Supporting Information

Visible-light-induced a tandem oxidative cyclization of 2alkynylanilines with disulfides(diselenides) to 3-sulfenyl- and 3selenylindoles under transition-metal-free and photocatalyst-free conditions
Qing Shi, ${ }^{\text {a }}$ Pinhua Li, ${ }^{* a}$ Yan Zhang, ${ }^{\text {a }}$ and Lei Wang*a,b
${ }^{a}$ Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China, Tel: +86-561-3802-069 Fax: +86-561-3090-518 E-mail: leiwang@chnu.edu.cn
${ }^{b}$ State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China

Table of Contents for Supporting Information

1. Optimization of the reaction conditions 2
2. Reaction mechanism study 3
3. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of the products 5

1. Optimization of the reaction conditions ${ }^{a}$ (Table S1)

Entry	$\text { SeSePh } \xrightarrow[\mathrm{N}_{2}, \text { r.t., } 12 \mathrm{~h}]{\text { Solvent }(2 \mathrm{~mL})}$			
	Oxidant	Solvent	Light Source	Yield ${ }^{\text {b }}$ (\%)
1	$\mathrm{H}_{2} \mathrm{O}_{2}$	PhCl	Blue LED	72
2	$\mathrm{H}_{2} \mathrm{O}_{2}$	PhMe	Blue LED	75
3	$\mathrm{H}_{2} \mathrm{O}_{2}$	Acetone	Blue LED	28
4	$\mathrm{H}_{2} \mathrm{O}_{2}$	$\mathrm{CH}_{3} \mathrm{CN}$	Blue LED	97
5	$\mathrm{H}_{2} \mathrm{O}_{2}$	DMC	Blue LED	33
6	$\mathrm{H}_{2} \mathrm{O}_{2}$	DCE	Blue LED	54
7	$\mathrm{H}_{2} \mathrm{O}_{2}$	MeOH	Blue LED	n.r.
8	$\mathrm{H}_{2} \mathrm{O}_{2}$	EtOH	Blue LED	n.r.
9	$\mathrm{H}_{2} \mathrm{O}_{2}$	DMF	Blue LED	n.r.
10	$\mathrm{H}_{2} \mathrm{O}_{2}$	DMSO	Blue LED	n.r.
11	$\mathrm{H}_{2} \mathrm{O}_{2}$	1,4-Dioxane	Blue LED	n.r.
12	$\mathrm{H}_{2} \mathrm{O}_{2}$	$\mathrm{CH}_{3} \mathrm{CN}$	Blue LED	$69^{c}, 88^{d}$
13	$\mathrm{H}_{2} \mathrm{O}_{2}$	$\mathrm{CH}_{3} \mathrm{CN}$	Blue LED	$73^{e}, 98^{f}$
14	$\mathrm{H}_{2} \mathrm{O}_{2}$	$\mathrm{CH}_{3} \mathrm{CN}$	Blue LED	$68^{\text {g }, ~} 83^{h}, 97^{i}$

${ }^{a}$ Reaction conditions: 1a (0.20 mmol), $\mathbf{4 a}(0.125 \mathrm{mmol}), \mathrm{H}_{2} \mathrm{O}_{2}(1.0$ equiv, 30% aqueous solution), solvent (2.0 mL), nitrogen atmosphere at room temperature under 3 W LED irradiation for $12 \mathrm{~h} .{ }^{b}$ isolated yield of the product based on compound 1a; ${ }^{c} \mathrm{H}_{2} \mathrm{O}_{2}$ (0.50 equiv, 30% aqueous solution) was used. ${ }^{d} \mathrm{H}_{2} \mathrm{O}_{2}$ (1.5 equiv, 30% aqueous solution) was added. ${ }^{e} \mathbf{4 a}(0.10 \mathrm{mmol})$ was used. ${ }^{f} \mathbf{4 a}$ (0.15 mmol) was added. $g 6 \mathrm{~h} .{ }^{h} 9 \mathrm{~h} .{ }^{i} 15 \mathrm{~h}$.

2. Reaction mechanism study

2.1 Free radical-trapping experiment (I)

4-Methyl- N-(2-(phenylethynyl)phenyl)benzenesulfonamide (1a, 0.20 mmol), diphenyl disulfide ($\mathbf{2 a}, 0.125 \mathrm{mmol}$), $\mathrm{H}_{2} \mathrm{O}_{2}$ (1.0 equiv, 30% aqueous solution) and chlorobenzene (2.0 mL) and (2,2,6,6-tetramethylpiperidine)-1-oxyl (TEMPO, 0.40 mmol, 2.0 equiv) was added to an oven-dried Schlenk tube equipped with magnetic stirring bar, and the reaction tube was irradiated using 3 W blue LED at room temperature under N_{2} atmosphere for 21 h . After the reaction was completed, no desired product 3a was obtained, and a free radical-trapping adduct of PhS • with TEMPO was observed by HPLC-HRMS analysis of the reaction solution (Figure S1).

Figure S1. HRMS analysis of the adduct of $\mathrm{PhS} \bullet$ with TEMPO

2.2 Free radical-trapping experiment (II)

4-Methyl- N-(2-(phenylethynyl)phenyl)benzenesulfonamide (1a, 0.20 mmol), $\mathrm{H}_{2} \mathrm{O}_{2}$ (1.0 equiv, 30% aqueous solution) and chlorobenzene (2.0 mL) and ($2,2,6,6-$ tetramethylpiperidine)-1-oxyl (TEMPO, $0.40 \mathrm{mmol}, 2.0$ equiv) was added to an ovendried Schlenk tube equipped with magnetic stirring bar, and the reaction tube was irradiated using 3 W blue LED at room temperature under N_{2} atmosphere for 21 h . After the reaction was completed, a free radical-trapping adduct (6) of indole radical with TEMPO, which was confirmed by HPLC-HRMS and GC-MS analysis of the reaction solution (Figure S2 and S3).

Figure S2. HRMS analysis of the adduct of adduct (6) of indole radical with TEMPO

Figure S3. GC-MS analysis of the adduct of adduct (6) of indole radical with TEMPO

3. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of the products

-21.518

$\begin{array}{llllllllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & & \text { ppm }\end{array}$

3b

3b

3h

 mon $\dot{\sim}$

$3 n$

$\stackrel{n}{\circ}$
$\stackrel{1}{N}$
$\stackrel{1}{2}$

3s

$\begin{array}{lllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & \mathrm{ppm}\end{array}$

-

3u

$3 x$

N \qquad

$\begin{array}{ll}m \\ m & \stackrel{\bullet}{\infty} \\ \dot{m} & \stackrel{\sim}{n} \\ & \stackrel{\sim}{n}\end{array}$

 40

5 g

