Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2017

Supporting Information

Organoiodine Reagents-Promoted Intermolecular Oxidative Amination: Synthesis of Cyclopropyl Spirooxindoles

Zhiguo Zhang,*^a Yongchao Zhang,^a Guoqing Huang,^b Guisheng Zhang*^a

^a Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China.
^b Handan Purification Equipment Research Institute, Handan, Hebei 056027, P. R. China.

Fax: (+86) 373-3325250E-mail: <u>zhangzg@htu.edu.cn</u> and <u>zgs6668@yahoo.com</u>

Table of Contents

I. General remarks	S2
II. Experimental procedure	S3
III. X-ray single crystal diffraction data of 2g	S5
IV. Analytical data of compound 1 and 2	S8
V. ¹ H NMR and ¹³ C { ¹ H} NMR spectra copies of synthesized compounds	S19

I. General remarks

All reactions were carried out under air atmosphere, unless otherwise indicated. Other all reagents were purchased from commercial sources and used without further treatment, unless otherwise indicated. Petroleum ether (PE) used refers to the 60-90 °C boiling point fraction of petroleum. Ethyl acetate is abbreviated as EA. ¹H NMR and ¹³C{¹H} NMR spectra were recorded on Bruker Avance/600 (¹H: 600 MHz, ¹³C{¹H}: 150 MHz at 25 °C) or Bruker Avance/400 (¹H: 400 MHz, ¹³C{¹H}: 100 MHz at 25 °C) and TMS as internal standard. Data are represented as follows: chemical shift, integration, multiplicity (br = broad, s = singlet, d = doublet, dd = doublet, t = triplet, q = quartet, m = multiplet), coupling constants in Hertz (Hz). All high-resolution mass spectra (HRMS) were measured on a mass spectrometer by using electrospray ionization (ESI-oa-TOF), and the purity of all samples used for HRMS (>95%) were confirmed by ¹H NMR and ¹³C{¹H} NMR spectroscopic analysis. Melting points were measured on a melting point apparatus equipped with a thermometer and were uncorrected. All reactions were monitored by TLC with GF254 silica gel coated plates. Flash chromatography was carried out on SiO₂ (silica gel 200–300 mesh).

II. Experimental procedure

1. Preparation of cyclopropane-1-carboxamide compounds 1.^[1]

To a 50 mL round bottom flask equipped was added S_1 (10 mmol, 1.0 equiv), S_2 (15 mmol, 1.5 equiv), and triethylbenzyl ammonium chloride (TEBAC, 0.2 mmol, 0.02 equiv). The resulting mixture was heated to 50 °C in an oil bath, and sodium hydroxide (24.0 mmol, 6.0 equiv dissolved into 1.0 mL water) was added dropwise. The mixture was allowed to stir at 50 °C for 16 hours. It was then allowed to cool to room temperature and poured into 50 mL water. This suspension was extracted with three 25 mL portions of methylene chloride, and the combined organic layers then washed with three 50 mL portions of 1.2 N HCl(aq.), three 50 mL portions of water, and 50 ml saturated sodium chloride solution. The organic layer was then dried over magnesium sulfate, filtered, and the solvent removed in vacuo. The crude material was purified by silica gel column chromatography, to give the desired product cyclopropanecarbonitrile S_3 . Then, 25 mL conc. HCl was added to the round bottom flask, the mixture was heated to 100 °C in an oil bath to stir for 12 h. It was then allowed to cool to room temperature and poured into 20 mL water, extracted with dichloromethane (3×10 mL), The organic layer was then dried over magnesium sulfate, filtered, and the solvent removed in vacuo to get the desired product cyclopropanecarboxylic acid S_4 .

$$\mathbb{R}^{1} \xrightarrow[l]{(l]} \mathbb{C}_{0_{2}} \mathbb{H} \xrightarrow{1. \text{ SOCl}_{2} (1.3 \text{ equiv})}{2. \text{ Et}_{3} \mathbb{N}, \text{ CH}_{2} \mathbb{C}_{l_{2}}, \text{ rt}} \xrightarrow{3. \mathbb{R}^{2} \xrightarrow[l]{(l]}}{(1.0 \text{ equiv})} \mathbb{R}^{1} \xrightarrow[l]{(l]}{(l]} \xrightarrow[l]{(l]}{(l]} \mathbb{R}^{1} \xrightarrow[l]{(l]}{(l]} \xrightarrow[l]{$$

To a 50 mL round bottom flask equipped with 20 mL CH₂Cl₂ was added S₄ (3 mmol, 1.0 equiv), SOCl₂ (15 mmol, 1.5 equiv), the mixture was stirred at room temperature for 10 min, then Et₃N was added dropwise to the mixture until there is no white smoke produced. After the mixture was stirred at room temperature for 2 hours, it was quenched by water, and extracted with dichloromethane (3×10 mL). The combined filtrate was washed with saturated brine (3×5 mL) and dried over with anhydrous Na₂SO₄. Then the residue was purified by a short flash silica gel column chromatography (eluent: EA/PE = 1/10) to give the desired product cyclopropanecarboxamide compounds **1**.

2. Typical experimental procedure for 2 (2a as an example):

To a pressure tube (15 mL) was added compound **1a** (0.3 mmol, 1.0 eq., 71 mg) and bis(tertbutylcarbonyloxy)iodobenzene (PhI(OPiv)₂) (0.6 mmol, 2.0 eq., 244 mg) in 1,1,1,3,3,3hexafluoro-2-propanol (HFIP) (3 mL), the mixture was allowed to stirred at 100 °C for 10 h (the whole process was closely monitored by TLC). The reaction was quenched by water, extracted with dichloromethane (3×5 mL). The combined filtrate was washed with saturated brine (3×5 mL) and dried over anhydrous Na₂SO₄. The residue was purified by a short flash silica gel column chromatography (eluent: EA/PE = 3/10) to give the desired product 1'phenylspiro[cyclopropane-1,3'-indolin]-2'-one **2a** as a white solid (59 mg, 84%).

References:

[1] a) A. Huang, A. Moretto, K. Janz, M. Lowe, P. W. B., S. Tam, L. Di, V. Clerin, N. Sushkova, B. Tchernychev, D. H. H. Tsao, J. C. Keith, Jr., G. D. Shaw, R. G. Schaub, Q. Wang, and N. Kaila, *J. Med. Chem.*, 2010, **53**, 6003-6017. b) W. He, B. Zhou, W. Liu, M. Zhang, Z. Shen, Z. Han, Q. Jiang, Q. Yang, C. Song, R. Wang, T. Niu, S. Han, L. Zhang, J. Wu, F. Guo, R. Zhao, W. Yu, J. Chai, J. Chang, *J. Med. Chem.*, 2015, **58**, 7341-7348.

III. X-ray single crystal diffraction data of 2g

Note: Ortep drawing of **2g** with thermal ellipsoids set at 50% probability **Table S1.** Crystal data and structure refinement for **2g**

Identification code	2g
Empirical formula	C16H12CINO
Formula weight	269.72
Temperature	293(2) K
Wavelength	1.54184 A
Crystal system, space group	monoclinic, P 1 21/c 1
Unit cell dimensions	a = 9.0611(6) A alpha = 90.00 deg.
	b = 7.1551(4) A beta = 93.684(6) deg.
	c = 20.5051(18) A gamma = 90.00 deg.
Volume	1326.67(16) A^3
Z, Calculated density	4, 1.350 Mg/m^3
Absorption coefficient	0.83013 mm^-1
F(000)	560
Theta range for data collection	4.321 to 67.059 deg.
Limiting indices	-10<=h<=10, -8<=k<=8, -24<=l<=24
Reflections collected / unique	4852/2098
Completeness to theta $= 66.97$	99.92 %
Absorption correction	Empirical
Refinement method	SHELXL
Data / restraints / parameters	2373 / 0 / 172

Goodness-of-fit on F^2	1.039
Final R indices [I>2sigma(I)]	R = 0.0280
R indices (all data)	R = 0.0188
Largest diff. peak and hole	0.385 and -0.398e.A^-3

Table S2. Bond lengths [A] and angles [deg] for 2g

C(1)-H(3)	0.9300	C(2)-C(1)-H(1)	120.4
C(1)-C(2)	1.391(3)	C(6)-C(1)-H(1)	120.4
C(1)-C(6)	1.374(3)	C(6)-C(1)-C(2)	119.2(2)
C(2)-H(2)	0.9300	C(1)-C(2)-H(2)	120.0
C(2)-C(3)	1.383(3)	C(3)-C(2)-C(1)	120.1(2)
C(3)-H(3)	0.9300	C(3)-C(2)-H(2)	120.0
C(3)-C(4)	1.391(3)	C(2)-C(3)-H(3)	119.3
C(4)-H(4)	0.9300	C(2)-C(3)-C(4)	121.5(2)
C(4)-C(5)	1.379(3)	C(4)-C(3)-H(3)	119.3
C(5)-C(6)	1.392(3)	C(3)-C(4)-H(4)	121.3
C(5)-N(1)	1.418(2)	C(5)-C(4)-C(3)	117.4(2)
C(6)-C(7)	1.471(3)	C(5)-C(4)-H(4)	121.3
C(7)-C(8)	1.486(3)	C(4)-C(5)-C(6)	121.80(19)
C(7)-C(9)	1.524(3)	C(4)-C(5)-N(1)	128.62(19)
C(7)-C(10)	1.523(3)	C(6)-C(5)-N(1)	109.54(16)
C(8)-N(1)	1.391(2)	C(1)-C(6)-C(5)	120.04(18)
C(8)-O(1)	1.215(2)	C(1)-C(6)-C(7)	132.60(19)
C(9)-H(9A)	0.9700	C(5)-C(6)-C(7)	107.32(17)
C(9)-H(9B)	0.9700	C(6)-C(7)-C(8)	106.33(16)
C(9)-C(10)	1.479(4)	C(6)-C(7)-C(9)	124.04(19)
C(10)-H(10A)	0.9700	C(6)-C(7)-C(10)	125.34(19)
C(10)-H(10B)	0.9700	C(8)-C(7)-C(9)	118.54(18)
C(11)-C(12)	1.383(3)	C(8)-C(7)-C(10)	118.39(19)
C(11)-C(16)	1.379(3)	C(10)-C(7)-C(9)	58.10(15)
C(11)-N(1)	1.423(2)	N(1)-C(8)-C(7)	106.49(17)
C(12)-H(12)	0.9300	O(1)-C(8)-C(7)	127.91(19)

C(12)-C(13)	1.376(3)	O(1)-C(8)-N(1)	125.6(2)
С(13)-Н(13)	0.9300	C(7)-C(9)-H(9A)	117.7
C(13)-C(14)	1.369(3)	C(7)-C(9)-H(9B)	117.7
C(14)-C(15)	1.376(3)	H(9A)-C(9)-H(9B)	114.8
C(14)-C(11)	1.740(2)	C(10)-C(9)-C(7)	60.92(15)
C(15)-H(15)	0.9300	C(10)-C(9)-H(9A)	117.7
C(15)-C(16)	1.383(3)	C(10)-C(9)-H(9B)	117.7
C(16)-H(16)	0.9300	C(7)-C(10)-H(10A)	117.7
C(7)-C(10)-H(10B)	117.7	C(14)-C(13)-H(13)	120.3
C(9)-C(10)-C(7)	60.98(14)	C(13)-C(14)-C(15)	121.1(2)
C(9)-C(10)-H(10A)	117.7	C(13)-C(14)-C(11)	118.78(19)
C(9)-C(10)-H(10B)	117.7	C(15)-C(14)-C(11)	120.14(18)
H(10A)-C(10)-	114.8	C(14)-C(15)-H(15)	120.3
H(10B)	119.64(17)	C(14)-C(15)-C(16)	119.3(2)
C(12)-C(11)-N(1)	119.67(19)	C(16)-C(15)-H(15)	120.3
C(16)-C(11)-C(12)	120.69(18)	C(11)-C(16)-C(15)	120.1(2)
C(16)-C(11)-N(1)	119.8	C(11)-C(16)-H(16)	120.0
С(11)-С(12)-Н(12)	120.3(2)	C(15)-C(16)-H(16)	120.0
C(13)-C(12)-C(11)	119.8	C(5)-N(1)-C(11)	126.02(16)
С(13)-С(12)-Н(12)	120.3	C(8)-N(1)-C(5)	110.30(17)
С(12)-С(13)-Н(13)	119.5(2)	C(8)-N(1)-C(11)	123.44(17)
C(14)-C(13)-C(12)			

IV. Analytical data of compound 1 and 2 1. Analytical data of compounds 1

N,1-diphenylcyclopropanecarboxamide (1a). The product was isolated by flash chromatography (eluent: EA/PE = 1/20) as a light yellow solid (633 mg, 89%): mp 76-78 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.51 (m, 2H, ArH), 7.48-7.38 (m, 3H, ArH), 7.33 (m, 2H, ArH), 7.28-7.22 (m, 2H, ArH), 7.07 (s, 1H, NH), 7.04 (m, 1H, ArH), 1.74 (m, 2H, CH₂), 1.17 (m, 2H, CH₂). ¹³C NMR (100 MHz, CDCl₃) δ 171.9 (C=O), 139.1 (Ar), 137.7 (Ar), 131.0 (Ar), 129.2 (Ar), 128.7 (Ar), 128.2 (Ar), 124.0 (Ar), 119.4 (Ar), 31.1 (CH₂), 16.1 (CH₂). HRMS (ESI), *m/z* calcd. for C₁₆H₁₅NO ([M+H]⁺) 238.1226, found: 238.1226.

ethyl 2-(1-phenylcyclopropane-1-carboxamido)benzoate (1b). The product was isolated by flash chromatography (eluent: EA/PE = 1/20) as a light yellow solid (815 mg, 88%): mp 103-105 °C; ¹H NMR (400 MHz, CDCl₃) δ 10.66 (s, 1H, NH), 8.70 (d, *J* = 8.4, 1H, ArH), 7.90 (d, *J* = 7.6, 1H, ArH), 7.61-7.30 (m, 6H, ArH), 7.11-6.86 (m, 1H, ArH), 4.13 (m, 2H, CH₂), 1.72 (m, 2H, CH₂), 1.27 (t, *J* = 7.2 Hz, 3H, CH₃), 1.20 (m, 2H, CH₂). ¹³C NMR (100 MHz, CDCl₃) δ 173.3 (N-C=O), 167.2 (O-C=O), 141.1 (Ar), 138.8 (Ar), 133.9 (Ar), 131.3 (Ar), 130.4 (Ar), 128.8 (Ar), 127.9 (Ar), 122.2 (Ar), 120.3 (Ar), 115.9 (Ar), 60.8 (O-CH₂), 32.0 (C), 16.4 (CH₂-CH₂), 14.0 (CH₃). HRMS (ESI), *m/z* calcd. for C₁₉H₁₉NO₃ ([M+H]⁺) 310.1438, found: 310.1436.

ethyl 3-(1-phenylcyclopropane-1-carboxamido)benzoate (1c). The product was isolated by flash chromatography (eluent: EA/PE = 1/20) as a light yellow solid (788 mg, 85%): mp 56-58 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.79 (m, 1H, ArH), 7.74-7.69 (m, 2H, ArH), 7.50 (m, 2H, ArH), 7.48-7.36 (m, 3H, ArH), 7.36-7.29 (m, 1H, ArH), 7.14 (s, 1H, NH), 4.34 (m, 2H, O-CH₂), 1.73 (m, 2H, CH₂), 1.36 (t, *J* = 7.0 Hz, 3H, CH₃), 1.18 (m, 2H, CH₂). ¹³C NMR (100 MHz, CDCl₃) δ 172.3 (N-C=O), 166.2 (O-C=O), 139.0 (Ar), 138.0 (Ar), 131.12 (Ar), 131.07 (Ar), 129.4 (Ar), 128.9 (Ar), 128.5 (Ar), 125.1 (Ar), 124.1 (Ar), 120.3 (Ar), 61.1 (O-CH₂), 31.2 (C), 16.4 (CH₂-CH₂), 14.3 (CH₃). HRMS (ESI), *m/z* calcd. for C₁₉H₁₉NO₃ ([M+H]⁺) 310.1438, found: 310.1429.

ethyl 4-(1-phenylcyclopropane-1-carboxamido)benzoate (1d). The product was isolated by flash chromatography (eluent: EA/PE = 1/20) as a light yellow solid (844 mg, 91%): mp 94-96 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.96-7.89 (m, 2H, ArH), 7.54-7.48 (m, 2H, ArH), 7.48-7.35 (m, 5H, ArH), 7.21 (s, 1H, NH), 4.33 (m, 2H, O-CH₂), 1.73 (m, 2H, CH₂), 1.36 (t, *J* = 7.2 Hz, 3H, CH₃), 1.20 (m, 2H, CH₂). ¹³C NMR (100 MHz, CDCl₃) δ 172.3 (N-C=O), 166.1 (O-C=O), 141.8 (Ar), 138.8 (Ar), 131.2 (Ar), 130.6 (Ar), 129.4 (Ar), 128.6 (Ar), 125.7 (Ar), 118.4 (Ar), 60.8 (O-CH₂), 31.4 (C), 16.6 (CH₂-CH₂), 14.3 (CH₃). HRMS (ESI), *m/z* calcd. for C₁₉H₁₉NO₃ ([M+Na]⁺) 332.1257, found: 332.1257.

N-(2-chlorophenyl)-1-phenylcyclopropane-1-carboxamide (1e). The product was isolated by flash chromatography (eluent: EA/PE = 1/20) as a light yellow solid (691 mg, 85%): mp 114-116 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.38 (d, *J* = 8.4 Hz, 1H, ArH), 7.79 (s, 1H, NH), 7.54 (d, *J* = 7.8 Hz, 2H, ArH), 7.45 (t, *J* = 7.2 Hz, 2H, ArH), 7.39 (t, *J* = 7.2 Hz, 1H, ArH), 7.22 (t, *J* = 7.8 Hz, 2H, ArH), 6.95 (t, *J* = 7.8 Hz, 1H, ArH), 1.74 (m, 2H, CH₂), 1.22 (m, 2H, CH₂). ¹³C NMR (150 MHz, CDCl₃) δ 172.2 (N-C=O), 138.7 (Ar), 134.8 (Ar), 131.2 (Ar), 129.2 (Ar), 128.7 (Ar), 128.4 (Ar), 127.5 (Ar), 124.2 (Ar), 122.4 (Ar), 120.6 (Ar), 31.6 (C), 16.4 (CH₂-CH₂). HRMS (ESI), m/z calcd. for C₁₆H₁₄ClNO ([M+Na]⁺) 294.0656, found: 294.0644.

N-(**3-chlorophenyl**)-**1-phenylcyclopropane-1-carboxamidee (1f).** The product was isolated by flash chromatography (eluent: EA/PE = 1/20) as a light yellow solid (724 mg, 89%): mp 71-74 °C; ¹H NMR (400 MHz, CDCl3) δ 7.53-7.36 (m, 6H, ArH), 7.15 (m, 2H, ArH), 7.07-7.05 (m, 1H, NH), 7.03-6.97 (m, 1H, ArH), 1.71 (m, 2H, CH₂), 1.18 (m, 2H, CH₂). ¹³C NMR (100 MHz, CDCl3) δ 172.2 (N-C=O), 138.9 (Ar), 134.5 (Ar), 131.1 (Ar), 129.8 (Ar), 129.4 (Ar), 128.5 (Ar), 124.1 (Ar), 119.5 (Ar), 117.4 (Ar), 31.3 (C), 16.5 (CH₂-CH₂). HRMS (ESI), m/z calcd. for C₁₆H₁₄ClNO ([M+Na]⁺) 294.0656, found: 294.0644.

N-(4-chlorophenyl)-1-phenylcyclopropane-1-carboxamide (1g). The product was isolated by flash chromatography (eluent: EA/PE = 1/20) as a light yellow solid (732 mg, 90%): mp 85-87 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.52-7.47 (m, 2H, ArH), 7.47-7.37 (m, 3H, ArH), 7.28 (s, 1H, ArH), 7.26 (t, *J* = 1.2 Hz, 1H, ArH), 7.19 (d, *J* = 8.8 Hz, 2H, ArH), 7.03 (s, 1H, NH), 1.71 (m, 2H, CH₂), 1.17 (m, 2H, CH₂). ¹³C NMR (100 MHz, CDCl₃) δ 172.1 (N-C=O), 139.0 (Ar), 136.4 (Ar), 131.1 (Ar), 129.4 (Ar), 129.0 (Ar), 128.8 (Ar), 128.5 (Ar), 120.7 (Ar), 31.2 (C), 16.4 (CH₂-CH₂). HRMS (ESI), *m/z* calcd. for C₁₆H₁₄ClNO ([M+Na]⁺) 294.0656, found: 294.0650.

N-(2-chlorophenyl)-1-(4-methoxyphenyl)cyclopropane-1-carboxamide (1h). The product was isolated by flash chromatography (eluent: EA/PE = 1/20) as a light yellow solid (840 mg, 93%): mp 81-83 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.35 (dd, *J* = 8.0 Hz, 1H, ArH), 7.85 (s, 1H, NH), 7.51-7.41 (m, 2H, ArH), 7.22 (m, 2H, ArH), 7.00-6.89 (m, 3H, ArH), 3.84 (s, 3H, ArH), 1.69 (m, 2H, CH₂), 1.16 (m, 2H, CH₂). ¹³C NMR (100 MHz, CDCl₃) δ 159.5 (N-C=O), 134.8 (Ar), 132.4 (Ar), 130.7 (Ar), 128.8 (Ar), 127.6 (Ar), 124.2 (Ar), 122.5 (Ar), 120.7 (Ar), 117.9 (Ar), 114.6 (Ar), 55.4 (O-CH₃), 30.8 (C), 16.6 (CH₂-CH₂). HRMS (ESI), *m/z* calcd. for C₁₇H₁₆ClNO₂ ([M+Na]⁺) 324.0762, found: 324.0764.

N-(**3-chlorophenyl**)-**1**-(**4-methoxyphenyl**)**cyclopropane-1-carboxamide** (**1i**). The product was isolated by flash chromatography (eluent: EA/PE = 1/20) as a yellow solid (768mg, 85%): mp 93-95 $^{\circ}$ C; ¹H NMR (400 MHz, CDCl₃) δ 7.44 (t, *J* = 1.6 Hz, 1H, ArH), 7.42-7.35 (m, 2H, ArH), 7.17 (m, 2H, ArH), 7.11 (s, 1H, NH), 7.01 (m, 1H, ArH), 6.99-6.92 (m, 2H, ArH), 3.86 (s, 3H, CH₃), 1.68 (m, 2H, CH₂), 1.13 (m, 2H, CH₂). ¹³C NMR (100 MHz, CDCl₃) δ 172.6 (N-C=O), 159.5 (Ar), 139.0 (Ar), 134.4 (Ar), 132.3 (Ar), 130.7 (Ar), 129.8 (Ar), 124.0 (Ar), 119.5 (Ar), 117.4 (Ar), 114.7 (Ar), 55.3 (O-CH₃), 30.4 (C), 16.6 (CH₂-CH₂). HRMS (ESI), *m/z* calcd. for C₁₇H₁₆ClNO₂ ([M+Na]⁺) 324.0762, found: 324.0766.

N-(4-chlorophenyl)-1-(4-methoxyphenyl)cyclopropane-1-carboxamide (1j). The product was isolated by flash chromatography (eluent: EA/PE = 1/20) as a white solid (795 mg, 88%): mp 97-99 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.43-7.37 (m, 2H, ArH), 7.32-7.25 (m, 2H, ArH), 7.22-7.16 (m, 2H,

ArH), 7.11 (s, 1H, NH), 7.04-6.87 (m, 2H, ArH), 3.85 (s, 3H, CH₃), 1.68 (m, 2H, CH₂), 1.13 (q, 2H, CH₂). ¹³C NMR (100 MHz, CDCl₃) *δ* 172.6 (N-C=O), 159.5 (Ar), 136.5 (Ar), 132.3 (Ar), 130.8 (Ar), 128.9 (Ar), 128.8 (Ar), 120.7 (Ar), 114.6 (Ar), 55.3 (O-CH₃), 30.3 (C), 16.5 (CH₂-CH₂). HRMS (ESI), *m/z* calcd. for C₁₇H₁₆ClNO₂ ([M+Na]⁺) 324.0762, found: 324.0767.

N-(4-methoxyphenyl)-1-phenylcyclopropane-1-carboxamide (1k). The product was isolated by flash chromatography (eluent: ethyl acetate/petroleum ether = 1/20) as a yellow solid (712.9 mg, 89%): mp 78-80 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.54-7.48 (m, 2H, ArH), 7.46-7.34 (m, 3H, ArH), 7.22 (m, 2H, ArH), 6.94 (s, 1H, NH), 6.82-6.74 (m, 2H, ArH), 3.75 (s, 3H, CH₃), 1.70 (m, 2H, CH₂), 1.14 (m, 2H, CH₂). ¹³C NMR (100 MHz, CDCl₃) δ 171.9 (N-C=O), 156.3 (Ar), 139.4 (Ar), 131.12 (Ar), 131.07 (Ar), 129.2 (Ar), 128.2 (Ar), 121.4 (Ar), 113.9 (Ar), 55.4 (O-CH₃), 31.0 (C), 16.0 (CH₂- CH₂). HRMS (ESI), *m/z* calcd. for C₁₇H₁₇NO₂ ([M+Na]⁺) 290.1151, found: 290.1141.

N-benzyl-1-phenylcyclopropane-1-carboxamide (11). The product was isolated by flash chromatography (eluent: EA/PE = 1/20) as a light yellow solid (640 mg, 85%): mp 77-79 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, *J* = 7.8 Hz, 2H, Ar), 7.33 (t, *J* = 7.8 Hz, 2H, Ar), 7.30-7.25 (m, 2H, Ar), 7.24 (d, *J* = 4.1 Hz, 1H, Ar), 7.20 (t, J = 7.3 Hz, 1H, Ar), 7.12 (d, *J* = 7.2 Hz, 2H, Ar), 5.63 (s, 1H, NH), 4.36 (d, *J* = 6.0 Hz, 2H, CH₂), 1.64 (m, 2H, CH₂), 1.07 (m, 2H, CH₂). ¹³C NMR (100 MHz, CDCl₃) δ 173.9 (N-C=O), 139.7 (Ar), 138.5 (Ar), 131.1 (Ar), 129.1 (Ar), 128.6 (Ar), 128.0 (Ar), 127.2 (Ar), 127.1 (Ar), 43.8 (N-CH₂), 30.5 (C), 15.6 (CH₂-CH₂). HRMS (ESI), *m/z* calcd. C₁₇H₁₇NO for ([M+Na]⁺) 274.1202, found: 274.1206.

N-cyclohexyl-1-phenylcyclopropane-1-carboxamide (1m). The product was isolated by flash chromatography (eluent: EA/PE = 1/20) as a light yellow oil (641 mg, 88%); ¹H NMR (600 MHz, CDCl₃) δ 7.34 (m, 4H, ArH), 7.28 (m, 1H, ArH), 5.12 (d, J = 5.4 Hz, 1H, NH), 3.91-3.40 (m, 1H, N-CH), 1.73 (d, J = 10.8 Hz, 2H, CH₂), 1.55 (s, 2H, CH₂), 1.49 (m, 3H, CH₂), 1.26 (d, J = 12.6 Hz, 2H, CH₂), 1.04 (m, 1H, CH₂), 0.98 (m, 2H, CH₂), 0.91 (m, 2H, CH₂). ¹³C NMR (150 MHz, CDCl₃) δ 172.8

(N-C=O), 140.1 (Ar), 130.9 (Ar), 128.9 (Ar), 127.8 (Ar), 48.4 (N-C), 32.8 (CH₂), 30.4 (C), 25.5 (CH₂), 24.6 (CH₂), 15.3 (CH₂). HRMS (ESI), *m/z* calcd. C₁₆H₂₁NO for ([M+Na]⁺) 266.1515, found: 266.1513.

N-(2-chlorophenyl)-1-(2-methoxyphenyl)cyclopropane-1-carboxamide (1n). The product was isolated by flash chromatography (eluent: EA/PE = 1/20) as a yellow solid (768 mg, 85%): mp 98-100 $^{\circ}$ C; ¹H NMR (400 MHz, CDCl₃) δ 8.39 (d, *J* = 8.0 Hz, 1H, ArH), 7.92 (s, 1H, NH), 7.43-7.35 (m, 2H, ArH), 7.25-7.18 (m, 2H, ArH), 7.08-6.87 (m, 3H, ArH), 3.86 (s, 3H, CH₃), 1.72 (m, 2H, CH₂), 1.13 (m, 2H, CH₂). ¹³C NMR (100 MHz, CDCl₃) δ 172.2 (N-C=O), 159.0 (Ar), 135.1 (Ar), 132.1 (Ar), 129.9 (Ar), 128.7 (Ar), 127.5 (Ar), 126.6 (Ar), 123.9 (Ar), 122.2 (Ar), 120.9 (Ar), 120.8 (Ar), 111.0 (Ar), 55.4 (O-CH₃), 27.4 (C), 16.5 (CH₂-CH₂). HRMS (ESI), *m/z* calcd. for C₁₇H₁₆ClNO₂ ([M+Na]⁺) 324.0762, found: 324.0766.

N-(2-chlorophenyl)-1-(3-methoxyphenyl)cyclopropane-1-carboxamide (1o). The product was isolated by flash chromatography (eluent: EA/PE = 1/20) as a yellow oil (804 mg, 89%); ¹H NMR (600 MHz, CDCl₃) δ 8.38 (dd, *J* = 8.4 Hz, 1H, ArH), 7.87 (s, 1H, NH), 7.38-7.26 (t, *J* = 8.4 Hz, 1H, ArH), 7.20-7.13 (m, 2H, ArH), 7.11-7.07 (m, 1H, ArH), 7.06-7.03 (m, 1H, ArH), 6.93-6.85 (m, 2H, ArH), 3.79 (s, 3H, O-CH₃), 1.70 (m, 2H, CH₂), 1.18 (m, 2H, CH₂). ¹³C NMR (150 MHz, CDCl₃) δ 171.7 (N-C=O), 159.9 (Ar), 139.9 (Ar), 134.6 (Ar), 130.1 (Ar), 128.5 (Ar), 127.3 (Ar), 123.9 (Ar), 123.0 (Ar), 122.1 (Ar), 120.4 (Ar), 116.3 (Ar), 113.9 (Ar), 55.0 (O-CH₃), 31.5 (C), 16.1 (CH₂-CH₂). HRMS (ESI), *m/z* calcd. for C₁₇H₁₆CINO₂ ([M+Na]⁺) 324.0762, found: 324.0762.

1-(4-methoxyphenyl)-*N***-phenylcyclopropane-1-carboxamide** (**1p**). The product was isolated by flash chromatography (eluent: EA/PE = 1/20) as a yellow solid (729 mg, 91%): mp 75-77 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.44-7.38 (m, 2H, Ar), 7.33 (m, 2H, Ar), 7.28-7.20 (m, 2H, Ar), 7.11 (s, 1H, NH), 7.07-7.00 (m, 1H, Ar), 6.98-6.92 (m, 2H, Ar), 3.85 (s, 3H, O-CH₃), 1.68 (m, 2H, CH₂), 1.12 (m, 2H, CH₂). ¹³C NMR (100 MHz, CDCl₃) δ 172.5 (N-C=O), 159.4 (Ar), 137.9 (Ar), 132.3 (Ar), 131.1 (Ar), 128.8 (Ar), 124.0 (Ar), 119.4 (Ar), 114.6 (Ar), 55.3 (O-CH₃), 30.4 (C), 16.4 (CH₂-CH₂). HRMS (ESI), *m/z* calcd. for C₁₇H₁₇NO₂ ([M+Na]⁺) 290.1151, found: 290.1150.

N,1-diphenylcyclobutane-1-carboxamide (1q). The product was isolated by flash chromatography (eluent: EA/PE = 1/20) as a light yellow solid (580 mg, 77%): mp 76-78 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.39 (m, 6H), 7.30 (t, *J* = 7.2 Hz, 1H), 7.24 (t, *J* = 7.2 Hz, 2H), 7.03 (t, *J* = 7.2 Hz, 1H), 6.78 (s, 1H), 2.93 (m, 2H), 2.54 (m, 2H), 2.20 (m, 1H), 2.01-1.82 (m, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 173.99, 143.91, 137.96, 129.04, 128.79, 127.14, 126.24, 124.02 (s), 119.47, 53.65, 31.98, 16.47. HRMS (ESI), *m/z* calcd. C₁₇H₁₇NO for ([M+Na]⁺) 274.1202, found: 274.1211.

N,1-diphenylcyclopentane-1-carboxamide (1r). The product was isolated by flash chromatography (eluent: EA/PE = 1/20) as a light yellow solid (676 mg, 85%): mp 101-103 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.46-7.41 (m, 2H), 7.41-7.36 (m, 2H), 7.34 (m, 2H), 7.29 (m, 1H), 7.25 (m, 2H), 7.04 (t, *J* = 7.4 Hz, 1H), 6.82 (s, 1H), 2.67-2.38 (m, 2H), 2.19-2.00 (m, 2H), 1.99-1.82 (m, 2H), 1.80-1.64 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 174.6, 143.6, 138.0, 129.0, 128.8, 127.2, 126.9, 124.0, 119.5, 60.2, 36.9, 24.1. HRMS (ESI), *m/z* calcd. for C₁₈H₁₉NO ([M+Na]⁺) 288.1359, found: 288.1360.

2-methyl-*N***,2-diphenylpropanamide (1s).** The product was isolated by flash chromatography (eluent: EA/PE = 1/20) as a light yellow solid (624 mg, 87%): mp 97-99 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.49-7.37 (m, 4H), 7.37-7.29 (m, 3H), 7.29-7.22 (m, 2H), 7.10-6.98 (m, 1H), 6.78 (s, 1H), 1.67 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 175.6, 144.6, 138.0, 129.0, 128.9, 127.4, 126.5, 124.1, 119.6, 48.1, 27.0. HRMS (ESI), *m/z* calcd. C₁₆H₁₇NO for ([M+H]⁺) 240.1383, found: 240.1382.

N,2-diphenylacetamide (1t). The product was isolated by flash chromatography (eluent: EA/PE = 1/20) as a white solid (544 mg, 86%): mp 118-120 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.41 (m, 4H), 7.35 (m, 3H), 7.31-7.22 (t, J = 7.8 Hz, 2H), 7.08 (m, 2H), 3.74 (s, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 169.00, 137.61, 134.43, 129.57, 129.29, 128.96, 127.74, 124.48, 119.79, 44.92. HRMS (ESI), *m/z* calcd. C₁₄H₁₃NO for ([M+Na]⁺) 234.0889, found: 234.0901.

2. Analytical data of compounds 2

1'-phenylspiro[cyclopropane-1,3'-indolin]-2'-one (**2a**). The product was isolated by flash chromatography (eluent: EA/PE = 1/8) as a white solid (59 mg, 84%): mp 97-99 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.58-7.51 (m, 2H, ArH), 7.47 (m, 2H, ArH), 7.44-7.35 (m, 1H, ArH), 7.20 (m, 1H, ArH), 7.07 (m, 1H, ArH), 6.97-6.89 (m, 2H, ArH), 1.87 (m, 2H, CH₂), 1.62 (m, 2H, CH₂). ¹³C NMR (100 MHz, CDCl₃) δ 176.5 (N-C=O), 143.4 (Ar), 135.0 (Ar), 130.7 (Ar), 129.6 (Ar), 127.9 (Ar), 126.7 (Ar), 126.6 (Ar), 122.5 (Ar), 118.6 (Ar), 109.3 (Ar), 27.3 (C), 20.1 (CH₂-CH₂). HRMS (ESI), *m/z* calcd. C₁₆H₁₃NO for ([M+Na]⁺) 258.0889, found: 258.0895.

ethyl 2-(2'-oxospiro[cyclopropane-1,3'-indolin]-1'-yl)benzoate (2b). The product was isolated by flash chromatography (eluent: EA/PE = 1/8) as a light yellow solid (54 mg, 58%): mp 101-104 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.13 (dd, *J* = 7.6, 1.6 Hz, 1H, ArH), 7.68 (m, 1H, ArH), 7.53 (m, 1H, ArH), 7.45 (m, 1H, ArH), 7.14 (m, 1H, ArH), 7.03 (m, 1H, ArH), 6.90 (d, *J* = 7.2 Hz, 1H, ArH), 6.62 (d, *J* = 7.6 Hz, 1H, ArH), 4.10 (m, 2H, O-CH₂), 1.92-1.76 (m, 2H, CH₂), 1.61 (m, 2H, CH₂), 1.02 (t, *J* = 7.2 Hz, 3H, CH₃). ¹³C NMR (100 MHz, CDCl₃) δ 176.5 (N-C=O), 165.4 (O-C=O), 143.9 (Ar), 134.3 (Ar), 133.2 (Ar), 132.0 (Ar), 130.4 (Ar), 129.5 (Ar), 129.4 (Ar), 128.6 (Ar), 126.7 (Ar), 122.2 (Ar), 118.4 (Ar), 108.7 (Ar), 61.2 (O-CH₂), 27.2 (C), 19.6 (CH₂), 19.5 (CH₂), 13.6 (CH₃). HRMS (ESI), *m/z* calcd. for C₁₉H₁₇NO₃ ([M+H]⁺) 308.1281, found: 308.1280.

ethyl 3-(2'-oxospiro[cyclopropane-1,3'-indolin]-1'-yl)benzoate (2c). The product was isolated by flash chromatography (eluent: EA/PE = 1/8) as a light yellow solid (65 mg, 71%): mp 87-90 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.15 (t, *J* = 1.6 Hz, 1H, ArH), 8.09 (m, 1H, ArH), 7.68 (m, 1H, ArH), 7.61 (t, *J* = 7.8 Hz, 1H, ArH), 7.20 (m, 1H, ArH), 7.13-7.01 (m, 1H, ArH), 6.92 (m, 2H, ArH), 4.40 (m, 2H, O-CH₂), 1.87 (m, 2H, CH₂), 1.63 (m, 2H, CH₂), 1.39 (t, *J* = 7.2 Hz, 3H, CH₃). ¹³C NMR (100 MHz, CDCl₃) δ 176.4 (N-C=O), 165.7 (O-C=O), 142.9 (Ar), 135.2 (Ar), 132.1 (Ar), 131.0 (Ar), 130.6 (Ar), 129.6 (Ar), 128.8 (Ar), 127.5 (Ar), 126.7 (Ar), 122.7 (Ar), 118.6 (Ar), 109.1 (Ar), 61.2 (O-CH₂), 27.2

(C), 27.0 (C), 20.1 (CH₂), 14.3 (CH₃). HRMS (ESI), *m*/*z* calcd. for C₁₉H₁₇NO₃ ([M+H]⁺) 308.1281, found: 308.1287.

ethyl 4-(2'-oxospiro[cyclopropane-1,3'-indolin]-1'-yl)benzoate (2d). The product was isolated by flash chromatography (eluent: EA/PE = 1/8) as a light yellow oil (70 mg, 76%); ¹H NMR (400 MHz, CDCl₃) δ 8.29-8.12 (m, 2H, ArH), 7.63-7.54 (m, 2H, ArH), 7.21 (m, 1H, ArH), 7.09 (m, 1H, ArH), 7.00 (d, *J* = 7.6 Hz, 1H, ArH), 6.92 (dd, *J* = 7.2 Hz, 1H, ArH), 4.41 (m, 2H, O-CH₂), 1.87 (m, 2H, CH₂), 1.63 (m, 2H, CH₂), 1.42 (t, *J* = 7.4 Hz, 3H, CH₃). ¹³C NMR (100 MHz, CDCl₃) δ 176.2 (N-C=O), 165.8 (O-C=O), 142.3 (Ar), 138.9 (Ar), 130.8 (Ar), 130.6 (Ar), 129.3 (Ar), 126.7 (Ar), 125.8 (Ar), 122.9 (Ar), 118.7 (Ar), 109.3 (Ar), 61.1 (O-CH₂), 27.3 (C), 20.3 (CH₂), 14.3 (CH₃). HRMS (ESI), *m/z* calcd. for C₁₉H₁₇NO₃ ([M+Na]⁺) 330.1101, found: 330.1092.

1'-(2-chlorophenyl)spiro[cyclopropane-1,3'-indolin]-2'-one (2e). The product was isolated by flash chromatography (eluent: EA/PE = 1/8) as a white solid (61 mg, 76%): mp 138-140 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.65-7.53 (m, 1H, ArH), 7.48-7.37 (m, 3H, ArH), 7.16 (m, 1H, ArH), 7.06 (m, 1H, ArH), 6.92 (m, 1H, ArH), 6.57 (d, *J* = 8.0 Hz, 1H, ArH), 1.96-1.80 (m, 2H, CH₂), 1.69-1.58 (m, 2H, CH₂). ¹³C NMR (100 MHz, CDCl₃) δ 176.2 (N-C=O), 142.9 (Ar), 133.2 (Ar), 132.6 (Ar), 130.8 (Ar), 130.4 (Ar), 130.1 (Ar), 128.0 (Ar), 126.7 (Ar), 122.5 (Ar), 118.5 (Ar), 109.3 (Ar), 27.2 (C), 20.1 (CH₂), 19.8 (CH₂). HRMS (ESI), *m/z* calcd. for C₁₆H₁₂ClNO ([M+Na]⁺) 292.0500, found: 292.0498.

1'-(3-chlorophenyl)spiro[cyclopropane-1,3'-indolin]-2'-one (2f). The product was isolated by flash chromatography (eluent: EA/PE = 1/8) as a white solid (57 mg, 71%): mp 96-98 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.50 (s, 1H, ArH), 7.48-7.43 (m, 1H, ArH), 7.42-7.36 (m, 2H, ArH), 7.21 (t, *J* = 7.8 Hz, 1H, ArH), 7.08 (t, *J* = 7.6 Hz, 1H, ArH), 6.92 (m, 2H, ArH), 1.86 (m, 2H, CH₂), 1.62 (m, 2H, CH₂). ¹³C NMR (100 MHz, CDCl₃) δ 176.3 (N-C=O), 142.7 (Ar), 136.1 (Ar), 135.0 (Ar), 130.52 (Ar), 130.47 (Ar), 128.0 (Ar), 126.74 (Ar), 126.72 (Ar), 124.7 (Ar), 122.8 (Ar), 118.6 (Ar), 109.2 (Ar), 27.3 (C), 20.2 (CH₂). HRMS (ESI), *m/z* calcd. for C₁₆H₁₂CINO ([M+Na]⁺) 292.0500, found: 292.0496.

1'-(4-chlorophenyl)spiro[cyclopropane-1,3'-indolin]-2'-one (2g). The product was isolated by flash chromatography (eluent: EA/PE = 1/8) as a white solid (61 mg, 76%): mp 117-119 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.54-7.47 (m, 2H, ArH), 7.46-7.39 (m, 2H, ArH), 7.20 (m, 1H, ArH), 7.08 (m, 1H, ArH), 6.94-6.88 (m, 2H, ArH), 1.85 (m, 2H, CH₂), 1.62 (m, 2H, CH₂). ¹³C NMR (100 MHz, CDCl₃) δ 176.4 (N-C=O), 142.8 (Ar), 133.4 (Ar), 133.3 (Ar), 130.6 (Ar), 129.7 (Ar), 127.8 (Ar), 126.7 (Ar), 122.7 (Ar), 118.6 (Ar), 109.1 (Ar), 27.2 (C), 20.2 (CH₂). HRMS (ESI), *m/z* calcd. for C₁₆H₁₂ClNO ([M+Na]⁺) 292.0500, found: 292.0496.

1'-(2-chlorophenyl)-6'-methoxyspiro[cyclopropane-1,3'-indolin]-2'-one (2h)

The product was isolated by flash chromatography (eluent: EA/PE = 1/8) as a white solid (64 mg, 71%): mp 113-115 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.58 (m, 1H, ArH), 7.46-7.37 (m, 3H, ArH), 6.70 (dd, J_1 = 8.6, J_2 = 2.6 Hz, 1H, ArH), 6.52 (d, J = 2.4 Hz, 1H, ArH), 6.48 (d, J = 8.8 Hz, 1H, ArH), 3.78 (s, 3H, O-CH₃), 1.93-1.80 (m, 2H, CH₂), 1.67-1.53 (m, 2H, CH₂). ¹³C NMR (100 MHz, CDCl₃) δ 176.0 (N-C=O), 156.1 (Ar), 136.5 (Ar), 133.1 (Ar), 132.8 (Ar), 131.8 (Ar), 130.8 (Ar), 130.4 (Ar), 130.0 (Ar), 128.0 (Ar), 111.1 (Ar), 109.6 (Ar), 105.8 (Ar), 55.8 (O-CH₃), 27.6 (C), 20.1 (CH₂), 19.8 (CH₂). HRMS (ESI), *m/z* calcd. for C₁₇H₁₄ClNO₂ ([M+Na]⁺) 322.0605, found: 322.0590.

1'-(3-chlorophenyl)-6'-methoxyspiro[cyclopropane-1,3'-indolin]-2'-one (**2i**). The product was isolated by flash chromatography (eluent: EA/PE = 1/8) as a white solid (40 mg, 45%): mp 105-107 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.50 (t, *J* = 1.8 Hz, 1H, ArH), 7.45 (t, *J* = 8.0 Hz, 1H, ArH), 7.40-7.33 (m, 2H, ArH), 6.86 (d, *J* = 8.4 Hz, 1H, ArH), 6.73 (dd, *J*₁ = 8.8 Hz, *J*₂ = 2.4 Hz, 1H), 6.50 (d, *J* = 2.8 Hz, 1H, ArH), 3.79 (s, 3H, O-CH₃), 1.85 (m, 2H, CH₂), 1.59 (m, 2H, CH₂). ¹³C NMR (100 MHz, CDCl₃) δ 176.0 (N-C=O), 156.3 (Ar), 136.3 (Ar), 136.2 (Ar), 134.9 (Ar), 132.0 (Ar), 130.4 (Ar), 127.7 (Ar), 126.4 (Ar), 124.4 (Ar), 111.1 (Ar), 109.7 (Ar), 105.9 (Ar), 55.8 (O-CH₃), 27.6 (C), 20.3 (CH₂).

HRMS (ESI), *m/z* calcd. for C₁₇H₁₄ClNO₂ ([M+Na]⁺) 322.0605, found: 322.0597.

1'-(4-chlorophenyl)-6'-methoxyspiro[cyclopropane-1,3'-indolin]-2'-one (2j). The product was isolated by flash chromatography (eluent: EA/PE = 1/8) as a white solid (56 mg, 62%): mp 127-129 $^{\circ}$ C; ¹H NMR (600 MHz, CDCl₃) δ 7.51-7.46 (m, 2H, ArH), 7.45-7.38 (m, 2H, ArH), 6.82 (d, *J* = 8.4 Hz, 1H, ArH), 6.72 (dd, *J* = 8.4 Hz, 1H, ArH), 6.50 (d, *J* = 2.4 Hz, 1H, ArH), 3.79 (s, 3H, O-CH₃), 1.84 (m, 2H, CH₂), 1.58 (m, 2H, CH₂).¹³C NMR (150 MHz, CDCl₃) δ 176.0 (N-C=O), 156.2 (Ar), 136.4 (Ar), 133.7 (Ar), 133.0 (Ar), 132.0 (Ar), 129.6 (Ar), 127.5 (Ar), 111.1 (Ar), 109.5 (Ar), 105.9 (Ar), 55.8 (O-CH₃), 27.6 (C), 20.2 (CH₂). HRMS (ESI), *m/z* calcd. for C₁₇H₁₄ClNO₂ ([M+Na]⁺) 322.0605, found: 322.0597.

1'-(2-chlorophenyl)-4'-methoxyspiro[cyclopropane-1,3'-indolin]-2'-one (2n). The product was isolated by flash chromatography (eluent: EA/PE = 1/8) as a light yellow oil (50 mg, 60%); ¹H NMR (400 MHz, CDCl₃) δ 7.54-7.46 (m, 1H, ArH), 7.45-7.38 (m, 1H, ArH), 7.38-7.31 (m, 2H, ArH), 7.02 (dd, $J_1 = 8.4, J_2 = 7.6$ Hz, 1H, ArH), 6.79 (dd, J = 8.2, 1H, ArH), 6.59-6.53 (dd, J = 7.4, 1H, ArH), 3.51 (s, 3H, O-CH₃), 1.96-1.75 (m, 2H, CH₂), 1.69-1.52 (m, 2H, CH₂). ¹³C NMR (100 MHz, CDCl₃) δ 176.5 (N-C=O), 145.3 (Ar), 135.3 (Ar), 133.3 (Ar), 132.0 (Ar), 130.8 (Ar), 130.3 (Ar), 129.4 (Ar), 129.2 (Ar), 126.8 (Ar), 123.1 (Ar), 111.38 (Ar), 111.35 (Ar), 56.3 (O-CH₃), 27.4 (C), 20.3 (CH₂), 20.1 (CH₂). HRMS (ESI), *m/z* calcd. for C₁₇H₁₄ClNO₂ ([M+Na]⁺) 322.0605, found: 322.0593.

1'-(2-chlorophenyl)-5'-methoxyspiro[cyclopropane-1,3'-indolin]-2'-one (**2o**). The product was isolated by flash chromatography (eluent: EA/PE = 1/8) as a white solid (66 mg, 73%): mp 110-112 $^{\circ}$ C; ¹H NMR (400 MHz, CDCl₃) δ 7.58 (m, 1H, ArH), 7.46-7.36 (m, 3H, ArH), 6.70 (dd, $J_1 = 8.6, J_2 = 2.6$ Hz, 1H, ArH), 6.52 (d, J = 2.4 Hz, 1H, ArH), 6.48 (d, J = 8.4 Hz, 1H, ArH), 3.78 (s, 3H, O-CH₃), 1.97-1.81 (m, 2H, CH₂), 1.67-1.53 (m, 2H, CH₂). ¹³C NMR (100 MHz, CDCl₃) δ 176.0 (N-C=O), 156.1 (Ar), 136.5 (Ar), 133.1 (Ar), 132.8 (Ar), 131.8 (Ar), 130.8 (Ar), 130.4 (Ar), 130.0 (Ar), 127.9

(Ar), 111.1 (Ar), 109.6 (Ar), 105.8 (Ar), 55.8 (O-CH₃), 27.5 (C), 20.1 (CH₂), 19.8 (CH₂). HRMS (ESI), *m/z* calcd. for C₁₇H₁₄ClNO₂ ([M+Na]⁺) 322.0605, found: 322.0594.

6'-methoxy-1'-phenylspiro[cyclopropane-1,3'-indolin]-2'-one (2p). The product was isolated by flash chromatography (eluent: EA/PE = 1/8) as a white solid (33 mg, 41%): mp 124-127 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.57-7.49 (m, 2H, ArH), 7.46 (m, 2H, ArH), 7.38 (m, 1H, ArH), 6.84 (d, *J* = 8.8 Hz, 1H, ArH), 6.71 (dd, *J*₁ = 8.4 Hz, *J*₂ = 2.4 Hz, 1H, ArH), 6.50 (d, *J* = 2.4 Hz, 1H, ArH), 3.79 (s, 3H, O-CH₃), 1.85 (m, 2H, CH₂), 1.58 (m, 2H, CH₂). ¹³C NMR (100 MHz, CDCl₃) δ 176.1 (N-C=O), 156.0 (Ar), 136.9 (Ar), 135.1 (Ar), 132.2 (Ar), 129.4 (Ar), 127.6 (Ar), 126.3 (Ar), 111.0 (Ar), 109.7 (Ar), 105.7 (Ar), 55.8 (O-CH₃), 27.6 (C), 20.1 (CH₂). HRMS (ESI), *m/z* calcd. for C₁₇H₁₅NO₂ ([M+Na]⁺) 288.0995, found: 288.0985.

Compound 1b

Compound 1c

S23

Compound 1j

Compound 1m

Compound 1r

Compound 2e

Compound 2h

Compound	2j
----------	----

S50

