Supporting Information

Ruthenium (II)-Catalyzed C-H Alkenylation/Annulation Cascade for the Rapid Synthesis of Benzoimidazoisoindoles

Manikandan Selvaraju,^a Ying-Lien Wang^a and Chung-Ming Sun*^{a,b}

^a Department of Applied Chemistry, 1001 Ta-Hseuh Road, National Chiao Tung University, Hsinchu 300-10, Taiwan, ROC

^b Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, 100, Shih-Chuan 1st Road, Kaohsiung 807-08, Taiwan, ROC

Email: <u>cmsun@mail.nctu.edu.tw</u>

Table of contents

General remarks	S2
Spectral data of compounds 3	S2
Spectra (¹ H NMR, ¹³ C, LR-MS, HRMS, IR) of compounds 3	S9
X-ray crystallography data of compound 3b	S126

General Remarks

Solvents were distilled before use. All the reactions were performed under open air atmosphere with unpurified reagents and dry solvents. Analytical thin-layer chromatography (TLC) was performed using 0.25 mm silica gelcoated Kieselgel 60 F254 plates. Flash chromatography was performed using the indicated solvent and silica gel 60 (Merck, 230-400 mesh). ¹ H NMR (300 & 400 MHz) and ¹³C NMR (75 &100 MHz) spectra were recorded on a Bruker DX-300 spectrometer. Chemical shifts are reported in parts per million (ppm) on the δ scale from an internal standard. High-resolution mass spectra (HRMS) were recorded on a JEOL TMS-HX 110 mass spectrometer.

Spectral data of compounds 3:

Methyl 2-(3-methyl-11*H*-benzo[4,5]imidazo[2,1-*a*]isoindol-11-yl) acetate (3b)

Yellow solid, yield = 78 %; mp = 122-124 °C; ¹H NMR (400 MHz,CDCl₃) δ 7.87 – 7.80 (m, 2H), 7.46-7.39 (m, 2H), 7.30-7.25 (m, 5H), 5.69 (t, *J* = 6.5 Hz, 1H), 3.80 (s, 3H), 3.14 (dd, *J* = 16.4, 4.0 Hz, 1H), 2.85 (dd, *J* = 16.4, 4.0 Hz, 1H), 2.48 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.1, 148.8, 144.7, 139.6, 132.2, 130.9, 128.9, 123.4, 122.9, 122.7, 122.4, 120.8, 109.9, 55.9, 52.5, 39.0, 21.6; LRMS (ESI⁺) *m*/*z* : 293.2 (M+H)⁺; HRMS: calcd for C₁₈H₁₇N₂O₂ (M+H)⁺ *m*/*z*: 293.1285; Found 293.1288; IR (cm⁻¹, neat): 3143, 2787, 1975, 1658, 1570, 1517, 1473, 1394.

Methyl 2-(2-methyl-11*H*-benzo[4,5]imidazo[2,1-*a*]isoindol-11-yl) acetate (3c)

White solid, yield = 93 %; mp = 103-105 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, *J* = 7.6 Hz, 1H), 7.81-7.76 (m, 1H), 7.40-7.35 (m, 1H), 7.33-7.28 (m, 2H), 7.26-7.20 (m, 3H), 5.66 (t, *J* = 7.6 Hz, 1H), 3.78 (d, *J* = 1.2 Hz, 3H), 3.10 (dd, *J* = 16.6, 8.0 Hz, 1H), 2.85 (dd, *J* = 16.6, 8.0 Hz, 1H), 2.43 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.9, 157.6, 1487, 147.6, 140.5, 132.0, 130.1, 126.0, 124.1, 122.6, 122.1, 121.8, 120.5, 109.6, 55.8, 52.4, 38.8, 21.9; LRMS (ESI⁺) *m/z*: 293.2 (M+H)⁺; HRMS: calcd for C₁₈H₁₇N₂O₂ (M+H)⁺ *m/z*: 293.1285; Found 293.1295; IR (cm⁻¹, neat) : 3136, 2785, 1967, 1826, 1583, 1508, 1400.

Methyl 2-(2-chloro-11*H*-benzo[4,5]imidazo[2,1-*a*]isoindol-11-yl) acetate (3d)

Brown solid, yield = 71 %; mp = 133-135 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, *J* = 8.1 Hz, 1H), 7.85-7.81 (m, 1H), 7.59-7.57 (m, 1H), 7.51 (dd, *J* = 8.1, 1.9 Hz, 1H), 7.44-7.41 (m, 1H),

7.30- 7.27 (m, 2H), 5.72 (t, J = 6.4 Hz, 1H), 3.82 (s, 3H), 3.22 (dd, J = 16.4, 8 Hz, 1H), 2.88 (dd, J = 16.4, 8.0 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 170.6, 156.3, 148.8, 148.6, 135.9, 129.8, 127.3, 124.3, 123.2, 123.0, 122.6, 120.8, 109.7, 55.7, 52.5, 38.4, 29.7; LRMS (ESI⁺) m/z: 313.2 (M+H)⁺; HRMS: calcd for C₁₇H₁₄ClN₂O₂ (M+H)⁺ m/z: 313.0738; Found 313.0741; IR (cm⁻¹, neat) : 3143, 2761, 1990, 1652, 1566, 1506.

Methyl 2-(2-(trifluoromethyl)-11*H*-benzo[4,5]imidazo[2,1-*a*]isoindol- 11-yl)acetate (3e)

White solid, yield = 81 %; mp = 191-194 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.15 (d, *J* = 7.9 Hz, 1H), 7.91-7.77 (m, 3H), 7.47 (dt, *J* = 6.2, 2.8 Hz, 1H), 7.32 (dt, *J* = 5.9, 2.8 Hz, 2H), 5.80 (t, *J* = 6.2 Hz, 1H), 3.82 (s, 3H), 3.24 (dd, *J* = 16.9, 5.8 Hz, 1H), 2.92 (dd, *J* = 16.9, 7.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 170.5, 155.8, 148.7, 147.6, 132.2, 131.9, 131.7 (q, *J*_{C-F} = 32.8 Hz), 126.8 (q, *J*_{C_F} = 3.7 Hz), 123.8 (q, *J*_{C_F} = 272.7 Hz), 123.6, 122.9, 122.3, 121.2, 120.9, 110.0, 56.0, 52.6, 38.4; LRMS (ESI⁺) *m*/*z*: 347.2 (M+H)⁺; HRMS: calcd for C₁₈H₁₄F₃N₂O₂ (M+H)⁺ *m*/*z*: 347.1002; Found 347.1012; IR (cm-1, neat) : 3126, 3030, 2738, 1990, 1967, 1826, 1598, 1494, 1407.

Methyl 2-(2-methoxy-11H-benzo[4,5]imidazo[2,1-a]isoindol-11-yl) acetate (3f)

Yellow solid, Yield = 66 %; mp = 139-141°C; ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, *J* = 8.4 Hz, 1H), 7.81-7.76 (m, 1H), 7.41-7.36 (m, 1H), 7.27-7.21 (m, 3H), 7.08 (m, 1H), 7.04 (dd, *J* = 8.4, 2.3 Hz, 1H), 5.67 (t, *J* = 6.4, 1H), 3.88 (s, 3H), 3.80 (s, 3H), 3.16 (dd, *J* = 16.7, 6.3 Hz, 1H), 2.86 (dd, *J* = 16.7, 6.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 170.9, 161.5, 149.4, 129.5, 125.7, 123.2, 122.5, 122.1, 121.2, 120.4, 114.8, 109.8, 109.4, 77.2, 55.8, 55.7, 52.4, 38.8; LRMS (ESI⁺) *m/z*: 309.3 (M+H)⁺; HRMS: calcd for C₁₈H₁₇N₂O₃ (M+H)⁺ *m/z*: 309.1234; Found 309.1233; IR (cm⁻¹, neat) : 3143, 2866, 2717, 1994, 1820, 1654, 1568, 1516.

Ethyl-2-(2-(trifluoromethyl)-11*H*-benzo[4,5]imidazo[2,1-*a*]isoindol-11-yl) acetate (3g)

Yellow liquid, Yield = 75 %; ¹H NMR (400 MHz, CDCl₃) δ 8.51 (d, *J* = 8.0 Hz, 1H), 7.94-7.87 (m, 2H), 7.83 (d, *J* = 8.0 Hz, 1H), 7.63-7.58 (m, 1H), 7.47-7.39 (m, 2H), 6.00 (t, *J* = 6.2 Hz, 1H), 4.29-4.17 (m, 2H), 3.29 (dd, *J* = 17.0, 5.3 Hz, 1H), 3.05 (dd, *J* = 17.0, 6.8 Hz, 1H), 1.24-1.20 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.5, 151.9, 147.8, 135.5, 135.0 (q, *J* = 32.8 Hz), 128.7, 127.8 (q, *J* = 3.5 Hz), 127.3, 127.1, 125.8 (q, *J* = 272.2 Hz),127.0, 126.1, 120.9 (q, *J* = 3.8 Hz), 117.1, 112.0, 62.3, 59.6, 37.1, 14.0; LRMS (ESI⁺) *m/z*: 361.1 (M+H)⁺; HRMS: calcd for

C₁₉H₁₆F₃N₂O₂ (M+H)⁺ *m/z*: 361.1158; Found 361.1159; IR (cm⁻¹, neat) : 3134, 2754, 1992, 1828, 1793, 1647, 1585, 1506.

Ethyl-2-(2-chloro-11*H*-benzo[4,5]imidazo[2,1-*a*]isoindol-11-yl)acetate (3h)

Yellow solid, yield = 65 %; mp = 130-132 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, *J* = 8.1 Hz, 1H), 7.79-7.77 (m, 1H), 7.58-7.57 (m, 1H), 7.47 (dd, *J* = 8.2, 1.8 Hz, 1H), 7.46-7.42 (m, 1H), 7.28 (dd, *J* = 6.1, 3.2 Hz, 2H), 5.71 (t, *J* = 6.3 Hz, 1H), 4.27-4.22 (q, *J* = 7.1 Hz, 2H), 3.18 (dd, *J* = 16.8, 5.5 Hz, 1H), 2.88 (dd, *J* = 16.8, 7.2 Hz, 1H), 1.24 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.6, 152.5, 148.9, 131.1, 128.6, 127.6, 126.6, 126.5, 124.4, 124.2, 121.3, 117.0, 111.7, 62.2, 59.1, 37.2, 14.0; LRMS (ESI⁺) *m/z*: 327.2 (M+H)⁺; HRMS: calcd for C₁₈H₁₆ClN₂O₂ *m/z*: 327.0895; Found 327.0887; IR (cm⁻¹, neat): 3134, 3028, 2823, 2748, 1994, 1820, 1502, 1406.

Ethyl-2-(2-methyl-11*H*-benzo[4,5]imidazo[2,1-*a*]isoindol-11-yl)acetate (3i)

Yellow solid, Yield = 85 %; mp = 115-118 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.34 (d, *J* = 7.8 Hz, 1H), 7.93-7.87 (m, 1H), 7.58-7.53 (m, 1H), 7.43-7.36 (m, 4H), 5.87 (t, *J* = 6.1 Hz, 1H), 4.22 (q, *J* = 7.1 Hz, 2H), 3.17 (dd, *J* = 16.9, 5.9 Hz, 1H), 3.04 (dd, *J* = 16.9, 6.4 Hz, 1H), 2.50 (s, 3H), 1.21 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.0, 156.4, 147.7, 141.8, 131.0, 130.5, 124.2, 124.1, 123.7, 123.4, 123.1, 119.4, 110.3, 61.6, 56.8, 38.5, 22.0, 14.0; LRMS (ESI⁺) *m/z*: 307.3 (M+H)⁺; HRMS: calcd for C₁₉H₁₉N₂O₂ (M+H)⁺ *m/z*: 307.1441; Found 307.1442; IR (cm⁻¹, neat): 3134, 2947, 2862, 2754, 1992, 1890, 1828, 1664, 1519.

Cyclohexyl 2-(11*H*-benzo[4,5]imidazo[2,1-*a*]isoindol-11-yl)acetate (3j)

Yellow solid, yield = 62 %; mp = 199-202 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.05-8.00 (m, 1H), 7.84-7.79 (m, 1H), 7.56-7.52 (m, 1H), 7.52-7.43 (m, 3H), 7.27-7.23 (m, 3H), 5.70 (t, *J* = 6.2 Hz, 1H), 4.84 (m, 1H), 3.14 (dd, *J* = 16.5, 5.7 Hz, 1H), 2.90 (dd, *J* = 16.5, 6.8 Hz, 1H), 1.82-1.75 (m, 2H), 1.69-1.61 (m, 2H), 1.50 (d, *J* = 12.6 Hz, 1H), 1.38-1.24 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ 169.6, 157.5, 148.5, 147.3, 132.0, 129.8, 129.2, 128.8, 123.5, 122.8, 122.3, 122.1, 120.6, 109.9, 74.1, 56.1, 39.1, 31.4, 31.4, 25.2, 23.6, 23.6; LRMS (ESI⁺) *m/z* : 347.2 (M+H)⁺; HRMS: calcd for C₂₂H₂₃N₂O₂ *m/z*: 347.1754; Found 347.1759; IR (cm⁻¹, neat): 3236, 2754, 2754, 1867, 1832, 1570, 1508.

Butyl 2-(11*H*-benzo[4,5]imidazo[2,1-*a*]isoindol-11-yl)acetate (3k)

Yellow liquid , Yield = 67 %; ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, *J* = 7.4 Hz, 1H), 7.87-7.80 (m, 1H), 7.57-7.41 (m, 4H), 7.30-7.23 (m, 3H), 5.71 (t, *J* = 6.4 Hz, 1H), 4.17 (t, *J* = 6.7 Hz, 2H), 3.12 (dd, *J* = 16.6, 5.9 Hz, 1H), 2.90 (dd, *J* = 16.6, 6.8 Hz, 1H), 1.56 (p, *J* = 6.9 Hz, 2H), 1.28 (m, 2H), 0.89 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.4, 157.4, 148.6, 147.3, 132.0, 129.9, 129.2, 128.7, 123.5, 122.9, 122.3, 122.1, 120.6, 109.8, 65.4, 56.0, 38.8, 30.4, 19.0, 13.6; LRMS (ESI⁺) *m/z*: 321.3 (M+H)⁺; HRMS : calcd for C₂₀H₂₁N₂O₂ (M+H)⁺*m/z* : 321.1598; Found 321.1602; IR (cm-1, neat) : 3147, 3006, 1830, 1652, 1570, 1504.

Ethyl 2-(11*H*-benzo[4,5]imidazo[2,1-*a*]isoindol-11-yl)acetate (3l)

Yellow liquid, yield = 65 %; ¹H NMR (400 MHz, CDCl3) δ 8.05 (d, *J* = 7.3 Hz, 1H), 7.85-7.80 (m, 1H), 7.58-7.41 (m, 4H), 7.30-7.23 (m, 3H), 5.71 (t, *J* = 6.4 Hz, 1H), 4.23 (m, 2H), 3.14 (dd, *J* = 16.6, 5.9 Hz, 1H), 2.89 (dd, *J* = 16.6, 6.8 Hz, 1H), 1.23 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.3, 157.5, 148.6, 147.3, 132.0, 129.9, 129.2, 128.8, 123.5, 122.8, 122.3, 122.1, 120.7, 109.8, 61.4, 56.0, 38.9, 14.1; LRMS (ESI⁺) *m*/*z* : 293.2 (M+H)⁺; HRMS: calcd for C₁₈H₁₇N₂O₂ (M+H)⁺ *m*/*z*: 293.1285; Found 293.1284; IR (cm-1, neat) : 3145, 2781, 1994, 1830, 1652, 1570, 1517.

Tert-butyl 2-(11*H*-benzo[4,5]imidazo[2,1-*a*]isoindol-11-yl)acetate (3m)

Yellow solid, yield = 50 %; mp = 199-202 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, *J* = 7.3 Hz, 1H), 7.86-7.80 (m, 1H), 7.59-7.45 (m, 4H), 7.30-7.25 (m, 3H), 5.67 (t, *J* = 6.0 Hz, 1H), 3.10 (dd, *J* = 16.4, 5.5 Hz, 1H), 2.91 (dd, *J* = 16.4, 6.6 Hz, 1H), 1.37 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 169.3, 157.5, 148.6, 147.4, 132.1, 129.8, 129.1, 128.9, 123.5, 122.7, 122.2, 122.0, 120.6, 110.0, 82.0, 56.0, 39.7, 27.8; LRMS (ESI⁺) *m*/*z* : 321.3 (M+H)⁺; HRMS: calcd for C₂₀H₂₁N₂O₂ (M+H)⁺ *m*/*z*: 321.1598; Found 321.1611; IR (cm⁻¹, neat): 3026, 2835, 1865, 1795, 1656, 1568, 1519, 1407.

Benzyl 2-(11*H*-benzo[4,5]imidazo[2,1-*a*]isoindol-11-yl)acetate (3n)

Yellow liquid, yield = 62 %; ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, *J* = 7.6 Hz, 1H), 7.83 (d, *J* = 8.1 Hz, 1H), 7.56-7.18 (m, 11H), 5.73 (t, *J* = 6.4 Hz, 1H), 5.23 (s, 2H), 3.20 (dd, *J* = 16.6, 5.9 Hz, 1H), 2.94 (dd, *J* = 16.6, 6.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 170.2, 157.4, 148.6, 147.2,

135.0, 132.0, 129.9, 129.3, 128.7, 128.7, 128.6, 128.6, 123.5, 122.9, 122.3, 122.1, 120.7, 109.8, 67.3, 55.9, 38.9; LRMS (ESI⁺) m/z: 355.2 (M+H)⁺; HRMS: calcd for C₂₃H₁₉N₂O₂ (M+H)⁺ m/z: 355.1441, Found 355.1446; IR (cm-1, neat): 3147, 2829, 2783, 2756, 2023, 1834, 1654, 1570, 1512.

Methyl-11-(2-methoxy-2-oxoethyl)-11*H*-benzo[4,5]imidazo[2,1-*a*]isoindole-7-carboxylate (30)

Inseparable mixture, yellow liquid, yield = 53 %; ¹H NMR (400 MHz, CDCl₃) δ 8.53 (d, *J* = 1.0 Hz, 1H), 8.17 – 8.15 (m, 1H), 8.08 (d, *J* = 6.6 Hz, 2H), 8.03-7.99 (m, 2H), 7.84 (d, *J* = 8.6 Hz, 1H), 7.60 -7.54 (m, 6H), 7.46 (d, *J* = 8.5 Hz, 1H), 5.85-5.73 (m, 2H), 3.96 (d, *J* = 2.6 Hz, 6H), 3.84 (s, 3H), 3.80 (s, 3H), 3.21-3.12 (m, 2H), 2.98-2.92 (m, 2H); LRMS (ESI⁺) *m/z* : 337.2 (M+H)⁺; HRMS: calcd for C₁₉H₁₇N₂O₄ (M+H)⁺ *m/z*: 337.1183; Found 337.1184; IR (cm-1, neat) : 3134, 3093, 2756, 1994, 1847, 1641, 1502,

Methyl-2-(7-methyl-11*H*-benzo[4,5]imidazo[2,1-*a*]isoindol-11-yl)acetate (3p)

Inseparable mixture, yellow liquid, yield = 50 %; ¹H NMR (400 MHz, CDCl₃) δ 8.03-7.99 (m, 2H), 7.69 (d, *J* = 8.2 Hz, 1H), 7.60-7.59 (m, 1H), 7.54-7.45 (m, 6H), 7.29 (d, *J* = 8.2 Hz, 1H), 7.21-7.20 (m, 1H), 7.10-7.06 (m, 2H), 5.74-5.60 (m, 2H), 3.80 (s, 3H), 3.79 (s, 3H), 3.20- 3.09 (m, 2H), 2.89-2.81 (m, 2H), 2.49 (s, 3H), 2.48 (s, 3H); LRMS (ESI⁺) *m*/*z*: 293.2 (M+H)⁺; HRMS: calcd for C₁₈H₁₇N₂O₂ (M+H)⁺ *m*/*z*: 293.1285; Found 293.1286; IR (cm⁻¹, neat): 3143, 2781, 1996, 1909, 1654, 1506.

Methyl 2-(7-nitro-11*H*-benzo[4,5]imidazo[2,1-*a*]isoindol-11-yl)acetate (3q)

Inseparable mixture, yellow solid, yield = 60 %; mp = 145-148 °C; ¹H NMR (400 MHz, CDCl3) δ 8.71 (d, *J* = 2.2 Hz, 1H), 8.41 (d, *J* = 2.2 Hz, 1H), 8.25-8.20 (m, 2H), 8.12-8.07 (m, 2H), 7.86 (d, *J* = 8.9 Hz, 1H), 7.65-7.57 (m, 6H), 7.53 (d, *J* = 9.0 Hz, 1H), 5.84 (dt, *J* = 12.5, 6.3 Hz, 2H), 3.86 (s, 3H), 3.81 (s, 3H), 3.14-3.00 (m, 4H); LRMS (ESI⁺) *m*/*z*: 324.2 (M+H)⁺; HRMS: calcd for C₁₇H₁₄N₃O₄ (M+H)⁺ *m*/*z*: 324.0979; Found 324.0981; IR (cm⁻¹, neat): 3136, 3026, 2785, 1849, 1838, 1649, 1568, 1398

Methyl 2-(7-fluoro-11*H*-benzo[4,5]imidazo[2,1-*a*]isoindol-11-yl)acetate (3r)

Brown solid, yield = 51 %; mp = 126-129 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, *J* = 7.1 Hz, 1H), 7.75 – 7.71 (m, 1H), 7.57 – 7.51 (m, 3H), 7.16 (dd, *J* = 8.7, 2.5 Hz, 1H), 7.04 – 7.00 (m, 1H), 5.73 (t, *J* = 6.4 Hz, 1H), 3.82 (s, 3H), 3.07 (dd, *J* = 16.7, 6.5 Hz, 1H), 2.94 (dd, *J* = 16.8, 6.3 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 170.9, 146.9, 145.0, 130.0, 129.4, 128.5, 123.5, 122.2, 122.0, 121.2, 121.1, 110.6, 110.4, 97.1, 96.8, 56.1, 52.5, 38.7; LRMS (ESI⁺) *m*/*z* : 297.1 (M+H)⁺; HRMS: calcd for C₁₇H₁₄FN₂O₂ (M+H)⁺ *m*/*z*: 297.1034; Found 297.1035; IR (cm⁻¹, neat) : 3147, 2879, 2756, 1998, 1905, 1830, 1780, 1652, 1508

Methyl 2-(7-chloro-11*H*-benzo[4,5]imidazo[2,1-*a*]isoindol-11-yl) acetate (3s)

Yellow solid, yield = 70 %; mp = 122-125 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, *J* = 7.2 Hz, 1H), 7.73 (d, *J* = 8.7 Hz, 1H), 7.58 – 7.48 (m, 3H), 7.45 (d, *J* = 2.1 Hz, 1H), 7.25 (m, 1H), 5.73 (t, *J* = 6.4 Hz, 1H), 3.82 (s, 3H), 3.10 (dd, *J* = 16.7, 6.3 Hz, 1H), 2.93 (dd, *J* = 16.7, 6.6 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 170.8, 147.3, 147.1, 130.2, 129.4, 128.6, 128.3, 123.6, 123.0, 122.3, 121.4, 110.0, 56.2, 52.5, 38.7; LRMS (ESI⁺) *m/z*: 313.2 (M+H)⁺; HRMS: calcd for C₁₇H₁₄ClN₂O₂ (M+H)⁺*m/z*: 313.0738; Found 313.0747; IR (cm⁻¹, neat): 3143, 3035, 2881, 2796, 1909, 1834, 1643, 1597, 1502

Methyl 2-(7-bromo-11*H*-benzo[4,5]imidazo[2,1-*a*]isoindol-11-yl)acetate (3t)

Brown solid, yield = 62 %; mp = 134-137 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.04 (dd, *J* = 7.2, 1.2 Hz, 1H), 7.69 (dd, *J* = 7.2, 1.2 Hz, 1H), 7.60 – 7.49 (m, 4H), 7.37 (dd, *J* = 8.6, 1.9 Hz, 1H), 5.71 (t, *J* = 6.4 Hz, 1H), 3.81 (s, 3H), 3.09 (dd, *J* = 16.6, 6.3 Hz, 1H), 2.92 (dd, *J* = 16.6, 6.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 170.7, 147.1, 130.4, 129.5, 125.7, 123.5, 123.1, 122.4, 121.7, 121.2, 113.0, 110.1, 56.3, 56.3, 52.5, 38.7, 38.6; LRMS (ESI⁺) *m/z*: 357.0 (M+H)⁺; HRMS: calcd for C₁₇H₁₄BrN₂O₂ (M+H)⁺ *m/z*: 357.0233; Found 357.0235; IR (cm⁻¹, neat) : 3141, 3039, 2792, 1998, 1907, 1834, 1660, 1502

Methyl 2-(6-methyl-11*H*-benzo[4,5]imidazo[2,1-*a*]isoindol-11-yl)acetate (3u)

Yellow solid, yield = 65 %; mp = 102-105 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.15 (d, *J* = 7.5 Hz, 1H), 7.57 – 7.46 (m, 3H), 7.28 (d, *J* = 7.9 Hz, 1H), 7.18 (t, *J* = 7.7 Hz, 1H), 7.10 (d, *J* = 7.3 Hz, 1H), 5.73 (t, *J* = 6.5 Hz, 1H), 3.80 (s, 3H), 3.19 (dd, *J* = 16.7, 5.8 Hz, 1H), 2.85 (dd, *J* = 16.7, 7.1 Hz, 1H), 2.74 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.9, 147.2, 130.7, 129.8, 129.3, 123.5, 122.9, 122.9, 122.3, 107.3, 55.9, 52.4, 38.7, 29.9, 17.1; LRMS (ESI⁺) *m/z*: 293.2 (M+H)⁺;

HRMS: calcd for $C_{18}H_{17}N_2O_2$ (M+H)⁺ m/z: 293.1285; Found 293.1287; R (cm⁻¹, neat): 3136, 3006, 2881, 2760, 1998, 1838, 1641, 1571, 1512

Methyl (E)-3-(2-(1*H*-benzo[*d*]imidazol-2-yl)furan-3-yl)acrylate (4b)

¹H NMR (400 MHz, CDCl₃) δ 7.90 – 7.84 (m, 1H), 7.82 – 7.78 (m, 1H), 7.62 – 7.52 (m, 4H), 7.44 – 7.34 (m, 3H), 6.42 (d, *J* = 16.0 Hz, 1H), 3.70 (s, 3H), 3.62 (s, 3H); LRMS (ESI⁺) *m/z*: 269.1 (M+H)⁺; HRMS: calcd for C₁₅H₁₃N₂O₃ (M+H)⁺ *m/z*: 269.0921; Found 269.0921.

Methyl (E)-3-(2-(1*H*-benzo[*d*]imidazol-2-yl)thiophen-3-yl)acrylate (4c)

¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, *J* = 8.0 Hz, 1H), 7.54 (d, *J* = 5.4 Hz, 1H), 7.44 – 7.33 (m, 5H), 7.10 (d, *J* = 5.4 Hz, 1H), 3.83 (s, 3H); LRMS (ESI⁺) *m*/*z*: 285.1 (M+H)⁺; HRMS: calcd for C₁₅H₁₃N₂O₂S (M+H)⁺ *m*/*z* : 285.0692.0921; Found 285.0694.

Methyl (E)-3-(2-(1-methyl-1*H*-benzo[*d*]imidazol-2-yl)phenyl)acrylate (6a)

¹H NMR (400 MHz, CDCl₃) δ 7.90 – 7.84 (m, 1H), 7.82 – 7.78 (m, 1H), 7.62 – 7.52 (m, 4H), 7.44 – 7.34 (m, 3H), 6.42 (d, J = 16.0 Hz, 1H), 3.70 (s, 3H), 3.62 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.8, 151.8, 141.6, 134.5, 131.4, 130.3, 129.9, 126.8, 123.1, 122.7, 120.4, 120.1, 109.7, 51.7, 31.0; LRMS (ESI⁺) m/z: 293.2 (M+H)⁺; HRMS: calcd for C₁₈H₁₇N₂O₂ (M+H)⁺m/z: 293.1285;Found293.1285.

Methyl 3-(2-(1-methyl-1*H*-benzo[*d*]imidazol-2-yl)phenyl)propanoate (7a)

¹H NMR (400 MHz, CDCl₃) δ 7.88 – 7.81 (m, 1H), 7.47 – 7.32 (m, 7H), 3.64 (s, 3H), 3.55 (s, 3H), 2.94 (t, *J* = 7.7 Hz, 2H), 2.54 (t, *J* = 7.7 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 173.1, 152.8, 140.7, 135.3, 130.5, 130.1, 129.4, 126.3, 122.80 122.4, 119.8, 109.6, 51.5, 34.9, 30.7, 28.3; LRMS (ESI⁺) *m*/*z*: 295.2 (M+H)⁺; HRMS: calcd for C₁₈H₁₉N₂O₂ (M+H)⁺ *m*/*z*: 295.1441; Found 295.1447.

¹H NMR Spectrum (400 MHz) of compound **3a** in CDCl₃

 ^{13}C NMR Spectrum (100 MHz) of compound **3a** in CDCl₃

Ph-OMe-Ru--20

High resolution mass $(ESI)^+$ spectrum of compound of **3a**

¹H NMR Spectrum (400 MHz) of compound **3b** in CDCl₃

 ^{13}C NMR Spectrum (100 MHz) of compound **3b** CDCl₃

High resolution mass $(ESI)^+$ spectrum of compound of **3b**

IR spectrum of compound of **3b**

¹H NMR Spectrum (400 MHz) of compound **3c** in CDCl₃

¹³C NMR Spectrum (100 MHz) of compound **3c**CDCl₃

High resolution mass $(ESI)^+$ spectrum of compound of **3c**

IR spectrum of compound of **3c**

¹H NMR Spectrum (400 MHz) of compound **3d** in CDCl₃

¹³C NMR Spectrum (100 MHz) of compound **3d** CDCl₃

 $\mathrm{ESI}^{\scriptscriptstyle +}\,\mathrm{Mass}$ spectrum of compound $\mathbf{3d}$

High resolution mass $(ESI)^+$ spectrum of compound of **3d**

IR spectrum of compound of **3d**

¹H NMR Spectrum (400 MHz) of compound **3e** in CDCl₃

 ^{13}C NMR Spectrum (100 MHz) of compound 3e CDCl_3

1109-CF3-Ru-6-8

 ESI^+ Mass spectrum of compound **3e**

High resolution mass (ESI)⁺ spectrum of compound of **3e**

IR spectrum of compound of **3e**

¹H NMR Spectrum (400 MHz) of compound **3f** in CDCl₃

¹³C NMR Spectrum (100 MHz) of compound **3f** in CDCl₃

S36

High resolution mass $(ESI)^+$ spectrum of compound of **3f**

IR spectrum of compound of **3f**

¹H NMR Spectrum (400 MHz) of compound **3g** in CDCl₃

¹³C NMR Spectrum (100 MHz) of compound **3g** in CDCl₃

CF3-OEt-Ru

 ESI^+ Mass spectrum of compound 3g

S41

High resolution mass $(ESI)^+$ spectrum of compound of **3g**

IR spectrum of compound of **3g**

¹H NMR Spectrum (400 MHz) of compound 3h in CDCl₃

¹³C NMR Spectrum (100 MHz) of compound **3h** in CDCl₃

4-CI-OEt-Ru

100

High resolution mass (ESI)⁺ spectrum of compound of **3h**

¹H NMR Spectrum (400 MHz) of compound **3i** in CDCl₃

¹³C NMR Spectrum (100 MHz) of compound **3i** in CDCl₃

4-CH3-OEt-Ru

201604080027 13 (0.890) Cn (Cen,3, 80.00, Ht); Sm (Mn, 2x0.75); Sb (3,50.00); Cm (13:19-3:9) 307.3

High resolution mass $(ESI)^+$ spectrum of compound of **3i**

¹H NMR Spectrum (400 MHz) of compound **3j** in CDCl₃

¹³C NMR Spectrum (100 MHz) of compound **3j** in CDCl₃

Ph-6cyclo-Ru 20151211008 36 (2.466) Cn (Cen,3, 50.00, Ht); Sm (Mn, 2x0.75); Sb (3,50.00); Cm (33:40-2:9) 347.2

High resolution mass $(ESI)^+$ spectrum of compound of **3**j

IR spectrum of compound of 3j

¹H NMR Spectrum (400 MHz) of compound **3k** in CDCl₃

¹³C NMR Spectrum (100 MHz) of compound **3k** in CDCl₃

High resolution mass $(ESI)^+$ spectrum of compound of **3**k

IR spectrum of compound of **3k**

¹H NMR Spectrum (400 MHz) of compound **3l** in CDCl₃

¹³C NMR Spectrum (100 MHz) of compound **3l** in CDCl₃

Ph-Et-Ru 201601150019 15 (1.027) Cn (Cen,3, 50.00, Ht); Sm (Mn, 2x0.75); Sb (3,50.00); Cm (13:19-5:10) 293.2

High resolution mass $(ESI)^+$ spectrum of compound of **3**l

IR spectrum of compound of $\mathbf{3l}$

¹H NMR Spectrum (400 MHz) of compound **3m** in CDCl₃

¹³C NMR Spectrum (100 MHz) of compound **3m** in CDCl₃

High resolution mass $(ESI)^+$ spectrum of compound of **3m**

IR spectrum of compound of **3m**

¹H NMR Spectrum (400 MHz) of compound **3n** in CDCl₃

¹³C NMR Spectrum (100 MHz) of compound **3n** in CDCl₃

High resolution mass $(ESI)^+$ spectrum of compound of **3n**

IR spectrum of compound of **3n**

H NMR Spectrum (400 MHz) of compound 4b in CDCl₃

High resolution mass (ESI)⁺ spectrum of compound of **4b**

¹H NMR Spectrum (400 MHz) of compound **4c** in CDCl₃

High resolution mass $(ESI)^+$ spectrum of compound of **4c**

¹H NMR Spectrum (400 MHz) of compound **30** in CDCl₃

¹³C NMR Spectrum (100 MHz) of compound **30** in CDCl₃

ester-CHO-Ru

 $\mathrm{ESI^{+}}\,\mathrm{Mass}$ spectrum of compound $\mathbf{3o}$

High resolution mass $(ESI)^+$ spectrum of compound of **30**

IR spectrum of compound of **30**

¹H NMR Spectrum (400 MHz) of compound 3p in CDCl₃

¹³C NMR Spectrum (100 MHz) of compound **3p** in CDCl₃

CH3-CHO-Ru

201603250012 13 (0.890) Cn (Cen,3, 80.00, Ht); Sm (Mn, 2x0.75); Sb (3,50.00); Cm (13:16-3:8) 1007

High resolution mass $(ESI)^+$ spectrum of compound of **3p**

¹H NMR Spectrum (400 MHz) of compound **3q** in CDCl₃

¹³C NMR Spectrum (100 MHz) of compound **3q** in CDCl₃

NO2-CHO-Ru

 $\mathrm{ESI}^{\scriptscriptstyle +}\,\mathrm{Mass}$ spectrum of compound $\mathbf{3q}$

High resolution mass $(ESI)^+$ spectrum of compound of **3**q

IR spectrum of compound of 3q

¹H NMR Spectrum (400 MHz) of compound **3r** in CDCl₃

¹³C NMR Spectrum (100 MHz) of compound **3r** in CDCl₃

F-CHO-Ru

High resolution mass $(ESI)^+$ spectrum of compound of **3r**

¹H NMR Spectrum (400 MHz) of compound **3s** in CDCl₃

¹³C NMR Spectrum (100 MHz) of compound **3s** in CDCl₃

High resolution mass $(ESI)^+$ spectrum of compound of **3s**

IR spectrum of compound of 3s

¹H NMR Spectrum (400 MHz) of compound **3t** in CDCl₃

¹³C NMR Spectrum (100 MHz) of compound **3t** in CDCl₃

High resolution mass $(ESI)^+$ spectrum of compound of **3t**

IR spectrum of compound of **3t**

¹H NMR Spectrum (400 MHz) of compound **3u** in CDCl₃

¹³C NMR Spectrum (100 MHz) of compound **3u** in CDCl₃

O-CH3-Ru-10-15

 $\mathrm{ESI}^{\scriptscriptstyle +}\,\mathrm{Mass}$ spectrum of compound $\mathbf{3u}$

High resolution mass $(ESI)^+$ spectrum of compound of **3u**

¹H NMR Spectrum (400 MHz) of compound **6a** in CDCl₃

N-CH3-Ru-3

HRMS Spectrum of compound 6a

¹H NMR Spectrum (400 MHz) of compound **7a** in CDCl₃

 ^{13}C NMR Spectrum (100 MHz) of compound **7a** in CDCl₃

 $\mathrm{ESI}^{\scriptscriptstyle +}\,\mathrm{Mass}$ spectrum of compound $\mathbf{7a}$

HRMS Spectrum of compound 7a

X-ray crystallography data of compound **3b**

Table 1. Crystal data and structure refinement for mo_160318lt_0m.

2		
Identification code	mo_160318LT_0m	
Empirical formula	C18 H16 N2 O2	
Formula weight	292.33	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P 21/c	
Unit cell dimensions	a = 12.4244(9) Å	<i>α</i> = 90°.
	b = 8.0614(6) Å	β=100.607(2)°.
	c = 14.7164(10) Å	$\gamma = 90^{\circ}$.
Volume	1448.78(18) Å ³	
Z	4	
Density (calculated)	1.340 Mg/m ³	
Absorption coefficient	0.089 mm ⁻¹	
F(000)	616	
Crystal size	0.25 x 0.20 x 0.20 mm ³	
Theta range for data collection	2.816 to 26.379°.	
Index ranges	-15<=h<=15, -10<=k<=5	5, -18<=l<=18
Reflections collected	11617	
Independent reflections	2954 [R(int) = 0.0265]	
Completeness to theta = 25.242°	99.8 %	
Absorption correction	Semi-empirical from equ	ivalents
Max. and min. transmission	0.9485 and 0.9082	
Refinement method	Full-matrix least-squares	on F ²
Data / restraints / parameters	2954 / 0 / 201	
Goodness-of-fit on F ²	1.030	

Final R indices [I>2sigma(I)]	R1 = 0.0376, wR2 = 0.0917
R indices (all data)	R1 = 0.0463, wR2 = 0.0982
Extinction coefficient	n/a
Largest diff. peak and hole	0.241 and -0.197 e.Å ⁻³

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for mo_160318lt_0m. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	Х	У	Z	U(eq)
O(1)	1865(1)	318(1)	2540(1)	28(1)
O(2)	1451(1)	2566(1)	3309(1)	28(1)
N(1)	3651(1)	1886(1)	5090(1)	18(1)
N(2)	4607(1)	825(1)	6419(1)	19(1)
C(1)	715(1)	101(2)	2169(1)	40(1)
C(2)	2122(1)	1645(2)	3089(1)	20(1)
C(3)	3343(1)	1808(2)	3356(1)	18(1)
C(4)	3731(1)	2802(2)	4238(1)	19(1)
C(5)	4961(1)	3120(2)	4401(1)	18(1)
C(6)	5484(1)	2433(2)	5235(1)	18(1)
C(7)	6605(1)	2559(2)	5531(1)	20(1)
C(8)	7225(1)	3407(2)	4981(1)	22(1)
C(9)	8442(1)	3621(2)	5300(1)	30(1)
C(10)	4644(1)	1653(2)	5658(1)	16(1)
C(11)	3494(1)	486(2)	6350(1)	18(1)
C(12)	2874(1)	1179(2)	5534(1)	18(1)
C(13)	1735(1)	1083(2)	5341(1)	24(1)
C(14)	1242(1)	232(2)	5972(1)	27(1)
C(15)	1850(1)	-509(2)	6765(1)	26(1)
C(16)	2976(1)	-392(2)	6963(1)	22(1)
C(17)	5571(1)	3946(2)	3842(1)	21(1)
C(18)	6696(1)	4083(2)	4143(1)	23(1)

O(1)-C(2)	1.3432(16)
O(1)-C(1)	1.4432(16)
O(2)-C(2)	1.2044(16)
N(1)-C(10)	1.3702(16)
N(1)-C(12)	1.3848(16)
N(1)-C(4)	1.4735(16)
N(2)-C(10)	1.3118(16)
N(2)-C(11)	1.3952(16)
C(1)-H(16)	0.9800
C(1)-H(3)	0.9800
C(1)-H(1)	0.9800
C(2)-C(3)	1.5009(17)
C(3)-C(4)	1.5254(17)
C(3)-H(14)	0.9900
C(3)-H(15)	0.9900
C(4)-C(5)	1.5252(17)
C(4)-H(13)	1.0000
C(5)-C(17)	1.3868(18)
C(5)-C(6)	1.3936(18)
C(6)-C(7)	1.3847(18)
C(6)-C(10)	1.4525(17)
C(7)-C(8)	1.3953(19)
C(7)-H(8)	0.9500
C(8)-C(18)	1.3967(19)
C(8)-C(9)	1.5080(18)
C(9)-H(9)	0.9800
C(9)-H(2)	0.9800
C(9)-H(10)	0.9800
C(11)-C(16)	1.3937(18)
C(11)-C(12)	1.4165(18)
C(12)-C(13)	1.3936(18)
C(13)-C(14)	1.384(2)

Table 3. Bond lengths [Å] and angles [°] for mo_160318lt_0m.

C(13)-H(7)	0.9500
C(14)-C(15)	1.402(2)
C(14)-H(6)	0.9500
C(15)-C(16)	1.3782(19)
C(15)-H(5)	0.9500
C(16)-H(4)	0.9500
C(17)-C(18)	1.3905(19)
С(17)-Н(12)	0.9500
C(18)-H(11)	0.9500
C(2)-O(1)-C(1)	115.67(11)
C(10)-N(1)-C(12)	106.42(10)
C(10)-N(1)-C(4)	113.19(10)
C(12)-N(1)-C(4)	140.37(11)
C(10)-N(2)-C(11)	103.13(10)
O(1)-C(1)-H(16)	109.5
O(1)-C(1)-H(3)	109.5
H(16)-C(1)-H(3)	109.5
O(1)-C(1)-H(1)	109.5
H(16)-C(1)-H(1)	109.5
H(3)-C(1)-H(1)	109.5
O(2)-C(2)-O(1)	123.61(12)
O(2)-C(2)-C(3)	126.25(12)
O(1)-C(2)-C(3)	110.13(10)
C(2)-C(3)-C(4)	114.52(10)
C(2)-C(3)-H(14)	108.6
C(4)-C(3)-H(14)	108.6
C(2)-C(3)-H(15)	108.6
C(4)-C(3)-H(15)	108.6
H(14)-C(3)-H(15)	107.6
N(1)-C(4)-C(5)	99.95(9)
N(1)-C(4)-C(3)	113.57(10)
C(5)-C(4)-C(3)	111.90(10)

N(1)-C(4)-H(13)	110.3
C(5)-C(4)-H(13)	110.3
C(3)-C(4)-H(13)	110.3
C(17)-C(5)-C(6)	119.76(12)
C(17)-C(5)-C(4)	128.95(12)
C(6)-C(5)-C(4)	111.29(11)
C(7)-C(6)-C(5)	121.77(12)
C(7)-C(6)-C(10)	131.13(12)
C(5)-C(6)-C(10)	107.10(11)
C(6)-C(7)-C(8)	118.97(12)
C(6)-C(7)-H(8)	120.5
C(8)-C(7)-H(8)	120.5
C(7)-C(8)-C(18)	118.90(12)
C(7)-C(8)-C(9)	120.31(12)
C(18)-C(8)-C(9)	120.78(12)
C(8)-C(9)-H(9)	109.5
C(8)-C(9)-H(2)	109.5
H(9)-C(9)-H(2)	109.5
C(8)-C(9)-H(10)	109.5
H(9)-C(9)-H(10)	109.5
H(2)-C(9)-H(10)	109.5
N(2)-C(10)-N(1)	114.98(11)
N(2)-C(10)-C(6)	136.56(12)
N(1)-C(10)-C(6)	108.46(11)
C(16)-C(11)-N(2)	128.47(12)
C(16)-C(11)-C(12)	120.32(12)
N(2)-C(11)-C(12)	111.21(11)
N(1)-C(12)-C(13)	134.14(12)
N(1)-C(12)-C(11)	104.19(11)
C(13)-C(12)-C(11)	121.66(12)
C(14)-C(13)-C(12)	116.63(13)
С(14)-С(13)-Н(7)	121.7
С(12)-С(13)-Н(7)	121.7

C(13)-C(14)-C(15)	122.16(13)
C(13)-C(14)-H(6)	118.9
C(15)-C(14)-H(6)	118.9
C(16)-C(15)-C(14)	121.19(13)
C(16)-C(15)-H(5)	119.4
C(14)-C(15)-H(5)	119.4
C(15)-C(16)-C(11)	117.97(12)
C(15)-C(16)-H(4)	121.0
C(11)-C(16)-H(4)	121.0
C(5)-C(17)-C(18)	118.45(12)
С(5)-С(17)-Н(12)	120.8
С(18)-С(17)-Н(12)	120.8
C(17)-C(18)-C(8)	122.14(12)
C(17)-C(18)-H(11)	118.9
C(8)-C(18)-H(11)	118.9

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters $(Å^2x \ 10^3)$ for mo_160318lt_0m. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2 \ a^{*2}U^{11} + ... + 2h \ k \ a^* \ b^* \ U^{12}]$

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
O(1)	16(1)	39(1)	28(1)	-11(1)	3(1)	0(1)
O(2)	23(1)	35(1)	26(1)	-1(1)	4(1)	11(1)
N(1)	18(1)	19(1)	16(1)	0(1)	3(1)	1(1)
N(2)	20(1)	19(1)	18(1)	-1(1)	4(1)	0(1)
C(1)	17(1)	63(1)	40(1)	-18(1)	0(1)	-3(1)
C(2)	21(1)	26(1)	14(1)	2(1)	3(1)	4(1)
C(3)	19(1)	20(1)	16(1)	2(1)	3(1)	4(1)
C(4)	21(1)	18(1)	18(1)	3(1)	5(1)	3(1)
C(5)	21(1)	15(1)	19(1)	-3(1)	5(1)	2(1)
C(6)	22(1)	14(1)	18(1)	-3(1)	5(1)	1(1)

C(7)	23(1)	18(1)	18(1)	-3(1)	2(1)	0(1)
C(8)	22(1)	20(1)	24(1)	-9(1)	6(1)	-3(1)
C(9)	24(1)	34(1)	32(1)	-5(1)	6(1)	-7(1)
C(10)	18(1)	15(1)	16(1)	-4(1)	2(1)	1(1)
C(11)	21(1)	18(1)	17(1)	-5(1)	4(1)	1(1)
C(12)	22(1)	18(1)	17(1)	-4(1)	7(1)	0(1)
C(13)	21(1)	31(1)	22(1)	-4(1)	4(1)	1(1)
C(14)	20(1)	37(1)	26(1)	-6(1)	8(1)	-3(1)
C(15)	28(1)	30(1)	23(1)	-3(1)	12(1)	-5(1)
C(16)	28(1)	22(1)	18(1)	-2(1)	6(1)	-1(1)
C(17)	28(1)	19(1)	18(1)	0(1)	6(1)	0(1)
C(18)	27(1)	21(1)	22(1)	-4(1)	10(1)	-4(1)

Table 5. Hydrogen coordinates ($x\ 10^4$) and isotropic displacement parameters (Ųx\ 10^3) for mo_160318lt_0m.

	Х	У	Z	U(eq)
H(16)	321	-121	2675	61
H(3)	619	-837	1737	61
H(1)	425	1111	1843	61
H(14)	3624	2345	2842	22
H(15)	3666	683	3439	22
H(13)	3322	3874	4216	23
H(8)	6947	2075	6100	24
H(9)	8590	4724	5574	45
H(2)	8813	3507	4770	45
H(10)	8714	2771	5761	45
H(7)	1317	1576	4803	29
H(6)	466	147	5864	33
H(5)	1480	-1103	7172	31
H(4)	3386	-893	7501	27
H(12)	5229	4406	3267	26
H(11)	7119	4655	3766	27