Copper-catalyzed Highly Selective Approach to 2-Boroallylic Silanes

from Allenylsilanes

Liu Song,^a Weiming Yuan,^b and Shengming Ma*^{a,c}

^aDepartment of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China

^bShanghai Key Laboratory of Green Chemistry and Chemical Process, Department of

Chemistry, East China Normal University, 3663 North Zhongshan Lu, Shanghai

200062, P. R. China

^cState Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic

Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R.

China

Fax: (+86)21-64167510 *E-mail:* <u>masm@sioc.ac.cn</u>

Table of contents

General information	S2
Experimental details and analytical data of all the products	S3-30
References	S31
¹ H and ¹³ C NMR spectra of the products	S32-S106

General Information. All reactions were carried out in oven dried Schlenk tubes under argon atmosphere. THF was distilled over sodium wire using benzophenone as the indicator under argon atmosphere. LiAlH₄ (1 M in THF) was purchased from Energy Chemical. *i*-PrOH was distilled using magnesium turnings as drying agent under argon.¹ The starting materials **3a-3l**,² **3p-3q**,² **3m**,³ **3x**,³ **3z**,⁴ **3o**,⁴ and **3n**⁵ were prepared according to the literature.

1. Synthesis of 3-(dimethyl(phenyl)silyl)penta-3,4-dien-1-ol⁴ (3r) (sl-6-3)

To an oven-dried Schlenk tube equipped with a magnetic stirring bar were added sequentially 3m³ (739.0 mg, 3 mmol) and THF (6 mL) under argon at rt. The resulting mixture was placed with a bath pre-set at -78 °C and stirred. LiAlH₄ (3 mL, 3 mmol, 1 M in THF) was then slowly added dropwise over 10 minutes, followed by removing the cool bath, and the resulting mixture was stirred at rt for another 60 minutes as monitored by TLC. Upon completion, the resulting mixture was slowly quenched with a saturated aqueous solution of NH₄Cl (0.5 mL), filtered through a short column of silica gel eluted with Et₂O (10 mL \times 3), and concentrated. The residue was purified by chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 30/1) to afford **3r** (546.1 mg, 87%) as a liquid: ¹H NMR (400 MHz, CDCl₃) δ 7.60-7.50 (m, 2 H, Ar-H), 7.41-7.33 (m, 3 H, Ar-H), 4.49 (t, *J* = 3.0 Hz, 2 H, =CH₂), $3.69 (q, J = 6.3 Hz, 2 H, OCH_2), 2.21-2.14 (m, 2 H, =CCH_2), 1.59 (t, J = 5.6 Hz, 1 H, 1)$ OH), 0.40 (s, 6 H, SiMe₂); ¹³C NMR (100 MHz, CDCl₃) δ 208.9, 137.4, 133.8, 129.3, 127.9, 90.5, 69.9, 62.0, 32.0, -3.3; IR (neat, cm⁻¹): 1926, 1427, 1249, 1111, 1040; MS (70 ev, EI) m/z (%) 218 (M^+ , 1.02), 135 (100); HRMS Calcd for C₁₃H₁₈OSi (M^+): 218.1127, Found: 218.1125.

2. Synthesis of 4-trimethylsilyl-4,5-dienenitrile⁵ (3n)

(1) Synthesis of 3-trimethysilyl-3,4-dien-1-ol (3y) (sl-6-22)

To an oven-dried Schlenk tube equipped with a magnetic stirring bar were added sequentially $3x^3$ (1382.1 mg, 7.0 mmol) and THF (15 mL) under argon at rt. The resulting mixture was placed with a bath pre-set at -78 °C and stirred. LiAlH₄ (7.5

mL, 7.5 mmol, 1 M in THF) was then slowly added dropwise over 10 minutes, followed by removing the cool bath, stirred at rt for another 60 minutes as monitored by TLC. Upon completion, the resulting mixture was slowly quenched with a saturated aqueous solution of NH₄Cl (0.5 mL), the mixture was dried over MgSO₄, filtered through a short column of silica gel eluting with Et₂O (10 mL × 3), and concentrated. The residue was purified by chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 20/1) to afford **3y** (989.1 mg, 90%) as a liquid: ¹H NMR (400 MHz, CDCl₃) δ 4.42 (t, *J* = 3.2 Hz, 2 H, =CH₂), 3.78 (t, *J* = 6.4 Hz, 2 H, OCH₂), 2.27-2.15 (m, 2 H, =CCH₂), 1.83 (brs, 1 H, OH), 0.12 (s, 9 H, SiMe₃); ¹³C NMR (100 MHz, CDCl₃) δ 207.8, 91.5, 69.3, 62.0, 31.7, -1.9; IR (neat, cm⁻¹): 2956, 1927, 1248, 1041; MS (70 ev, EI) m/z (%) 156 (M⁺, 1.63), 73 (100); HRMS Calcd for C₈H₁₆OSi (M⁺): 156.0970, Found: 156.0969.

To an ice-cooled solution of **3y** (625.7 mg, 4 mmol), DMAP (24.5 mg, 0.2 mmol), Et₃N (0.67 mL, d = 0.726 g/cm³, 486.4 mg, 4.8 mmol) in dry DCM (10 mL) was dropwised a solution of *p*-TsCl (799.9 mg, 4.2 mmol) in dry DCM (10 mL) over 70 minutes under argon atmosphere. Then the resulting mixture was warmed up to rt for another 3 h followed by the addition of 30 mL of DCM. The organic layer was separated and washed with water (10 mL \times 3), dried over MgSO₄, filtrated, and concentrated under vacuum. The crude product was then used in the next step without further purification.

To a solution of the tosylate prepared above and anhydrous DMSO (4 mL) was added NaCN (251.1 mg, 5 mmol) at rt. The resulting mixture was stirred for 7 h at rt, quenched with H₂O (5 mL), and extracted with AcOEt (10 mL \times 3). The combined organic layer was dried over MgSO₄, filtrated, and concentrated in vacuum. The residue was purified by chromatography on silica gel (eluent: petroleum ether/ ethyl

acetate = 100/1) to afford **3n** (394.8 mg, 60%) as a liquid: H NMR (400 MHz, CDCl₃) δ 4.54 (t, *J* = 3.6 Hz, 2 H, =CH₂), 2.50 (t, *J* = 7.4 Hz, 2 H, NCCH₂), 2.32-2.23 (m, 2 H, =CCH₂), 0.12 (s, 9 H, SiMe₃); ¹³C NMR (100 MHz, CDCl₃) δ 207.6, 119.7, 92.8, 71.9, 24.0, 16.2, -2.0; IR (neat, cm⁻¹): 2957, 1928, 1422, 1250, 1061; MS (70 ev, EI) m/z (%) 165 (M⁺, 11.72), 73 (100); HRMS Calcd for C₉H₁₅NSi (M⁺): 165.0974, Found: 165.0975.

3. Synthesis of 3-trimethylsilyl-1-phenyl-3,4-dien-1-one⁶

To an oven-dried Schlenk tube equipped with a magnetic stirring bar were added sequentially Fe(NO₃)₃·9H₂O (403.1 mg, 1 mmol), NaCl (58.6 mg, 1 mmol), TEMPO (156.5 mg, 1.0 mmol)/DCE (8 mL) under the atmosphere of oxygen. A solution of 3y (1564.1 mg, 10 mmol) in DCE (2 mL) was added. The resulting mixture was stirred at rt for 6 h with oxygen from a balloon until the reaction was complete as monitored by TLC. Then THF (10 mL) was added. The resulting mixture was cooled with an ice bath, PhMgBr (20 mL, 20 mmol, 1 M in THF) was slowly added dropwise over 10 minutes. Then the resulting mixture was warmed up to rt for another 40 min as monitored by TLC. Upon completion, the resulting mixture was slowly quenched with a saturated aqueous of NH₄Cl (1 mL), filtered through a short column of silica gel eluted with DCM (20 mL \times 3), and concentrated. The residue was purified by chromatography on silica gel (eluent: petroleum ether/ ethyl acetate = 80/1) to afford **3z** (756.4 mg, 33%) as a liquid: ¹H NMR (400 MHz, CDCl₃) δ 7.42-7.32 (m, 4 H, Ar-H), 7.31-7.24 (m, 1 H, Ar-H), 4.91-4.84 (m, 1 H, OCH), 4.52-4.41 (m, 2 H, =CH₂), 2.45-2.41 (m, 1 H, OH), 2.40-2.28 (m, 2 H, =CCH₂), 0.11 (s, 9 H, SiMe₃); ¹³C NMR (100 MHz, CDCl₃) δ 208.2, 143.9, 128.3, 127.4, 125.8, 92.0, 73.4, 69.7, 39.1, -1.8; IR (neat, cm⁻¹): 3380, 3064, 3031, 2897, 1925, 1494, 1453, 1405, 1248, 1023; MS (70 ev,

EI) m/z (%) 232 (M⁺, 1.26), 73 (100); HRMS Calcd for $C_{14}H_{20}OSi$ (M⁺): 232.1283, Found: 232.1285.

To an oven-dried Schlenk tube equipped with a magnetic stirring bar were added sequentially Fe(NO₃)₃·9H₂O (121.3 mg, 0.3 mmol), NaCl (17.9 mg, 0.3 mmol), TEMPO (46.6 mg, 0.3 mmol)/DCE (4 mL) under the atmosphere of oxygen. Then a solution of **3z** (697.0 mg, 3 mmol) in DCE (1 mL) was added. The resulting mixture was stirred at rt for 6 h with oxygen from a balloon until the reaction was complete as monitored by TLC. After filtration through a short column of silica gel eluted with DCM (10 mL × 3) and evaporation, the residue was purified by chromatography on silica gel (eluent: petroleum ether) to afford **3o** (334.8 mg, 36%) as a liquid: δ 7.98-7.92 (m, 2 H, Ar-H), 7.59-7.52 (m, 1 H, Ar-H), 7.49-7.41 (m, 2 H, Ar-H), 4.34 (t, J = 2.8 Hz, 2 H, =CH₂), 3.63 (m, J = 2.8 Hz, 2 H, =CCH₂), 0.14 (s, 9 H, SiMe₃); ¹³C NMR (100 MHz, CDCl₃) δ 210.1, 198.2, 136.6, 132.9, 128.55, 128.47, 89.6, 69.5, 39.9, -1.6; IR (neat, cm⁻¹): 2956, 1930, 1681, 1598, 1580, 1449, 1407, 1329, 1317, 1280, 1248, 1206, 1181, 1066, 1001; MS (70 ev, EI) m/z (%) 230 (M⁺, 9.76), 73 (100); HRMS Calcd for C₁₄H₁₈OSi (M⁺): 230.1127, Found: 230.1126.

4. Synthesis of 2-Borylallylic silanes 5

(1) Synthesis of (3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)but-3-en-2-yl) dimethyl(phenyl)silane (5a) (ywm-11-99)

Typical Procedure: To an oven-dried Schlenk tube equipped with a magnetic stirring bar were added sequentially CuCl (5.0 mg, 0.05 mmol), BIPHEP (26.3 mg, 0.05 mmol), NaOt-Bu (19.4 mg, 0.2 mmol), bis(pinacolato)diboron (306.3 mg, 1.2 mmol)/THF (2 mL), 3a (189.4 mg, 1.0 mmol)/THF (1 mL), and *i*-PrOH (153 µL, d = 0.784 g/cm³, 120.2 mg, 2.0 mmol) under argon. The resulting mixture was stirred at rt for 3 h as monitored by TLC. Upon completion, the resulting mixture was filtered through a short column of silica gel eluted with Et_2O (20 mL \times 3) and concentrated. The residue was purified by chromatography on silica gel (eluent: petroleum ether/ethyl ether = 70/1) to afford **5a** (286.8 mg, 90%) as a liquid⁷: ¹H NMR (300 MHz, CDCl₃) δ 7.56-7.47 (m, 2 H, Ar-H), 7.37-7.29 (m, 3 H, Ar-H), 5.78 (d, J = 2.7 Hz, 1 H, one proton of =CH₂), 5.35 (brs, 1 H, one proton of =CH₂), 2.19 (q, J = 7.3Hz, 1 H, =CCH), 1.20 (s, 6 H, B(pin)), 1.18 (s, 6 H, B(pin)), 1.08 (d, J = 7.5 Hz, 3 H, CH₃), 0.25 (s, 6 H, SiMe₂); ¹³C NMR (75.4 MHz, CDCl₃) δ 138.2, 134.2, 128.7, 127.4, 125.5, 83.2, 26.2, 24.8, 24.7, 14.4, -4.1, -5.6; IR (neat, cm⁻¹): 2978, 1600, 1426, 1388, 1372, 1358, 1305, 1270, 1247, 1136, 1111; MS (ESI) m/z 340 [M⁺(¹¹B)+Na+H], 339 $[M^{+}(^{11}B)+Na]$ or $[M^{+}(^{10}B)+Na+H]$, 338 $[M^{+}(^{10}B)+Na]$; HRMS Calcd for C₁₈H₂₉O₂Si¹¹B (M⁺): 316.2030, Found: 316.2027.

Synthesis of 5a on one gram scale (ywm-13-188)

The reaction of CuCl (26.8 mg, 0.27 mmol), BIPHEP (141.3 mg, 0.27 mmol), NaO*t*-Bu (101.7 mg, 1.06 mmol), bis(pinacolato)diboron (1.6179 g, 6.37 mmol)/THF (8 mL), **3a** (1.0003 g, 5.31 mmol)/THF (2 mL), and *i*-PrOH (0.8 mL, d = 0.784 g/cm³, 638.3 mg, 10.62 mmol) afforded **5a** (1.5065 g, 90%) (eluent: petroleum ether/ethyl ether = 70/1) as a liquid: ¹H NMR (300 MHz, CDCl₃) δ 7.55-7.47 (m, 2 H, Ar-H), 7.36-7.29 (m, 3 H, Ar-H), 5.78 (d, *J* = 3.3 Hz, 1 H, one proton of =CH₂), 5.36 (d, *J* =

2.1 Hz, 1 H, one proton of =CH₂), 2.19 (q, J = 7.5 Hz, 1 H, =CCH), 1.20 (s, 6 H, B(pin)), 1.19 (s, 6 H, B(pin)), 1.09 (d, J = 7.5 Hz, 3 H, CH₃), 0.25 (s, 6 H, SiMe₂); ¹³C NMR (75.4 MHz, CDCl₃) δ 138.2, 134.2, 128.7, 127.4, 125.5, 83.2, 26.2, 24.8, 24.7, 14.5, -4.1, -5.6.

The following compounds were prepared according to this **Typical Procedure**.

(2) Synthesis of (3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)but-3-en-2-yl) methyldiphenylsilane (5b) (ywm-13-178)

The reaction of CuCl (4.9 mg, 0.05 mmol), BIPHEP (26.2 mg, 0.05 mmol), NaOt-Bu (19.2 mg, 0.2 mmol), bis(pinacolato)diboron (304.6 mg, 1.2 mmol)/THF (2 mL), **3b** (250.5 mg, 1.0 mmol)/THF (1 mL), and *i*-PrOH (153 μ L, d = 0.784 g/cm³, 120.2 mg, 2.0 mmol) afforded **5b** (333.1 mg, 88%) (eluent: petroleum ether/ethyl ether = 70/1) as a liquid: ¹H NMR (300 MHz, CDCl₃) δ 7.61-7.48 (m, 4 H, Ar-H), 7.41-7.22 (m, 6 H, Ar-H), 5.82 (d, *J* = 3.0 Hz, 1 H, one proton of =CH₂), 5.37 (d, *J* = 2.1 Hz, 1 H, one proton of =CH₂), 2.65 (q, *J* = 7.4 Hz, 1 H, =CCH), 1.17 (d, *J* = 7.2 Hz, 3 H, CH₃), 1.11 (s, 6 H, B(pin)), 1.07 (s, 6 H, B(pin)), 0.51 (s, 3 H, SiMe); ¹³C NMR (75.4 MHz, CDCl₃) δ 136.7, 135.7, 135.2, 129.0, 128.9, 127.5, 126.5, 83.2, 24.7, 24.3, 15.3, -6.0; IR (neat, cm⁻¹): 2977, 1600, 1427, 1358, 1307, 1136, 1108; MS (ESI) m/z 402 [M⁺(¹¹B)+Na+H], 401 [M⁺(¹¹B)+Na] or [M⁺(¹⁰B)+Na+H], 400 [M⁺(¹⁰B)+Na]; HRMS Calcd for C₂₃H₃₁O₂Si¹⁰B (M⁺): 377.2223, Found: 377.2220.

(3) Synthesis of (3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)but-3-en-2-yl) triphenylsilane (5c) (ywm-13-179)

The reaction of CuCl (4.9 mg, 0.05 mmol), BIPHEP (26.0 mg, 0.05 mmol), NaO*t*-Bu (19.3 mg, 0.2 mmol), bis(pinacolato)diboron (304.8 mg, 1.2 mmol)/THF (2 mL), **3c** (312.4 mg, 1.0 mmol)/THF (1 mL), and *i*-PrOH (153 μ L, d = 0.784 g/cm³, 120.2 mg, 2.0 mmol) afforded **5c** (396.3 mg, 90%) (eluent: petroleum ether/ethyl ether = 70/1) as a white solid: m.p. 99-100 °C (ethyl ether); ¹H NMR (300 MHz, CDCl₃) δ 7.64-7.55 (m, 6 H, Ar-H), 7.42-7.27 (m, 9 H, Ar-H), 5.82 (d, *J* = 2.4 Hz, 1 H, one proton of =CH₂), 5.22 (d, *J* = 2.4 Hz, 1 H, one proton of =CH₂), 5.22 (d, *J* = 7.5 Hz, 3 H, CH₃), 1.11 (s, 6 H, B(pin)), 1.05 (s, 6 H, B(pin)); ¹³C NMR (75.4 MHz, CDCl₃) δ 136.5, 134.5, 129.1, 128.6, 127.5, 83.2, 24.7, 23.3, 17.2; IR (neat, cm⁻¹): 2978, 1598, 1485, 1427, 1371, 1307, 1130, 1107; MS (ESI) m/z 464 [M⁺(¹¹B)+Na+H], 463 [M⁺(¹¹B)+Na] or [M⁺(¹⁰B)+Na+H], 462 [M⁺(¹⁰B)+Na]; Anal. Calcd. for C₂₈H₃₃BO₂Si (%): C 76.35, H 7.55; Found: C 76.28, H 7.55.

(4) Synthesis of (3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)but-3-en-2-yl) *tert*-butyldimethylsilane (5d) (ywm-13-174)

The reaction of CuCl (4.9 mg, 0.05 mmol), BIPHEP (26.2 mg, 0.05 mmol), NaO*t*-Bu (19.2 mg, 0.2 mmol), bis(pinacolato)diboron (304.6 mg, 1.2 mmol)/THF (2 mL), **3d** (168.5 mg, 1.0 mmol)/THF (1 mL), *i*-PrOH (153 μ L, d = 0.784 g/cm³, 120.2 mg, 2.0 mmol) afforded **5d** (224.3 mg, 76%) (eluent: petroleum ether/ethyl ether = 70/1) as a liquid: ¹H NMR (300 MHz, CDCl₃) δ 5.74 (d, *J* = 3.3 Hz, 1 H, one proton of =CH₂), 5.43 (d, *J* = 2.4 Hz, 1 H, one proton of =CH₂), 2.09 (q, *J* = 7.4 Hz, 1 H,

=CCH), 1.26 (s, 6 H, B(pin)), 1.25 (s, 6 H, B(pin)), 1.16 (d, J = 7.2 Hz, 3 H, CH₃), 0.91 (s, 9 H, 3 × CH₃), -0.09 (s, 3 H, SiMe), -0.11 (s, 3 H, SiMe); ¹³C NMR (75.4 MHz, CDCl₃) δ 125.1, 83.2, 27.2, 24.9, 24.7, 24.0, 17.6, 16.1, -6.1, -8.4; IR (neat, cm⁻¹): 2978, 2955, 2857, 1600, 1470, 1358, 1305, 1248, 1138; MS (ESI) m/z 315 [M⁺(¹¹B)+NH₄], 297 [M⁺(¹¹B)+H]; HRMS Calcd for C₁₆H₃₃¹¹BO₂Si (M⁺): 296.2343, Found: 296.2344.

(5) Synthesis of (2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)allyl)dimethyl-(phenyl)silane (5e) (sl-4-68)

The reaction of CuCl (5.0 mg, 0.05 mmol), BIPHEP (26.3 mg, 0.05 mmol), NaOt-Bu (19.3 mg, 0.2 mmol), bis(pinacolato)diboron (304.9 mg, 1.2 mmol)/THF (2 mL), **3e** (174.6 mg, 1.0 mmol)/THF (1 mL), *i*-PrOH (153 μ L, d = 0.784 g/cm³, 120.2 mg, 2.0 mmol) afforded **5e**⁸ (230.0 mg, 76%) (eluent: petroleum ether/ethyl ether = 100/1) as an oil: ¹H NMR (400 MHz, CDCl₃) δ 7.56-7.49 (m, 2 H, Ar-H), 7.36-7.29 (m, 3 H, Ar-H), 5.67 (d, *J* = 2.8 Hz, 1 H, one proton of =CH₂), 5.38 (d, *J* = 2.8 Hz, 1 H, one proto

(6) Synthesis of (2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-1-en-3-yl) dimethyl(phenyl)silane (5f) (ywm-12-9)

The reaction of CuCl (4.9 mg, 0.05 mmol), BIPHEP (26.4 mg, 0.05 mmol), NaOt-Bu (19.6 mg, 0.2 mmol), bis(pinacolato)diboron (305.8 mg, 1.2 mmol)/THF (2 mL), **3f** (201.3 mg, 1.0 mmol)/THF (1 mL), *i*-PrOH (153 μ L, d = 0.784 g/cm³, 120.2 mg, 2.0 mmol) afforded **5f** (293.6 mg, 89%) (eluent: petroleum ether/ethyl ether = 70/1) as a liquid: ¹H NMR (300 MHz, CDCl₃) δ 7.55-7.47 (m, 2 H, Ar-H), 7.36-7.28 (m, 3 H, Ar-H), 5.82 (d, *J* = 3.0 Hz, 1 H, one proton of =CH₂), 5.36 (d, *J* = 3.0 Hz, 1 H, one proton of =CH₂), 5.36 (d, *J* = 3.0 Hz, 1 H, one proton of =CH₂), 1.199 (s, 6 H, B(pin)), 1.195 (s, 6 H, B(pin)), 0.81 (t, *J* = 7.4 Hz, 3 H, CH₃), 0.26 (s, 3 H, SiMe), 0.23 (s, 3 H, SiMe); ¹³C NMR (75.4 MHz, CDCl₃) δ 138.7, 134.2, 128.6, 127.4, 126.7, 83.1, 35.8, 24.8, 24.7, 21.8, 13.9, -3.7, -5.2; IR (neat, cm⁻¹): 2977, 2959, 1601, 1463, 1427, 1389, 1370, 1360, 1335, 1305, 1247, 1214, 1166, 1140, 1111, 1060, 1026; MS (ESI) m/z 369 [M⁺(¹¹B)+K], 353 [M⁺(¹¹B)+Na], 352 [M⁺(¹⁰B)+Na]; HRMS Calcd for C₁₉H₃₁O₂Si¹¹B (M⁺): 330.2186, Found: 330.2188.

(7) Synthesis of (2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hex-1-en-3-yl) dimethyl(phenyl)silane (5g) (ywm-12-8)

The reaction of CuCl (5.0 mg, 0.05 mmol), BIPHEP (26.7 mg, 0.05 mmol), NaO*t*-Bu (19.4 mg, 0.2 mmol), bis(pinacolato)diboron (306.2 mg, 1.2 mmol)/THF (2 mL), **3g** (215.8 mg, 1.0 mmol)/THF (1 mL), *i*-PrOH (153 μ L, d = 0.784 g/cm³, 120.2 mg, 2.0 mmol) afforded **5g** (300.1 mg, 87%) (eluent: petroleum ether/ethyl ether =

70/1) as a liquid: ¹H NMR (300 MHz, CDCl₃) δ 7.54-7.47 (m, 2 H, Ar-H), 7.36-7.28 (m, 3 H, Ar-H), 5.81 (d, J = 3.3 Hz, 1 H, one proton of =CH₂), 5.35 (d, J = 3.0 Hz, 1 H, one proton of =CH₂), 2.10 (dd, J_1 = 11.9 Hz, J_2 = 3.2 Hz, 1 H, CH), 1.72-1.54 (m, 1 H, one proton of CH₂), 1.48-1.27 (m, 2 H, CH₂), 1.21-1.02 (m, 13 H, one proton of CH₂ and B(pin)), 0.78 (t, J = 7.1 Hz, 3 H, CH₃), 0.26 (s, 3 H, SiMe), 0.23 (s, 3 H, SiMe); ¹³C NMR (75.4 MHz, CDCl₃) δ 138.6, 134.2, 128.6, 127.4, 126.7, 83.1, 33.1, 30.8, 24.70, 24.67, 21.9, 13.8, -3.8, -5.1; IR (neat, cm⁻¹): 2977, 2956, 1601, 1465, 1426, 1418, 1388, 1361, 1344, 1305, 1273, 1246, 1226, 1165, 1141, 1111, 1067; MS (ESI) m/z 368 [M⁺(¹¹B)+Na+H], 367 [M⁺(¹¹B)+Na] or [M⁺(¹⁰B)+Na+H], 366 [M⁺(¹⁰B)+Na]; HRMS Calcd for C₂₀H₃₃O₂Si¹¹B (M⁺): 344.2343, Found: 344.2340.

(8) Synthesis of (2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)undec-1-en-3-yl) trimethylsilane (5h) (ywm-13-161)

The reaction of CuCl (4.9 mg, 0.05 mmol), BIPHEP (26.2 mg, 0.05 mmol), NaOt-Bu (19.1 mg, 0.2 mmol), bis(pinacolato)diboron (304.6 mg, 1.2 mmol)/THF (2 mL), **3h** (224.6 mg, 1.0 mmol)/THF (1 mL), *i*-PrOH (153 μ L, d = 0.784 g/cm³, 120.2 mg, 2.0 mmol) afforded **5h** (279.4 mg, 79%) (eluent: petroleum ether/ethyl ether = 70/1) as a liquid: ¹H NMR (300 MHz, CDCl₃) δ 5.79 (d, *J* = 3.3 Hz, 1 H, one proton of =CH₂), 5.40 (d, *J* = 3.0 Hz, 1 H, one proton of =CH₂), 1.80 (dd, *J*₁ = 11.6 Hz, *J*₂ = 3.2 Hz, 1 H, =CCH), 1.72-1.04 (m, 26 H, 7 × CH₂ and B(pin)), 0.87 (t, *J* = 6.8 Hz, 3 H, CH₃), -0.06 (s, 9 H, SiMe₃); ¹³C NMR (75.4 MHz, CDCl₃) δ 126.0, 83.1, 34.2, 31.9, 29.60, 29.56, 29.4, 29.0, 28.3, 24.8, 24.7, 22.7, 14.1, -2.8; IR (neat, cm⁻¹): 2924, 2854, 1600, 1466, 1418, 1360, 1304, 1246, 1142; MS (70 ev, EI) m/z 352 [M⁺(¹¹B), 1.09], 73 (100); HRMS Calcd for C₂₀H₄₁O₂Si¹⁰B (M⁺): 351.3005, Found: 351.2999.

(9) Synthesis of (5-methyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hex-1-

en-3-yl)trimethylsilane (5i) (ywm-13-158)

The reaction of CuCl (4.9 mg, 0.05 mmol), BIPHEP (26.3 mg, 0.05 mmol), NaO*t*-Bu (19.3 mg, 0.2 mmol), bis(pinacolato)diboron (304.9 mg, 1.2 mmol)/THF (2 mL), **3i** (168.4 mg, 1.0 mmol)/THF (1 mL), *i*-PrOH (153 μ L, d = 0.784 g/cm³, 120.2 mg, 2.0 mmol) afforded **5i** (257.3 mg, 87%) (eluent: petroleum ether/ethyl ether = 70/1) as a liquid: ¹H NMR (300 MHz, CDCl₃) δ 5.79 (d, *J* = 3.3 Hz, 1 H, one proton of =CH₂), 5.39 (d, *J* = 3.3 Hz, 1 H, one proton of =CH₂), 5.39 (d, *J* = 3.3 Hz, 1 H, one proton of =CH₂), 1.65-1.49 (m, 1 H, CH), 1.24 (s, 12 H, B(pin)), 1.13-1.02 (m, 1 H, one proton of CH₂), 0.84 (d, *J* = 6.6 Hz, 3 H, CH₃), 0.77 (d, *J* = 6.6 Hz, 3 H, CH₃), -0.06 (s, 9 H, SiMe₃); ¹³C NMR (75.4 MHz, CDCl₃) δ 126.3, 83.1, 37.4, 32.0, 26.0, 24.7, 23.9, 20.8, -2.9; IR (neat, cm⁻¹): 2953, 2901, 1602, 1468, 1418, 1361, 1304, 1246, 1142; MS (70 ev, EI) m/z (%) 296 [M⁺(¹¹B), 1.78], 295 [M⁺(¹⁰B), 0.47], 73 (100); HRMS Calcd for C₁₆H₃₃O₂Si¹⁰B (M⁺): 295.2379, Found: 295.2378.

(10) Synthesis of (1-phenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)but-3en-2-yl)trimethylsilane (5j) (ywm-13-138)

The reaction of CuCl (4.9 mg, 0.05 mmol), BIPHEP (26.2 mg, 0.05 mmol), NaOt-Bu (19.1 mg, 0.2 mmol), bis(pinacolato)diboron (304.3 mg, 1.2 mmol)/THF (2 mL), **3j** (202.5 mg, 1.0 mmol)/THF (1 mL), *i*-PrOH (153 μ L, d = 0.784 g/cm³, 120.2

mg, 2.0 mmol) afforded **5j** (275.5 mg, 83%) (eluent: petroleum ether/ethyl ether = 70/1) as a liquid: ¹H NMR (300 MHz, CDCl₃) δ 7.25-7.07 (m, 5 H, Ar-H), 5.75 (d, *J* = 3.3 Hz, 1 H, one proton of =CH₂), 5.42 (d, *J* = 2.4 Hz, 1 H, one proton of =CH₂), 2.99 (dd, *J*₁ = 14.6 Hz, *J*₂ = 11.0 Hz, 1 H, one proton of Ar-CH₂), 2.88 (dd, *J*₁ = 14.4 Hz, *J*₂ = 5.1 Hz, 1 H, one proton of Ar-CH₂), 2.30 (dd, *J*₁ = 11.1 Hz, *J*₂ = 5.1 Hz, 1 H, =CCH), 1.24 (s, 6 H, B(pin)), 1.22 (s, 6 H, B(pin)), 0.004 (s, 9 H, SiMe₃); ¹³C NMR (75.4 MHz, CDCl₃) δ 142.6, 128.6, 127.8, 127.3, 125.2, 83.1, 35.3, 34.6, 24.8, 24.6, -2.7; IR (neat, cm⁻¹): 2978, 2956, 1602, 1495, 1417, 1361, 1304, 1247, 1212, 1139; MS (70 ev, EI) m/z (%) 330 [M⁺(¹¹B), 2.45], 329 [M⁺(¹⁰B), 0.53], 73 (100); HRMS Calcd for C₁₉H₃₁¹⁰BO₂Si (M⁺): 329.2223, Found: 329.2226.

(11) Synthesis of (5-phenyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-1en-3-yl)trimethylsilane (5k) (ywm-13-160)

The reaction of CuCl (4.9 mg, 0.05 mmol), BIPHEP (26.2 mg, 0.05 mmol), NaOt-Bu (19.3 mg, 0.2 mmol), bis(pinacolato)diboron (304.5 mg, 1.2 mmol)/THF (2 mL), **3k** (216.5 mg, 1.0 mmol)/THF (1 mL), *i*-PrOH (153 μ L, d = 0.784 g/cm³, 120.2 mg, 2.0 mmol) afforded **5k** (292.5 mg, 85%) (eluent: petroleum ether/ethyl ether = 70/1) as a liquid: ¹H NMR (300 MHz, CDCl₃) δ 7.31-7.22 (m, 2 H, Ar-H), 7.20-7.11 (m, 3 H, Ar-H), 5.89 (d, *J* = 3.3 Hz, 1 H, one proton of =CH₂), 5.50 (d, *J* = 2.7 Hz, 1 H, one proton of =CH₂), 2.80-2.67 (m, 1 H, =CCH), 2.47-2.34 (m, 1 H, one proton of CH₂), 2.08-1.67 (m, 3 H, one proton of CH₂ and Ar-CH₂), 1.27 (s, 12 H, B(pin)), -0.06 (s, 9 H, SiMe₃); ¹³C NMR (75.4 MHz, CDCl₃) δ 143.2, 128.4, 128.1, 126.5, 125.4, 83.1, 35.3, 34.3, 30.7, 24.8, -2.9; IR (neat, cm⁻¹): 2978, 2955, 1601, 1496, 1418, 1359, 1305, 1246, 1134; MS (70 ev, EI) m/z (%) 344 [M⁺(¹¹B), 1.82], 73 (100); HRMS Calcd for C₂₀H₃₃O₂Si¹⁰B (M⁺): 343.2379, Found: 343.2382.

(12) Synthesis of (1-phenyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)allyl)dimethyl(phenyl)silane (5l) (sl-2-175)

The reaction of CuCl (5.0 mg, 0.05 mmol), BIPHEP (26.3 mg, 0.05 mmol), NaOt-Bu (38.4 mg, 0.4 mmol), bis(pinacolato)diboron (355.9 mg, 1.4 mmol)/THF (2 mL), **3l** (250.7 mg, 1.0 mmol)/THF (1 mL), *i*-PrOH (153 μ L, d = 0.784 g/cm³, 120.2 mg, 2.0 mmol) afforded **5l**⁸ (273.0 mg, 72%) (eluent: petroleum ether/ethyl ether = 70/1) as a liquid⁵: ¹H NMR (400 MHz, CDCl₃) δ 7.53-7.47 (m, 2 H, Ar-H), 7.43-7.33 (m, 3 H, Ar-H), 7.30-7.22 (m, 2 H, Ar-H), 7.21-7.14 (m, 3 H, Ar-H), 5.99 (d, *J* = 2.8 Hz, 1 H, one proton of =CH₂), 5.76 (d, *J* = 2.0 Hz, 1 H, one proton of =CH₂), 3.65 (s, 1 H, =CCH), 1.25 (s, 6 H, B(pin)), 1.23 (s, 6 H, B(pin)), 0.41 (s, 3 H, SiMe), 0.37 (s, 3 H, SiMe); ¹³C NMR (100 MHz, CDCl₃) δ 142.5, 138.1, 134.4, 129.0, 128.8, 127.8, 127.3, 124.7, 83.4, 42.2, 24.7, 24.6, -3.0, -3.5; IR (neat, cm⁻¹): 2978, 1597, 1492, 1426, 1357, 1310, 1251, 1141, 1074; MS (ESI) m/z 402 [M⁺(¹¹B)+Na+H], 401 [M⁺(¹¹B)+Na] or [(¹⁰B)+Na+H], 400 [M⁺(¹⁰B)+Na].

(13) Synthesis of methyl 3-(dimethyl(phenyl)silyl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-4-enoate (5m) (sl-4-93)

The reaction of CuCl (5.0 mg, 0.05 mmol), BIPHEP (26.3 mg, 0.05 mmol), NaOt-Bu (19.3 mg, 0.2 mmol), bis(pinacolato)diboron (304.9 mg, 1.2 mmol)/THF (2

mL), **3m** (246.7 mg, 1.0 mmol)/THF (1 mL), *i*-PrOH (153 μ L, d = 0.784 g/cm³, 120.2 mg, 2.0 mmol) afforded **5m** (320.1 mg, 85%) (eluent: petroleum ether/ethyl ether = 50/1) as a liquid; ¹H NMR (400 MHz, CDCl₃) δ 7.52-7.43 (m, 2 H, Ar-H), 7.36-7.30 (m, 3 H, Ar-H), 5.79 (d, *J* = 2.8 Hz, 1 H, one proton of =CH₂), 5.36 (d, *J* = 2.4 Hz, 1 H, one proton of =CH₂), 3.52 (s, 3 H, OCH₃), 2.72-2.56 (m, 2 H, CH₂), 2.41 (dd, *J*₁ = 14.6 Hz, *J*₂ = 3.4 Hz, 1 H, =CCH), 1.22 (s, 6 H, B(pin)), 1.21 (s, 6 H, B(pin)), 0.29 (s, 3H, SiMe), 0.27 (s, 3 H, SiMe); ¹³C NMR (100 MHz, CDCl₃) δ 173.8, 137.2, 134.2, 129.0, 127.6, 127.2, 83.3, 51.3, 34.3, 29.8, 24.71, 24.68, -3.9, -5.4; IR (neat, cm⁻¹): 2977, 1737, 1428, 1363, 1308, 1249, 1137, 1112; MS (ESI) m/z (%) 398 [M⁺(¹¹B) + Na+H], 397 [M⁺(¹¹B)+Na]or [M⁺(¹⁰B) + Na+H], 396 [M⁺(¹⁰B)+Na]; HRMS Calcd for C₂₀H₃₁O₄Si¹¹B (M⁺): 374.2085, Found: 374.2083.

(14) Synthesis of 5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-4-(trimethylsilyl)hex-5-enenitrile (5n) (sl-6-54)

The reaction of CuCl (5.0 mg, 0.05 mmol), BIPHEP (26.2 mg, 0.05 mmol), NaOt-Bu (33.6 mg, 0.35 mmol), bis(pinacolato)diboron (355.6 mg, 1.4 mmol)/THF (8 mL), **3n** (165.6 mg, 1.0 mmol)/THF (2 mL), *i*-PrOH (153 μ L, d = 0.784 g/cm³, 120.2 mg, 2.0 mmol) afforded **5n** (232.7 mg, 80%) (eluent: petroleum ether/ethyl ether = 40/1) as an oil; ¹H NMR (400 MHz, CDCl₃) δ 5.86 (d, *J* = 2.4 Hz, 1 H, one proton of =CH₂), 5.45 (d, *J* = 2.8 Hz, 1 H, one proton of =CH₂), 2.45-2.35 (m, 1 H, =CCH), 2.24-2.12 (m, 1 H, one proton of CH₂), 2.12-2.00 (m, 1 H, one proton of CH₂), 1.94-1.79 (m, 2 H, CH₂), 1.24 (s, 12 H, B(Pin)), -0.02 (s, 9 H, SiMe₃); ¹³C NMR (100 MHz, CDCl₃) δ 128.0, 120.2, 83.5, 34.5, 24.8, 24.7, 24.6, 16.6, -3.0; IR (neat, cm⁻¹): 2978, 2959, 2245, 1600, 1420, 1380, 1371, 1659, 1309, 1248, 1213, 1202, 1165, 1138;

MS (70 ev, EI) m/z (%): 293 [M⁺(¹¹B), 9.57], 292 [M⁺(¹⁰B), 2.48], 113 (100). HRMS Calcd for $C_{15}H_{28}NO_2Si^{11}B$ (M⁺): 293.1982, Found: 293.1981.

(15) Synthesis of 1-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3-(trimethylsilyl)pent-4-en-1-one (50) (sl-6-117)

The reaction of CuCl (5.0 mg, 0.05 mmol), BIPHEP (26.2 mg, 0.05 mmol), NaOt-Bu (19.3 mg, 0.2 mmol), bis(pinacolato)diboron (305.1 mg, 1.2 mmol)/THF (2 mL), **30** (230.5 mg, 1.0 mmol)/THF (1 mL), *i*-PrOH (153 μ L, d = 0.784 g/cm³, 120.2 mg, 2.0 mmol) afforded **50** (222.8 mg, 62%) (eluent: petroleum ether/ethyl ether = 40/1) as a liquid; ¹H NMR (400 MHz, CDCl³) δ 7.95-7.90 (m, 2 H, Ar-H), 7.58-7.49 (m, 1 H, Ar-H), 7.47-7.40 (m, 2 H, Ar-H), 5.76 (d, *J* = 2.8 Hz, 1 H, one proton of =CH₂), 5.44 (d, *J* = 2.4 Hz, 1 H, one proton of =CH₂), 3.50 (dd, *J*₁ = 16.8 Hz, *J*₂ = 10.4 Hz, 1 H, one proton of COCH₂), 3.01 (dd, *J*₁ = 16.8 Hz, *J*₂ = 4.8 Hz, 1 H, one proton of COCH₂), 2.57 (dd, *J*₁ = 10.8 Hz, *J*₂ = 4.8 Hz 1 H, =CCH), 1.21 (s, 6 H, B(Pin)), 1.20 (s, 6 H, B(Pin)), 0.03 (s, 9 H, SiMe₃); ¹³C NMR (100 MHz, CDCl₃) δ 200.3, 137.6, 132.5, 128.3, 128.0, 126.8, 83.3, 38.3, 29.9, 24.72, 24.70, -2.8; IR (neat, cm⁻¹): 2978, 1687, 1598, 1580, 1447, 1421, 1359, 1306, 1247, 1216, 1165, 1139; MS (70 ev, EI) m/z (%): 358 [M⁺(¹¹B), 4.70], 357 [M⁺(¹⁰B), 2.39], 73 (100). HRMS Calcd for C₂₀H₃₂O₃Si¹¹B [M⁺(¹¹B)+H]: 359.2214, Found: 359.2219.

(16) Synthesis of ((4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3-(trimethylsilyl)pent-4-en-1-yl)oxy)*tert*-butyldimethylsilane (5p) (ywm-12-26)

The reaction of CuCl (5.0 mg, 0.05 mmol), BIPHEP (26.7 mg, 0.05 mmol), NaOt-Bu (19.1 mg, 0.2 mmol), bis(pinacolato)diboron (305.0 mg, 1.2 mmol)/THF (2 mL), **3p** (271.3 mg, 1.0 mmol)/THF (1 mL), *i*-PrOH (153 μ L, d = 0.784 g/cm³, 120.2 mg, 2.0 mmol) afforded **5p** (287.7 mg, 72%) (eluent: petroleum ether/ethyl ether = 70/1) as a liquid: ¹H NMR (300 MHz, CDCl₃) δ 5.78 (d, *J* = 3.3 Hz, 1 H, one proton of =CH₂), 5.43 (d, *J* = 2.7 Hz, 1 H, one proton of =CH₂), 3.67-3.56 (m, 1 H, =CCH), 3.49-3.38 (m, 1 H, one proton of CH₂), 1.93-1.82 (m, 2 H, CH₂), 1.76-1.64 (m, 1 H, one proton of CH₂), 1.24 (s, 12 H, B(pin)), 0.88 (s, 9 H, (CH₃)₃), 0.02 (s, 6 H, (CH₃)₂), -0.04 (s, 9 H, SiMe₃); ¹³C NMR (75.4 MHz, CDCl₃) δ 126.1, 83.2, 62.8, 31.5, 30.3, 26.0, 24.9, 24.7, 18.4, -2.9, -5.2; IR (neat, cm⁻¹): 2955, 2930, 2858, 1600, 1469, 1418, 1361, 1306, 1249, 1142, 1098; MS (ESI) m/z 422 [M⁺(¹¹B)+Na+H], 421 [M⁺(¹¹B)+Na] or [M⁺(¹⁰B)+Na+H], 420 [M⁺(¹⁰B)+Na]; HRMS Calcd for C₂₀H₄₃O₃Si₂¹¹B (M⁺): 398.2844, Found: 398.2849.

(17) Synthesis of ((5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-4-(trimethylsilyl)hex-5-en-1-yl)oxy)*tert*-butyldimethylsilane (5q) (ywm-13-175)

The reaction of CuCl (5.0 mg, 0.05 mmol), BIPHEP (26.3 mg, 0.05 mmol), NaO*t*-Bu (19.1 mg, 0.2 mmol), bis(pinacolato)diboron (304.8 mg, 1.2 mmol)/THF (2 mL), **3q** (284.4 mg, 1.0 mmol)/THF (1 mL), *i*-PrOH (153 μ L, d = 0.784 g/cm³, 120.2 mg, 2.0 mmol) afforded **5q** (291.4 mg, 71%) (eluent: petroleum ether/ethyl ether =

70/1) as a liquid: ¹H NMR (300 MHz, CDCl₃) δ 5.80 (d, J = 3.3 Hz, 1 H, one proton of =CH₂), 5.40 (d, J = 2.7 Hz, 1 H, one proton of =CH₂), 3.56 (t, J = 6.2 Hz, 2 H, CH₂OTBS), 1.84-1.77 (m, 1 H, =CCH), 1.71-1.49 (m, 3 H, one proton of CH₂ and CH₂), 1.47-1.33 (m, 1 H, one proton of CH₂), 1.24 (s, 12 H, B(pin)), 0.89 (s, 9 H, (CH₃)₃), 0.04 (s, 6 H, (CH₃)₂), -0.05 (s, 9 H, SiMe₃); ¹³C NMR (75.4 MHz, CDCl₃) δ 126.1, 83.1, 63.1, 33.7, 32.0, 26.0, 24.8, 24.7, 24.3, 18.3, -2.9, -5.3; IR (neat, cm⁻¹): 2954, 2858, 1601, 1471, 1361, 1305, 1247, 1142, 1100; MS (ESI) m/z 451 [M⁺(¹¹B)+K], 436 [M⁺(¹¹B)+Na+H], 435 [M⁺(¹¹B)+Na] or [M⁺(¹⁰B)+Na+H], 434 [M⁺(¹⁰B)+Na]; HRMS Calcd for C₂₁H₄₅O₃Si₂¹¹B (M⁺): 412.3000, Found: 412.3003.

(18) Synthesis of 4-(dimethyl(phenyl)silyl)-3-methylene-2-hydroxy-1,2-oxaborinane (5r) (sl-6-5)

The reaction of CuCl (4.9 mg, 0.05 mmol), BIPHEP (26.1 mg, 0.05 mmol), NaO*t*-Bu (19.4 mg, 0.2 mmol), bis(pinacolato)diboron (304.9 mg, 1.2 mmol)/THF (2 mL), **3r** (218.7 mg, 1.0 mmol)/THF (1 mL), *i*-PrOH (120.2 mg, d = 0.784 g/cm³, 2.0 mmol) afforded **5r** (140.2 mg, 57%, the desired hydroboration product was instable on silica gel.) (eluent: petroleum ether/ethyl acetate = 20/1) as an oil: ¹H NMR (400 MHz, CDCl₃) δ 7.53-7.47 (m, 2 H, Ar-H), 7.40-7.30 (m, 3 H, Ar-H), 5.75 (dd, J_1 = 2.4 Hz, J_2 = 1.6 Hz, 1 H, one proton of =CH₂), 5.34 (s, 1 H, one proton of =CH₂), 4.29 (brs, 1 H, OH), 4.05-3.85 (m, 2 H, OCH₂), 2.23 (t, J = 5.2 Hz, =CCH), 2.02-1.85 (m, 1 H, one proton of CH₂), 1.82-1.72 (m, 1 H, one proton of CH₂), 0.33 (s, 3 H, SiMe), 0.32 (s, 3 H, SiMe); ¹³C NMR (100 MHz, CDCl₃) δ 137.7, 134.0, 129.1, 127.8, 125.0, 65.0, 31.6, 28.9, -3.96, -4.04; IR (neat, cm⁻¹): 3384, 2901, 1483, 1425, 1411, 1365, 1339, 1296, 1248, 1187, 1146, 1111, 1034; MS (70 ev, EI) m/z (%): 246 (M⁺(¹¹B), 1.89], 245 [M⁺(¹⁰B), 0.67], 135 (100). HRMS Calcd for C₁₃H₁₉O₂Si¹¹B (M⁺): 246.1247, Found: 246.1249.

(19) Synthesis of bis(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)allyl)methyl (phenyl)silane (5s) (sl-4-83)

The reaction of CuCl (5.0 mg, 0.05 mmol), BIPHEP (26.4 mg, 0.05 mmol), K₂CO₃ (27.7 mg, 0.2 mmol), bis(pinacolato)diboron (635.2 mg, 2.5 mmol), THF (2 mL), **3s** (198.2 mg, 1.0 mmol), THF (1 mL), *i*-PrOH (306 *u*L, d = 0.784 g/mL, 240.4 mg, 4.0 mmol) afforded **5s** (311.7 mg, 69%) (eluent: petroleum ether/ethyl ether = 50/1) as a white solid: m.p. 42.1- 43.1 °C (Hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.54-7.47 (m, 2 H, Ar-H), 7.32-7.24 (m, 3 H, Ar-H), 5.64 (d, *J* = 4.0 Hz, 2 H, =CH₂), 5.39 (d, *J* = 3.2 Hz, 2 H, =CH₂), 1.96 (s, 4 H, 2 × =CCH₂), 1.15 (s, 24 H, 2 × B(pin)), 0.26 (s, 3 H, SiMe); ¹³C NMR (100 MHz, CDCl₃) δ 137.4, 134.5, 128.6, 127.8, 127.3, 83.3, 24.7, 24.6, 22.3, -5.8; IR (neat, cm⁻¹): 2984, 1603, 1469, 1423, 1372, 1356, 1316, 1248, 1193, 1111, 1083; MS (ESI) m/z 478 [M⁺(¹¹B)+Na+H], 477 [M⁺(¹¹B)+Na] or [M⁺(¹⁰B)+Na+H], 476 [M⁺(¹⁰B)+Na]; Anal. Calcd. for C₂₅H₄₀B₂O₄Si (%): C 66.10, H 8.87; Found: C 66.04, H 8.93.

(20) Synthesis of bis(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)allyl)diphenyl silane (5t) (sl-4-82)

The reaction of CuCl (5.0 mg, 0.05 mmol), BIPHEP (26.2 mg, 0.05 mmol), K₂CO₃ (27.8 mg, 0.2 mmol), bis(pinacolato)diboron (635.3 mg, 2.5 mmol), THF (2 mL), **3t** (260.8 mg, 1.0 mmol), THF (1 mL), *i*-PrOH (306 uL, d = 0.784 g/ml, 240.2 mg, 4.0 mmol) afforded **5t** (351.9 mg, 70%) (eluent: petroleum ether/ethyl ether = 50/1) as a white solid: m.p. 78.1-78.8 °C (Hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.55-7.49 (m, 4 H, Ar-H), 7.36-7.24 (m, 6 H, Ar-H), 5.65 (d, *J* = 4.0 Hz, 2 H, =CH₂), 5.41 (d, *J* = 3.2 Hz, 2 H, =CH₂), 2.27 (s, 4 H, 2 × =CCH₂), 1.06 (s, 24 H, 2 × B(pin)); ¹³C NMR (100 MHz, CDCl₃) δ 135.9, 135.3, 128.9, 128.7, 127.3, 83.2, 24.6, 20.1; IR (neat, cm⁻¹): 2979, 2931, 2894, 1606, 1428, 1380, 1370, 1356, 1215, 1192, 1138, 1110, 1082; MS (ESI) m/z 555 [M⁺(¹¹B)+K], 540 [M⁺(¹¹B)+Na+H], 539 [M⁺(¹¹B)+Na] or [M⁺(¹⁰B)+Na+H], 538 [M⁺(¹⁰B)+Na]; Anal. Calcd. for C₃₀H₄₂O₄SiB₂ (%): C 69.78, H 8.20; Found: C 69.96, H 8.19.

(21) Synthesis of (2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hepta-1,6-dien-3 -yl)trimethylsilane (5u) (ywm-13-159)

The reaction of CuCl (4.9 mg, 0.05 mmol), BIPHEP (26.2 mg, 0.05 mmol), NaOt-Bu (19.1 mg, 0.2 mmol), bis(pinacolato)diboron (304.5 mg, 1.2 mmol)/THF (2

mL), **3u** (166.4 mg, 1.0 mmol)/THF (1 mL), *i*-PrOH (153 μ L, d = 0.784 g/cm³, 120.2 mg, 2.0 mmol) afforded **5u** (243.2 mg, 83%) (eluent: petroleum ether/ethyl ether = 70/1) as a liquid: ¹H NMR (300 MHz, CDCl₃) δ 5.86-5.70 (m, 2 H, one proton of =CH₂ and =CH), 5.42 (d, *J* = 2.7 Hz, 1 H, one proton of =CH₂), 5.00-4.88 (m, 2 H, =CH₂), 2.21-2.06 (m, 1 H, =CCH), 1.99-1.68 (m, 3 H, one proton of CH₂ and CH₂), 1.59-1.44 (m, 1 H, one proton of CH₂), 1.25 (s, 12 H, B(pin)), -0.05 (s, 9 H, SiMe₃); ¹³C NMR (75.4 MHz, CDCl₃) δ 139.2, 126.3, 114.2, 83.1, 33.7, 33.1, 27.8, 24.8, 24.7, -2.9; IR (neat, cm⁻¹): 2979, 1640, 1601, 1418, 1360, 1305, 1246, 1142; MS (70 ev, EI) m/z (%) 294 (M⁺, 1.21), 73 (100); HRMS Calcd for C₁₆H₃₁¹¹BO₂Si (M⁺): 294.2186, Found: 294.2191.

(22) Synthesis of (6-methyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hepta-

1,6-dien-3-yl)trimethylsilane (5v) (ywm-13-180)

The reaction of CuCl (5.0 mg, 0.05 mmol), BIPHEP (26.3 mg, 0.05 mmol), NaO*t*-Bu (19.1 mg, 0.2 mmol), bis(pinacolato)diboron (304.5 mg, 1.2 mmol)/THF (2 mL), **3v** (180.5 mg, 1.0 mmol)/THF (1 mL), *i*-PrOH (153 μ L, d = 0.784 g/cm³, 120.2 mg, 2.0 mmol) afforded **5v** (240.7 mg, 78%) (eluent: petroleum ether/ethyl ether = 50/1) as a liquid: ¹H NMR (300 MHz, CDCl₃) δ 5.82 (d, *J* = 3.0 Hz, 1 H, one proton of =CH₂), 5.42 (d, *J* = 3.0 Hz, 1 H, one proton of =CH₂), 4.63 (s, 1 H, one proton of =CH₂), 2.13-2.01 (m, 1 H, =CCH), 1.94-1.72 (m, 3 H, one proton of CH₂ and CH₂), 1.69 (s, 3 H, CH₃), 1.67-1.53 (m, 1 H, one proton of CH₂), 1.25 (s, 12 H, B(pin)), -0.04 (s, 9 H, SiMe₃); ¹³C NMR (75.4 MHz, CDCl₃) δ 146.3, 126.2, 109.8, 83.1, 37.2, 34.0, 26.6, 24.7, 22.3, -2.9; IR (neat, cm⁻¹): 2979, 1648, 1600, 1418, 1360, 1304, 1246, 1138; MS (ESI) m/z 347 [M⁺(¹¹B)+K], 332 [M⁺(¹¹B)+Na+H], 331 [M⁺(¹¹B)+Na] or [M⁺(¹⁰B)+Na+H], 330 [M⁺(¹⁰B)+Na]; HRMS

Calcd for C₁₇H₃₃O₂Si¹⁰B (M⁺): 307.2379, Found: 307.2383.

(23) Synthesis of (prop-1-yn-3-yl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) allyldiphenylsilane (5w) (sl-4-106)

The reaction of CuCl (4.9 mg, 0.05 mmol), BIPHEP (26.3 mg, 0.05 mmol), K₂CO₃ (27.8 mg, 0.2 mmol), bis(pinacolato)diboron (635.1 mg, 2.5 mmol), THF (2 mL), **3w** (260.7 mg, 1.0 mmol), THF (1 mL), *i*-PrOH (306 μ L, d = 0.784 g/cm³, 240.4 mg, 4.0 mmol) afforded **5w** (236.1 mg, 61%) (eluent: petroleum ether/ethyl ether = 150/1) as a white solid: m.p. 71.1-71.7 °C (Hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.62-7.55 (m, 4 H, Ar-H), 7.43-7.30 (m, 6 H, Ar-H), 5.73 (d, *J* = 3.2 Hz, 1 H, one proton of =CH₂), 5.52 (d, *J* = 2.8 Hz, 1 H, one proton of =CH₂), 2.37 (s, 2 H, =CCH₂), 2.09 (d, *J* = 2.8 Hz, 2 H, =CCH₂), 1.85 (t, *J* = 2.8 Hz, 1 H, =CH), 1.08 (s, 12 H, B(pin)); ¹³C NMR (100 MHz, CDCl₃) δ 135.2, 134.0, 129.6, 129.2, 127.7, 83.4, 81.7, 68.6, 24.6, 19.9, 2.9; IR (neat, cm⁻¹): 1608, 1428, 1391, 1380, 1373, 1359, 1310, 1273, 1198, 1160, 1140, 1111, 1092; MS (70 ev, EI) m/z (%): 388 (M⁺(¹¹B), 1.29), 221 (100); Anal. Calcd. for C₂₄H₂₉BO₂Si (%): C 74.22, H 7.53; Found: C 74.07, H 7.54.

5. Synthetic applications

(1) Synthesis of 2,3-dihydro-3-methylene-1*H*-inden-1-ol (7) (sl-5-38)

To an oven-dried Schlenk tube equipped with a magnetic stirring bar were added sequentially Pd₂(dba)₃·CHCl₃ (10.4 mg, 0.01 mmol), Ph₃P (11.9 mg, 0.044 mmol), NaOt-Bu (153.7 mg, 1.6 mmol), 2-iodobenzaldehyde (139.0 mg, 0.6 mmol), 5e (120.7 mg, 0.4 mmol)/toluene (2 mL), and H₂O (1.5 mL) under argon. The mixture was stirred at rt for 10 min and then at 95 °C with a preheated oil bath for 37 h. Upon completion, the resulting mixture was cooled to rt, filtered through a short column of silica gel eluted with Et_2O (10 mL \times 3), and concentrated. The residue was dissolved in 3 mL of THF followed by the addition of n-Bu₄NF (0.5 mL, 1 M in THF, 0.5 mmol). The resulting mixture was stirred at rt for 0.5 h. Upon completion, the resulting mixture was filtered through a short column of silica gel eluting with Et₂O (10 mL \times 3) and concentrated. The reside was purified by chromatography on silica gel to afford 7^9 (39.3 mg, 67%) (eluent: petroleum ether/ethyl acetate = 10/1) as a white solid: m.p. 69.5-70.6 °C (Hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.57-7.49 (m, 1 H, Ar-H), 7.48-7.42 (m, 1 H, Ar-H), 7.36-7.27 (m, 2 H, Ar-H), 5.52 (t, J = 2.4 Hz, 1 H, one proton of =CH₂), 5.25 (brs, 1 H, OCH), 5.09 (t, J = 1.8 Hz, 1 H, one proton of =CH₂), 3.19 (ddt, $J_1 = 16.8$ Hz, $J_2 = 2.0$ Hz, $J_3 = 1.9$ Hz, 1 H, one proton of CH₂), 2.69-2.60 (m, 1 H, one proton of CH₂), 2.00 (s, 1 H, OH); ¹³C NMR (100 MHz, CDCl₃) & 146.9, 146.3, 140.1, 128.9, 128.7, 125.0, 120.6, 104.3, 73.3, 42.5; IR (neat, cm⁻¹): 3303, 3217, 1641, 1470, 1422, 1333, 1094, 1040, 1002; MS (70 ev, EI) m/z (%) 146 (M⁺, 97.0), 131 (100).

(2) Synthesis of 4-ethoxyhexen-2-yl 4,4,5,5-tetramethyl-1,3,2-dioxaborolane 8a (sl-4-74)

To an oven-dried Schlenk tube equipped with a magnetic stirring bar were added sequentially **5e** (151.2 mg, 0.5 mmol), CH_2Cl_2 (1.25 mL), 1,1-diethoxypropane (95µL, d = 0.83 g/cm³, 79.3 mg, 0.6 mmol), and CH_2Cl_2 (1.25 mL) under argon at rt. The

mixture was cooled to -78 °C and TiCl₄ (0.6 mL, 1 M in CH₂Cl₂, 0.6 mmol) was added dropwise over 10 minutes. Upon completion as monitored by TLC, the resulting mixture was quenched with a saturated aqueous solution of NaHCO₃(10 mL) at -78 °C. After warming up to room temperature, the organic phase was separated and the aqueous layer was extracted with CH_2Cl_2 (10 mL \times 3). The combined organic layer was washed with brine, dried over Na₂SO₄, filtered, and concentrated. The residue was purified by chromatography on silica gel to afford $8a^{10}$ (108.7 mg, 86%) (eluent: petroleum ether/ethyl ether = 50/1) as a liquid: ¹H NMR (400 MHz, CDCl₃) δ 5.83 (d, J = 3.6 Hz, 1 H, one proton of =CH₂), 5.65 (d, J = 3.6 Hz, 1 H, one proton of =CH₂), 3.60-3.40 (m, 2 H, OCH₂), 3.35-3.26 (m, 1 H, OCH), 2.41 (dd, J₁ = 13.4 Hz, $J_2 = 6.2$ Hz, 1 H, one proton of =CCH₂), 2.24 (dd, $J_1 = 13.2$ Hz, $J_2 = 6.8$ Hz, 1 H, one proton of =CCH₂), 1.57-1.44 (m, 1 H, one proton of CH₂), 1.43-1.34 (m, 1 H, one proton of CH₂), 1.27 (s, 12 H, B(pin)), 1.17 (t, J = 7.0 Hz, 3 H, CH₃), 0.91 (t, J = 7.4 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 131.2, 83.3, 80.1, 64.3, 40.2, 26.7, 24.8, 24.7, 15.5, 9.8; IR (neat, cm⁻¹): 2975, 2930, 2874, 1615, 1430, 1367, 1344, 1307, 1214, 1166, 1142, 1108, 1081; MS (ESI) m/z 278 [M⁺(¹¹B)+Na+H], 277 [M⁺(¹¹B)+Na] or [M⁺(¹⁰B)+Na+H], 276 [M⁺(¹⁰B)+Na], 255 [M⁺(¹¹B)+H], 254 [M⁺(¹¹B)].

(3) Synthesis of 4-benzyloxyhexen-2-yl 4,4,5,5-tetramethyl-1,3,2-dio-

To an oven-dried Schlenk tube equipped with a magnetic stirring bar were added sequentially **5e** (151.4 mg, 0.5 mmol), CH_2Cl_2 (1.5 mL), propionaldehyde dibenzyl acetal (152.3 mg, 0.6 mmol), and CH_2Cl_2 (1.5 mL) under argon. The mixture was cooled to -78 °C and TiCl₄ (0.6 mL, 1 M in CH_2Cl_2 , 0.6 mmol) was added dropwise over 10 minutes. Upon completion, the resulting mixture was quenched with a saturated aqueous solution of NaHCO₃ (10 mL) at -78 °C. After warming up to room

temperature, the organic phase was separated and the aqueous layer was extracted with CH₂Cl₂ (10 mL × 3). The combined organic layer was dried over Na₂SO₄, filtered, and concentrated. The residue was purified by chromatography on silica gel to afford **8b** (137.6 mg, 87%) (eluent: petroleum ether/ethyl ether = 80/1) as a liquid: ¹H NMR (400 MHz, CDCl₃) δ 7.39-7.29 (m, 4 H, Ar-H), 7.28-7.21 (m, 1 H, Ar-H), 5.86 (d, *J* = 3.6 Hz, 1 H, one proton of =CH₂), 5.68 (d, *J* = 3.2 Hz, 1 H, one proton of =CH₂), 4.59 (d, 1 H, *J* = 11.6 Hz, one proton of Ar-CH₂), 4.49 (d, 1 H, *J* = 12.0 Hz, one proton of Ar-CH₂), 3.51-3.43 (m, 1 H, OCH), 2.53 (dd, *J*₁ = 13.2 Hz, *J*₂ = 6.0 Hz, 1 H, one proton of =CCH₂), 1.61-1.34 (m, 2 H, CH₂), 1.24 (s, 6 H, B(pin)), 1.23 (s, 6 H, B(pin)), 0.91 (t, *J* = 7.4 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 139.2, 131.5, 128.1, 127.7, 127.2, 83.3, 79.8, 70.8, 39.9, 26.4, 24.7, 24.6, 9.7; IR (neat, cm⁻¹): 2874, 1614, 1496, 1454, 1428, 1368, 1368, 1307, 1213, 1166, 1141, 1109, 1096, 1066, 1028; MS (70 ev, EI) m/z (%) 316 [M⁺(¹¹B), 1.07], 315 [M⁺(¹⁰B), 0.27], 91 (100); HRMS Calcd for C₁₉H₂₉O₃¹¹B (M⁺): 316.2210, Found: 316.2208.

(4). Synthesis of 2-phenyl-2-propenyl dimethylphenylsilane (9) (sl-4-73)

To an oven-dried Schlenk tube equipped with a magnetic stirring bar were added sequentially Pd(PPh₃)₄ (17.3 mg, 0.015 mmol), Ba(OH)₂·8H₂O (236.8 mg, 0.75 mmol), PhI (153.2 mg, 0.75 mmol)/DME (1.5 mL), **5e** (151.4 mg, 0.5 mmol)/DME (1.0 mL), and H₂O (0.4 mL) under argon. The mixture was stirred under reflux with an oil bath preheated at 100 °C for 3 h as monitored by TLC. Upon completion, the resulting mixture was cooled to rt, filtered through a short column of silica gel eluted with Et₂O (10 mL × 3), and concentrated. The residue was purified by chromatography on silica gel to afford **9**¹⁰ (101.8 mg, 85%) (eluent: petroleum ether) as a liquid: ¹H NMR (400 MHz, CDCl₃) δ 7.50-7.42 (m, 2 H, Ar-H), 7.39-7.29 (m, 5

H, Ar-H), 7.29-7.18 (m, 3 H, Ar-H), 5.13 (d, J = 1.6 Hz, 1 H, one proton of =CH₂), 4.84 (d, J = 1.2 Hz, 1 H, one proton of =CH₂), 2.25 (d, J = 1.2 Hz, 2 H, CH₂), 0.14 (s, 6 H, SiMe₂); ¹³C NMR (100 MHz, CDCl₃) δ 145.9, 142.6, 138.9, 133.5, 128.9, 128.0, 127.6, 127.2, 126.3, 110.9, 25.2, -3.0; IR (neat, cm⁻¹): 1615, 1493, 1426, 1299, 1248, 1160, 1112, 1028; MS (70 ev, EI) m/z (%): 252 (M⁺, 10.42), 135 (100).

(5) Synthesis of 1,3-diphenylbut-3-en-1-ol (10) (sl-5-196)

To an oven-dried Schlenk tube equipped with a magnetic stirring bar were added sequentially CsF (33.6 mg, 0.22 mmol), 4 Å MS (50.1 mg,), PhCHO (30 uL, d = 1.048 g/cm³, 41.8 mg, 0.3 mmol, fresh distilled)/DMF (0.5 mL), and **9** (50.5 mg, 0.2 mmol)/DMF (0.5 mL) under argon. The mixture was stirred at rt for 3 h as monitored by TLC. Upon completion, the resulting mixture was quenched with HCl (1 M, 5 mL), extracted with DCM (20 mL × 3), dried over NaSO₄, filtered, and concentrated. The residue was purified by chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 20/1) to afford **10**¹¹ (31.3 mg, 70%) as a solid: m.p. 50.2-51.2 °C (Hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.47-7.42 (m, 2 H, Ar-H), 7.40-7.22 (m, 8 H, Ar-H), 5.41 (d, *J* = 0.4 Hz, 1 H, one proton of =CH₂), 5.16 (s, 1 H, one proton of =CH₂), 4.75-4.68 (m, 1 H, OCH), 3.00 (dd, *J*₁ = 14.2 Hz, *J*₂ = 3.4 Hz, 1 H, one proton of =CCH₂), 2.85 (dd, *J*₁ = 14.2 Hz, *J*₂ = 9.0 Hz, 1 H, one proton of =CCH₂), 2.07 (q, *J* = 2.1 Hz, 1 H, OH); ¹³C NMR (100 MHz, CDCl₃) δ 145.0, 143.9, 140.2, 128.5, 128.4, 127.8, 127.5, 126.3, 125.8, 115.8, 72.0, 45.9; IR (neat, cm⁻¹): 3280, 1629, 1494, 1447, 1354, 1322, 1199, 1050, 1029, 1009; MS (ESI) 207 (M⁺-OH).

(6) Synthesis of 2-hexyl-2,3,6,7-tetrahydro 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) oxepine (11) (ywm-12-176)

To an oven-dried Schlenk tube equipped with a magnetic stirring bar were added sequentially **5p** (76.7 mg, 0.2 mmol), CH₂Cl₂ (2 mL), *n*-C₆H₁₃CHO (25.9 mg, 0.22 mmol), and CH₂Cl₂ (2 mL) under argon. The resulting mixture was cooled to -78 °C and TMSOTf (43 μ L, d = 1.15 g/cm³, 48.9 mg, 0.22 mmol) was added dropwise for 5 min. The resulting mixture was stirred for an additional 55 min at -78 °C and quenched with a saturated aqueous solution of NaHCO₃ (3 mL). The organic phase was separated and the aqueous layer was extracted with ethyl acetate (10 mL \times 3). The combined organic layer was washed with brine, dried over Na₂SO₄, filtered, and concentrated. The residue was purified by chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 50/1 to 30/1) to afford 11^{10} (50.4 mg, 85%) as a liquid⁵: ¹H NMR (400 MHz, CDCl₃) δ 6.79-6.73 (m, 1 H, =CH), 4.10-3.90 (dt, J₁= 12.4 Hz, $J_2 = 3.8$ Hz, 1 H, OCH), 3.44-3.35 (m, 1 H, one proton of CH₂), 3.33-3.24 (m, 1 H, one proton of CH₂), 2.58-2.44 (m, 2 H, OCH₂), 2.36-2.25 (m, 2 H, CH₂), 1.57-1.39 (m, 3 H, one proton of CH₂ and =CCH₂), 1.36-1.19 (m, 19 H, one proton of CH₂ and 3 × CH₂ and B(pin)), 0.88 (t, J = 6.8 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 146.3, 83.4, 80.2, 68.5, 38.1, 36.9, 34.1, 31.8, 29.3, 25.9, 24.8, 22.6, 14.1; IR (neat, cm⁻¹): 2930, 2856, 1632, 1467, 1326, 1304, 1147, 1052; MS (70 ev, EI) m/z (%): 308 $(M^{+}(^{11}B), 12.83), 307 [M^{+}(^{10}B), 3.45], 194 (100).$

(7) Synthesis of 2-hexyl-4-phenyl-2,3,6,7-tetrahydrooxepine (12) (ywm-12-194)

To an oven-dried Schlenk tube equipped with a magnetic stirring bar were added sequentially Pd(PPh₃)₄ (11.9 mg, 0.01 mmol), Na₂CO₃ (64.5 mg, 0.6 mmol), **11** (61.5 mg, 0.2 mmol), 1,4-dioxane (1 mL), PhI (48.6 mg, 0.24 mmol), and H₂O (1 mL). The resulting mixture was stirred at 80 °C for 5 h as monitored by TLC. Upon completion, Et₂O (5 mL) was added. The organic phase was separated and the aqueous layer was extracted with Et_2O (5 mL \times 3). The combined organic layer was washed with brine, dried over Na₂SO₄, filtered, and concentrated. The residue was purified by chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 100/1) to afford 12 (43.3 mg, 84%) as a liquid: ¹H NMR (400 MHz, CDCl₃) δ 7.35-7.19 (m, 5 H, Ar-H), 6.14-6.06 (m, 1 H, =CH), 4.09-4.00 (m, 1 H, OCH), 3.59-3.43 (m, 2 H, OCH₂), 2.89-2.78 (m, 1 H, one proton of CH₂), 2.69-2.54 (m, 2 H, CH₂), 2.39-2.25 (m, 1 H, one proton of CH₂), 1.66-1.54 (m, 1 H, one proton of CH₂), 1.52-1.20 (m, 9 H, one proton of CH₂ and 4 × CH₂), 0.88 (t, J = 6.4 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) & 144.7, 142.8, 128.9, 128.2, 126.6, 125.7, 79.0, 69.1, 41.5, 37.1, 31.9, 31.8, 29.3, 25.9, 22.6, 14.1; IR (neat, cm⁻¹): 2928, 2855, 1598, 1492, 1456, 1377, 1110; MS (70 ev, EI) m/z (%): 258 (M⁺, 7.44), 129 (100); HRMS Calcd for $C_{18}H_{26}O$ (M⁺): 258.1984, Found: 258.1981.

5. Synthesis of (2-Deutero-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)but-3-en-2-yl) dimethyl(phenyl)silane ([D]-5a) (sl-6-144)

To an oven-dried Schlenk tube equipped with a magnetic stirring bar were added sequentially CuCl (4.9 mg, 0.05 mmol), BIPHEP (26.1 mg, 0.05 mmol), NaOt-Bu (19.3 mg, 0.2 mmol), bis(pinacolato)diboron (304.9 mg, 1.2 mmol)/THF (2 mL), 3a (188.4 mg, 1.0 mmol)/THF (1 mL), and *i*-PrOH_{d-8} (136.3 mg, 2.0 mmol) under argon. The resulting mixture was stirred at rt for 4 h as monitored by TLC. Upon completion, the resulting mixture was filtered through a short column of silica gel eluted with Et_2O (10 mL \times 3) and concentrated. The residue was purified by chromatography on silica gel (eluent: petroleum ether/ethyl ether = 70/1) to afford [D]-5a (275.5 mg, 87%) as a liquid: ¹H NMR (400 MHz, CDCl₃) & 7.53-7.46 (m, 2 H, Ar-H), 7.36-7.28 (m, 3 H, Ar-H), 5.78 (d, J = 2.4 Hz, 1 H, one proton of =CH₂), 5.36 (d, J = 2.8 Hz, 1 H, one proton of =CH₂), 1.20 (s, 6 H, B(pin)), 1.18 (s, 6 H, B(pin)), 1.08 (s, 3 H, CH₃), 0.24 (s, 6 H, SiMe₂), the following signal is discernible for **5a**: 2.19 (g, J = 7.5 Hz, 0.08 H, =CCH); ¹³C NMR (100 MHz, CDCl₃) δ 138.3, 134.2, 128.7, 127.4, 125.5, 83.3, 25.7 (t, J = 18.8 Hz), 24.9, 24.7, 14.4, -4.1, -5.6, the following signal is discernible for **5a**: 26.2, 14.5; IR (neat, cm⁻¹): 1596, 1426, 1388, 1372, 1356, 1306, 1247, 1213, 1187, 1165, 1143, 1110; MS (ESI) m/z 341 $[M^{+}(^{11}B)+Na+H]$, 340 $[M^{+}(^{11}B)+Na]$ or [M⁺(¹⁰B)+Na+H], 319 [M⁺(¹¹B)+H], 318 [M⁺(¹¹B)] or 318 [M⁺(¹⁰B)+H], 317 $[M^{+}(^{10}B)]$; HRMS Calcd for C₁₈H₃₂D¹¹BNO₂Si (M⁺+NH₄): 335.2436, Found: 335.2432.

References:

- 1. Lund, H.; Bjerrum, J. Chem. Ber. 1931, 64, 210.
- Evans, D. A.; Sweeney, Z. K.; Rovis, T.; Tedrow, J. S. J. Am. Chem. Soc. 2001, 123, 12095.
- 3. Trost, B. M.; Pinkerton, A. B.; Seidel, M. J. Am. Chem. Soc. 2001, 123, 12466.
- 4. Jiang, X.; Fu, C.; Ma, S. Chem. Eur. J. 2008, 14, 9656.
- 5. Ma, S.; Gao, W. J. Org. Chem. 2002, 67, 6104.
- Ma, S.; Liu, J.; Li, S.; Chen, B.; Cheng, J.; Kuang, J.; Liu, Y.; Wan, B.; Wang, Y.;
 Ye, J.; Yu, Q.; Yuan, W.; Yu, S. Adv. Synth. Catal. 2011, 353, 1005.
- 7. Onozawa, S.; Hatanaka, Y.; Tanaka, M. Chem. Commun. 1999, 1863.
- 8. Suginome, M.; Ohmori, Y.; Ito, Y. J. Organomet. Chem. 2000, 611, 403.
- Cvengroš, J.; Schütte, J.; Schlörer, N.; Neudörfl, J.; Schmalz, H.-G. Angew. Chem. Int. Ed. 2009, 48, 6148.
- 10. Suginome, M.; Ohmori, Y.; Ito, Y. J. Am. Chem. Soc. 2001, 123, 4601.
- 11. Stephane, P.; Jack, H. Tetrahedron. Lett. 1989, 30, 3419.

S33

S35

