.126
7	Т	2.550	486.2	0.000	99B	\rightarrow	103B	-0.674
					99A	\rightarrow	103A	0.674
					100B	\rightarrow	103B	0.162
					100A	\rightarrow	103A	-0.162
8	Т	2.671	464.1	0.000	98B	\rightarrow	103B	-0.675
					98A	\rightarrow	103A	0.675
					101B	\rightarrow	103B	0.128
					101A	\rightarrow	103A	-0.128
					102B	\rightarrow	106B	0.117
					102A	\rightarrow	106A	-0.117
9	S	3.020	410.6	0.084	99B	\rightarrow	103B	0.682
					99A	\rightarrow	103A	0.682
					100B	\rightarrow	103B	-0.128
					100A	\rightarrow	103A	-0.128
10	S	3.144	394.4	0.091	98B	\rightarrow	103B	0.685
					98A	\rightarrow	103A	0.685

Table S5 Energy levels of 1 in the singlet and triplet states at the T_1 -state optimized geometry

Solution	Spin State	$\Lambda E / eV$	λ/nm	Oscillator Configuration	Configuration			
Solution	Spin State		<i>7t</i> / IIII	strength	Occupied	Occupied and unoccupied MO		Coeff.
1	Т	1.727	717.9	0.000	86	\rightarrow	87	0.692
					86	\leftarrow	87	0.106
2	Т	2.836	437.2	0.000	84	\rightarrow	87	0.659
					85	\rightarrow	89	0.128
					82	\rightarrow	87	0.117
					85	\rightarrow	92	0.104
3	Т	2.850	435.0	0.000	85	\rightarrow	87	0.654
					83	\rightarrow	87	0.136
					84	\rightarrow	89	0.128
					84	\rightarrow	92	0.107
4	S	2.999	413.4	0.503	86	\rightarrow	87	0.703
5	S	3.248	381.7	0.001	84	\rightarrow	87	0.696
6	S	3.254	381.0	0.000	85	\rightarrow	87	0.696
7	Т	3.811	325.3	0.000	83	\rightarrow	87	0.565
					86	\rightarrow	90	-0.222
					85	\rightarrow	87	-0.202
					85	\rightarrow	88	0.141
					82	\rightarrow	92	0.129
					81	\rightarrow	91	0.125
					84	\rightarrow	89	0.122
8	Т	3.895	318.3	0.000	82	\rightarrow	87	0.504
					84	\rightarrow	88	0.232
					85	\rightarrow	89	0.213
					84	\rightarrow	87	-0.201
					86	\rightarrow	91	0.193
					81	\rightarrow	90	-0.146
					83	\rightarrow	92	0.132
					82	\rightarrow	88	-0.102
9	Т	4.001	309.9	0.000	85	\rightarrow	88	0.457
					84	\rightarrow	89	0.419
					83	\rightarrow	87	-0.262
10	Т	4.013	309.0	0.000	84	\rightarrow	88	0.413
					85	\rightarrow	89	0.388
					82	\rightarrow	87	-0.376

Table S6 Energy levels of **3** in the singlet and triplet states at the S_0 -state optimized geometry

Solution	Snin State	$\Delta E / \Delta V$) / nm	Oscillator	Configuration			
Solution	Spin State	$\Delta E / C V$	<i>X</i> / IIII	strength	Occupied a	ind unoc	cupied MO	Coeff.
1	Т	-0.572	-2166.1	0.000	86B	\rightarrow	87B	-0.717
					86A	\rightarrow	87A	0.717
					86B	\leftarrow	87B	-0.182
					86A	\leftarrow	87A	0.182
2	S	1.644	754.4	0.269	86B	\rightarrow	87B	0.723
					86A	\rightarrow	87A	0.723
					86B	\leftarrow	87B	-0.185
					86A	\leftarrow	87A	-0.185
3	Т	2.127	582.9	0.000	85B	\rightarrow	87B	0.683
					85A	\rightarrow	87A	-0.683
					83B	\rightarrow	87B	0.119
					83A	\rightarrow	87A	-0.119
4	Т	2.173	570.6	0.000	84B	\rightarrow	87B	0.686
					84A	\rightarrow	87A	-0.686
					82B	\rightarrow	87B	-0.105
					82A	\rightarrow	87A	0.105
5	S	2.419	512.6	0.001	85B	\rightarrow	87B	0.700
					85A	\rightarrow	87A	0.700
6	S	2.457	504.7	0.001	84B	\rightarrow	87B	0.700
					84A	\rightarrow	87A	0.700
7	Т	3.184	389.4	0.000	83B	\rightarrow	87B	0.663
					83A	\rightarrow	87A	-0.663
					86B	\rightarrow	90B	-0.156
					86A	\rightarrow	90A	0.156
					85B	\rightarrow	87B	-0.133
					85A	\rightarrow	87A	0.133
8	Т	3.314	374.1	0.000	82B	\rightarrow	87B	0.664
					82A	\rightarrow	87A	-0.664
					86B	\rightarrow	91B	-0.155
					86A	\rightarrow	91A	0.155
					84B	\rightarrow	87B	0.120
					84A	\rightarrow	87A	-0.120
9	Т	3.555	348.8	0.000	86B	\rightarrow	88B	0.680
					86A	\rightarrow	88A	-0.680
10	S	3.644	340.2	0.047	83B	\rightarrow	87B	0.682
					83A	\rightarrow	87A	0.682
					85B	\rightarrow	88B	0.107
					85A	\rightarrow	88A	0.107

Table S7 Energy levels of **3** in the singlet and triplet states at the T_1 -state optimized geometry

3. References

- G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw and K. I. Goldberg, *Organometallics*, 2010, 29, 2176.
- (a) M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, *Gaussian 09, Revision D.01*, Gaussian, Inc., Wallingford, Connecticut, 2016; (b) R. Dennington, T. Keith and J. Millam, *GaussView, Version 5*, Semichem Inc., Shawnee Mission, Kansas, 2009.
- 3 *CrystalClear*, Rigaku Corporation, Akishima, Tokyo, 2005.
- 4 G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Adv., 2015, 71, 3.
- 5 G. M. Sheldrick, Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71, 3.
- 6 L. J. Farrugia, J. Appl. Crystallogr., 1999, 32, 837.
- W. L. F. Armarego and C. L. L. Chai, *Purification of Laboratory Chemicals, 6th ed.*, Elsevier Inc., Oxford, 6th edn., 2009.
- 8 S. R. D. George, T. E. Elton and J. B. Harper, Org. Biomol. Chem., 2015, 13, 10745.
- 9 J. Bauer, L. Hou, J. C. Kistemaker and B. L. Feringa, J. Org. Chem., 2014, 79, 4446.
- 10 S. Pogodin, S. Cohen and I. Agranat, Eur. J. Org. Chem., 1999, 1979.
- G. L. Eakins, M. W. Cooper, N. N. Gerasimchuk, T. J. Phillips, B. E. Breyfogle and C. J. Stearman, *Can. J. Chem.*, 2013, **91**, 1059.