Supporting Information

Visible-light-induced a tandem oxidative cyclization of 2alkynylanilines with disulfides(diselenides) to 3-sulfenyl- and 3selenylindoles under transition-metal-free and photocatalyst-free conditions

Qing Shi,^a Pinhua Li,^{*a} Yan Zhang,^a and Lei Wang^{*a,b}

^{*a*} Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China, Tel: +86-561-3802-069 Fax: +86-561-3090-518 E-mail: leiwang@chnu.edu.cn

^bState Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China

Table of Contents for Supporting Information

1. Optimization of the reaction conditions	2
2. Reaction mechanism study	3
3. ¹ H and ¹³ C NMR spectra of the products	5

	Ph			Se ^{-Ph}
	+ Ph <mark>S</mark>	eSePh Solver	it (2 mL) ►	Ph
	NHTs	N ₂ , r.	t., 12 h 🤟	N + F -
1a	4	la		IS 5a
Entry	Oxidant	Solvent	Light Source	$\operatorname{Yield}^{b}(\%)$
1	H_2O_2	PhCl	Blue LED	72
2	H_2O_2	PhMe	Blue LED	75
3	H_2O_2	Acetone	Blue LED	28
4	H_2O_2	CH ₃ CN	Blue LED	97
5	H_2O_2	DMC	Blue LED	33
6	H_2O_2	DCE	Blue LED	54
7	H_2O_2	МеОН	Blue LED	n.r.
8	H_2O_2	EtOH	Blue LED	n.r.
9	H_2O_2	DMF	Blue LED	n.r.
10	H_2O_2	DMSO	Blue LED	n.r.
11	H_2O_2	1,4-Dioxane	Blue LED	n.r.
12	H_2O_2	CH ₃ CN	Blue LED	$69^c, 88^d$
13	H_2O_2	CH ₃ CN	Blue LED	73 ^e , 98 ^f
14	H_2O_2	CH ₃ CN	Blue LED	$68^{g}, 83^{h}, 97^{i}$

1. Optimization of the reaction conditions^a (Table S1)

^{*a*} Reaction conditions: **1a** (0.20 mmol), **4a** (0.125 mmol), H_2O_2 (1.0 equiv, 30% aqueous solution), solvent (2.0 mL), nitrogen atmosphere at room temperature under 3 W LED irradiation for 12 h. ^{*b*} isolated yield of the product based on compound **1a**; ^{*c*} H_2O_2 (0.50 equiv, 30% aqueous solution) was used. ^{*d*} H_2O_2 (1.5 equiv, 30% aqueous solution) was added. ^{*e*} **4a** (0.10 mmol) was used. ^{*f*} **4a** (0.15 mmol) was added. ^{*g*} 6 h. ^{*h*} 9 h. ^{*i*} 15 h.

2. Reaction mechanism study

2.1 Free radical-trapping experiment (I)

4-Methyl-*N*-(2-(phenylethynyl)phenyl)benzenesulfonamide (**1a**, 0.20 mmol), diphenyl disulfide (**2a**, 0.125 mmol), H₂O₂ (1.0 equiv, 30% aqueous solution) and chlorobenzene (2.0 mL) and (2,2,6,6-tetramethylpiperidine)-1-oxyl (TEMPO, 0.40 mmol, 2.0 equiv) was added to an oven-dried Schlenk tube equipped with magnetic stirring bar, and the reaction tube was irradiated using 3 W blue LED at room temperature under N₂ atmosphere for 21 h. After the reaction was completed, no desired product **3a** was obtained, and a free radical-trapping adduct of PhS• with TEMPO was observed by HPLC-HRMS analysis of the reaction solution (Figure S1).

Figure S1. HRMS analysis of the adduct of PhS• with TEMPO

2.2 Free radical-trapping experiment (II)

4-Methyl-*N*-(2-(phenylethynyl)phenyl)benzenesulfonamide (**1a**, 0.20 mmol), H_2O_2 (1.0 equiv, 30% aqueous solution) and chlorobenzene (2.0 mL) and (2,2,6,6-tetramethylpiperidine)-1-oxyl (TEMPO, 0.40 mmol, 2.0 equiv) was added to an ovendried Schlenk tube equipped with magnetic stirring bar, and the reaction tube was irradiated using 3 W blue LED at room temperature under N₂ atmosphere for 21 h. After the reaction was completed, a free radical-trapping adduct (**6**) of indole radical with TEMPO, which was confirmed by HPLC-HRMS and GC-MS analysis of the reaction solution (Figure S2 and S3).

Figure S2. HRMS analysis of the adduct of adduct (6) of indole radical with TEMPO

Figure S3. GC-MS analysis of the adduct of adduct (6) of indole radical with TEMPO

3. ¹H and ¹³C NMR spectra of the products

