Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2017

Supporting Information

Transition-metal-free oxidative reaction of hydrazines and potassium metabisulfite for preparation of sulfonohydrazide

Yang Wang, Bingnan Du, Wanxing Sha, Haibo Mei, Jianlin Han* and Yi Pan

1.	General information S2
2.	Typical procedure for the metal-free coupling reaction ······S2
3.	Characterization data for 3 and 4S2
4.	NMR spectra for compounds 3 and 4·····S11
5.	MS spectra for compounds 5 and 6

1. General information

Except the special statement, all chemicals were purchased without further purificationbefore use (Hydrazines wereobtained by using NaOH (1 M) as base to neutralize the corresponding hydrazine hydrochlorides in waterand extracted with ethyl acetate.). Solvents were dried bythe standardmethod in solvent enchiridion or treated with molecular sieves. General operation were conducted in oven-dried schlenk under dry-air balloom.Melting points were recorded on a melting points apparatus and were uncorrected. Thin layer chromatography (TLC) was performed on silica gel GF-254 plates and visualized by fluorescence quenching under UV light. For column chromatography, 200-300 mesh of silica gel was used and performed by standard technique.

¹H-NMR and ¹³C-NMR spectra were recorded on a Bruker Avance 400 spectrometer in CDCl₃ [using (CH₃)₄Si (for ¹H, δ = 0.00; for ¹³C, δ = 77.00) as internal standard] at room temperature.All couplingconstants were given in Hertz (Hz). Infrared (IR) spectra was performed on Bruker Vector 22 in KBr pellets. Highresolution mass spectra (HR MS) were obtained on a LTQ-Orbitrap XL with the ESI technique.

2. Typical procedure metal-free coupling reaction

Hydrazines **1** (0.25 mmol), $K_2S_2O_5$ (0.5 mmol), diamine (0.3 mmol), were added to a 25 mL schlenk tube under dry air balloom, followed by addition of CH₃CN (2.5 ml). The mixture was stirred at 40 °C for 12 h, then filtered and the solid was washed with ethyl acetate. The organic solution was dried over Na₂SO₄ and concentrated under vacuo. Then, crude product was purified by flash chromatography to afford the desired product **3**.

3. Characterization data for 3, 4

N-morpholinobenzenesulfonamide¹ (3aa)

White solid, m.p. 121–122°C. ¹H NMR (400 MHz, Chloroform-d) δ 8.01 – 7.96 (m, 2H), 7.64 – 7.57 (m, 1H), 7.57 – 7.50 (m, 2H), 5.93 (s, 1H), 3.60 (t, 4H), 2.62 (t, 4H); ¹³C NMR (101 MHz,

Chloroform-d) δ 138.62 , 133.16 , 128.85 , 128.12 , 66.62 , 56.63; IR υ_{max} (neat)/cm^-13134, 2858, 1451, 1366, 1335, 1264, 1156, 1102, 856, 724.

N-morpholino-4-(trifluoromethyl)benzenesulfonamide² (3ba)

White solid, m.p. 163–164°C.¹H NMR (400 MHz, Chloroform-d) δ 8.12 (d, J = 8.2 Hz, 2H), 7.80 (d, J = 8.2 Hz, 2H), 5.81 (s, 1H), 3.63 (t, 4H), 2.67 (t, 4H); ¹³C NMR (101 MHz, Chloroform-d) δ 142.30, 134.84 (q, J = 33.1 Hz), 128.65, 126.00 (q, J = 3.7 Hz), 123.19 (q, J = 273.1 Hz), 66.58, 56.80; IR ν_{max} (neat)/cm⁻¹3196, 2860, 1403, 1322, 1165, 1107, 1061, 1012, 869, 840, 712.

4-methyl-N-morpholinobenzenesulfonamide¹ (3ca)

White solid, m.p. 102–103°C. ¹H NMR (400 MHz, Chloroform-d) δ 7.92 – 7.65 (m, 2H), 7.24 (d, J = 8.1 Hz, 2H), 5.55 (s, 1H), 3.53 (t, 4H), 2.55 (t, 4H), 2.37 (s, 3H).;¹³C NMR (101 MHz, Chloroform-d) δ 144.04 , 135.66 , 129.49 , 128.17 , 66.66 , 56.72 , 21.64; IR v_{max} (neat)/cm⁻¹3217, 2922, 2847, 1594, 1497, 1325, 1259, 1181, 1097, 1022, 795.

4-methoxy-N-morpholinobenzenesulfonamide¹ (3da)

Yellow solid, m.p. 167–168°C. ¹H NMR (400 MHz, Chloroform-d) δ 8.00 – 7.82 (m, 2H), 7.09 – 6.89 (m, 2H), 5.67 (s, 1H), 3.88 (s, 3H), 3.61 (t, 4H), 2.62 (t, 4H);¹³C NMR (101 MHz, Chloroform-d) δ 163.27 , 130.32 , 130.08 , 114.01 , 66.68 , 56.69 , 55.63;IR ν_{max} (neat)/cm⁻¹3199, 2962, 2839, 1593, 1579, 1495, 1456, 1335, 1253, 1104, 864, 803, 719.

4-(tert-butyl)-N-morpholinobenzenesulfonamide¹ (3ea)

White solid, m.p. $173 - 174^{\circ}$ C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.98 - 7.79 (m, 2H), 7.62 - 7.46 (m, 2H), 5.74 (s, 1H), 3.61 (t, 4H), 2.64 (t, 4H), 1.35 (s, 9H);¹³C NMR (101 MHz, Chloroform-*d*) δ 157.04, 135.64, 127.96, 125.81, 66.62, 56.75, 35.21, 31.10; IR ν_{max} (neat)/cm⁻¹3156, 2871, 2161, 1335, 1157, 1106, 863, 665.

4-chloro-N-morpholinobenzenesulfonamide¹ (3fa)

White solid, m.p.173–174°C.¹H NMR (400 MHz, Chloroform-d) δ 8.00 – 7.84 (m, 2H), 7.63 – 7.42 (m, 2H), 5.73 (s, 1H), 3.62 (t, 4H), 2.65 (t, 4H);¹³C NMR (101 MHz, Chloroform-d) δ 139.75, 137.13, 129.59, 129.18, 66.61, 56.73; IR v_{max} (neat)/cm⁻¹3180, 2922, 2855, 1647, 1574, 1468, 1331, 1158, 1083, 866, 755.

2-chloro-N-morpholinobenzenesulfonamide¹ (3ga)

White solid, m.p. 163–164°C. ¹H NMR (400 MHz, Chloroform-d) δ 8.24 – 8.17 (m, 1H), 7.59 – 7.50 (m, 2H), 7.49 – 7.43 (m, 1H), 6.21 (s, 1H), 3.57 (t, 4H), 2.70 (t, 4H);¹³C NMR (101 MHz, Chloroform-d) δ 136.28 , 134.24 , 132.99 , 131.66 , 131.52 , 127.17 , 66.44 , 56.58; IR ν_{max} (neat)/cm⁻¹3145, 2157, 2037, 1570, 1435, 1338, 1174, 1099, 1040, 858, 774, 665.

3-chloro-N-morpholinobenzenesulfonamide¹ (3ha)

Light yellow oil.¹H NMR (400 MHz, Chloroform-d) δ 7.98 (t, J = 2.0 Hz, 1H), 7.90 – 7.84 (m, 1H), 7.62 – 7.56 (m, 1H), 7.48 (t, J = 7.9 Hz, 1H), 5.96 (d, J = 8.4 Hz, 1H), 3.63 (t, 4H), 2.66 (t, 5H); ¹³C NMR (101 MHz, Chloroform-d) δ 140.34 , 135.04 , 133.28 , 130.16 , 128.18 , 126.18 , 66.59 , 56.68; IR ν_{max} (neat)/cm⁻¹2855, 1458, 1362, 1264, 1160, 1107, 864, 789, 669.

2-bromo-N-morpholinobenzenesulfonamide³ (3ia)

Yellow solid, m.p. 145–146°C.¹H NMR (400 MHz, Chloroform-*d*) δ 8.25 (dd, J = 7.7, 1.9 Hz, 1H), 7.74 (dd, J = 7.7, 1.4 Hz, 1H), 7.55 – 7.42 (m, 2H), 6.22 (s, 1H), 3.57 (t, 4H), 2.71 (t, 4H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 137.90, 135.00, 134.22, 133.31, 127.77, 120.04, 66.45, 56.55; IR ν_{max} (neat)/cm⁻¹3160, 2920, 2847, 2155, 1430, 1338, 1170, 1099, 860, 772, 733.

N-morpholinonaphthalene-1-sulfonamide⁴ (3ja)

Brown solid, m.p. 148–149°C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.80 (d, J = 8.7 Hz, 1H), 8.39 (dd, J = 7.4, 1.1 Hz, 1H), 8.09 (d, J = 8.2 Hz, 1H), 7.93 (d, J = 8.1 Hz, 1H), 7.72 – 7.64 (m, 1H), 7.63 – 7.53 (m, 2H), 5.97 (s, 1H), 3.47 (t, 4H), 2.53 (t, 4H);¹³C NMR (101 MHz, Chloroform-*d*) δ 134.80 , 134.07 , 133.57 , 131.40 , 128.91 , 128.55 , 128.18 , 126.85 , 125.14 , 124.20 , 66.50 , 56.75; IR ν_{max} (neat)/cm⁻¹3189, 2848, 1507, 1280, 1261, 1161, 1108, 864, 764, 676.

2-ethyl-N-morpholinobenzenesulfonamide (3ka)

Light yellow oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.11 – 7.85 (m, 1H), 7.46 (td, J = 7.5, 1.4 Hz, 1H), 7.35 – 7.19 (m, 2H), 5.62 (s, 1H), 3.65 – 3.40 (m, 4H), 3.04 (q, J = 7.5 Hz, 2H), 2.73 – 2.44 (m, 4H), 1.25 (t, J = 7.5 Hz, 4H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 144.22 , 136.13, 133.39 , 131.17 , 130.55, 125.91, 66.61, 56.76, 26.25, 15.53. HRMS (TOF MS ESI): calcd for C₁₂H₁₉N₂O₃S⁺ [M+H]⁺ 271.1111, found 271.1110. IR v_{max} (neat)/cm⁻¹ 3184, 2966, 2864, 1363, 1262, 1108, 864, 763, 693, 596.

N-(piperidin-1-yl)benzenesulfonamide¹ (3ab)

Light yellow solid, m.p.93–94°C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.05 – 7.90 (m, 2H), 7.63 – 7.56 (m, 1H), 7.55 – 7.48 (m, 2H), 5.48 (s, 1H), 2.53 (t, *J* = 5.4 Hz, 4H), 1.56 – 1.43 (m, 4H), 1.35 – 1.21 (m, 2H);¹³C NMR (101 MHz, Chloroform-d) δ 138.79 , 132.89 , 128.68 , 128.12 , 57.77 , 25.62 , 23.02; IR ν_{max} (neat)/cm⁻¹3206, 2933, 2850, 2159, 1448, 1326, 1158, 863, 761, 721.

4-methyl-N-(piperidin-1-yl)benzenesulfonamide² (3ac)

Brown solid, m.p. 124–125°C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.99 – 7.73 (m, 2H), 7.30 (d, J = 8.0 Hz, 2H), 5.42 (s, 1H), 2.53 (t, J = 5.4 Hz, 4H), 2.44 (s, 3H), 1.60 – 1.41 (m, 4H), 1.35 – 1.27 (m, 2H);¹³C NMR (101 MHz, Chloroform-*d*) δ 143.66 , 135.86 , 129.32 , 128.14 , 57.78 , 25.64 , 23.05 , 21.63; IR v_{max} (neat)/cm⁻¹3199, 2921, 2851, 1597, 1468, 1455, 1329, 1161, 1036, 864, 794.

4-methoxy-N-(piperidin-1-yl)benzenesulfonamide² (3ad)

White solid, m.p 179–180°C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.92 – 7.87 (m, 2H), 7.02 – 6.93 (m, 2H), 5.35 (s, 1H), 3.88 (s, 3H), 2.53 (t, *J* = 5.4 Hz, 4H), 1.57 – 1.45 (m, 4H), 1.35 – 1.27 (m, 2H);¹³C NMR (101 MHz, Chloroform-*d*) δ 163.08 , 130.39 , 130.27 , 113.84 , 57.78 , 55.59 , 25.66 , 23.06; IR ν_{max} (neat)/cm⁻¹3197, 2960, 1595, 1457, 1333, 1266, 1161, 866, 812, 756.

N-(piperidin-1-yl)-4-(trifluoromethyl)benzenesulfonamide (3ae)

Light yellow solid, m.p. 151–152°C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.11 (d, J = 8.2 Hz, 2H), 7.79 (d, J = 8.3 Hz, 2H), 5.55 (s, 1H), 2.56 (t, 4H), 1.59 – 1.45 (m, 4H), 1.39 – 1.27 (m, 2H);¹³C NMR (101 MHz, Chloroform-*d*) δ 142.43 , 134.56 (q, J = 33.0 Hz), 128.63 , 125.81 (q, J = 3.7 Hz), 123.28 (q, J = 272.9 Hz); HRMS (TOF MS ESI): calcd for C₁₂H₁₆F₃N₂O₂S⁺ [M+H]⁺309.0879, found 309.0876. IR ν_{max} (neat)/cm⁻¹3199, 2161, 1320, 1165, 1061, 795, 635.

N-(4-methylpiperazin-1-yl)benzenesulfonamide (3af)

Light yellow solid, m.p. 153–154°C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.00 – 7.94 (m, 2H), 7.64 – 7.57 (m, 1H), 7.56 – 7.49 (m, 2H), 5.80 (s, 1H), 2.65 (t, *J* = 4.7 Hz, 4H), 2.37 (s, 4H), 2.22 (s, 3H);¹³C NMR (101 MHz, Chloroform-*d*) δ 138.71 , 133.01 , 128.78 , 128.12 , 55.93 , 54.53 , 45.55; HRMS (TOF MS ESI): calcd for C₁₁H₁₈N₃O₂S⁺ [M+H]⁺256.1114, found 256.1111.IR v_{max} (neat)/cm⁻¹3676, 2955, 2823, 2160, 1447, 1315, 1277, 1153, 1078, 1012, 829, 757.

4-methoxy-N-(4-methylpiperazin-1-yl)benzenesulfonamide⁴ (3ag)

Yellow oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.95 – 7.81 (m, 2H), 7.06 – 6.90 (m, 2H), 5.48 (s, 1H), 3.88 (s, 3H), 2.68 (t, *J* = 4.9 Hz, 4H), 2.42 (s, 4H), 2.26 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 163.20, 130.31, 130.19, 55.79, 55.62, 54.52, 45.46.IR v_{max} (neat)/cm⁻¹ 3194, 2962, 1594, 1336, 1255, 1155, 851, 686, 558.

N-(hexahydrocyclopenta[c]pyrrol-2(1H)-yl)benzenesulfonamide (3ah)

Light yellow oil.¹H NMR (400 MHz, Chloroform-*d*) δ 8.06 – 7.83 (m, 2H), 7.64 – 7.57 (m, 1H), 7.56 – 7.46 (m, 2H), 5.29 (s, 1H), 2.77 – 2.56 (m, 2H), 2.50 – 2.26 (m, 4H), 1.82 (s, 2H), 1.61 (td, *J* = 11.3, 9.7, 6.7 Hz, 4H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 138.68, 132.92, 128.76, 128.18, 63.18 , 40.06, 33.17, 26.19.HRMS (TOF MS ESI): calcd for C₁₃H₁₉N₂O₂S⁺ [M+H]⁺267.1162, found 267.1154.IR ν_{max} (neat)/cm⁻¹ 2949, 2862, 1447, 1329, 1165, 1093, 876, 723, 567.

N-(hexahydrocyclopenta[c]pyrrol-2(1H)-yl)-4-methoxybenzenesulfonamide (3ai)

Light yellow oil.¹H NMR (400 MHz, Chloroform-d) δ 7.92 – 7.66 (m, 2H), 6.98 – 6.74 (m, 2H), 5.02

(s, 1H), 3.81 (s, 3H), 2.76 – 2.49 (m, 2H), 2.44 – 2.20 (m, 4H), 1.75 – 1.46 (m, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 163.14, 130.31, 130.26, 113.93, 63.28, 55.62, 40.10, 33.17, 26.19. HRMS (TOF MS ESI): calcd for C₁₄H₂₁N₂O₃S⁺ [M+H]⁺297.1267, found 297.1273.IR v_{max} (neat)/cm⁻¹ 3410, 2946, 2861, 1652, 1580, 1259, 1159, 1027, 833, 569.

N'-methyl-N'-phenylbenzenesulfonohydrazide¹ (3aj)

Light yellow solid, m.p. 134–135°C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.03 – 7.91 (m, 2H), 7.70 – 7.55 (m, 1H), 7.54 – 7.41 (m, 2H), 7.22 – 7.11 (m, 2H), 6.94 – 6.76 (m, 3H), 6.37 (s, 1H), 2.95 (s, 3H);¹³C NMR (101 MHz, Chloroform-*d*) δ 149.62 , 138.54 , 133.38 , 129.11 , 128.92 , 128.17 , 120.98 , 114.37 , 42.74; IR v_{max} (neat)/cm⁻¹3196, 2918, 2850, 1599, 1501, 1446, 1339, 1285, 1156, 1087, 748.

N',4-dimethyl-N'-phenylbenzenesulfonohydrazide⁵ (3ak)

brown solid, m.p.93–94°C.¹H NMR (400 MHz, Chloroform-*d*) δ 7.83 (d, *J* = 8.2 Hz, 2H), 7.37 – 7.21 (m, 2H), 7.22 – 7.12 (m, 2H), 6.91 – 6.77 (m, 3H), 6.21 (s, 1H), 2.95 (s, 3H), 2.42 (s, 3H).¹³C NMR (101 MHz, Chloroform-*d*) δ 149.74, 144.32, 135.55, 129.73, 128.91, 128.22, 120.92, 114.38, 42.68, 21.65. IR ν_{max} (neat)/cm⁻¹ 3196, 1599, 1501, 1335, 1157, 1090, 811, 749, 678, 531.

MeO

4-methoxy-N'-methyl-N'-phenylbenzenesulfonohydrazide² (3al)

Brown solid, m.p.120–121°C. 120¹H NMR (400 MHz, Chloroform-*d*) δ 8.00 – 7.69 (m, 2H), 7.22 – 7.06 (m, 2H), 7.02 – 6.91 (m, 2H), 6.92 – 6.76 (m, 3H), 6.20 (s, 1H), 3.85 (s, 3H), 2.96 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 163.48, 149.76, 130.40, 129.96, 128.93, 120.89, 114.36, 114.27, 55.65, 42.65.IR ν_{max} (neat)/cm⁻¹ 3224, 1597, 1441, 1341, 1258, 1152, 1093, 1025, 754, 692, 534.

N'-phenyl-N'-(1-phenylethyl)benzenesulfonohydrazide (3ap)

Light yellow oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.87 – 7.62 (m, 2H), 7.51 – 7.36 (m, 1H), 7.33 – 7.15 (m, 5H), 7.07 – 6.92 (m, 4H), 6.84 (t, *J* = 7.3 Hz, 1H), 6.64 (d, *J* = 7.5 Hz, 2H), 6.02 (s, 1H), 4.69 (q, *J* = 7.0 Hz, 1H), 1.78 – 1.37 (m, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 148.49 , 138.81 , 132.76 , 128.55 , 128.52 , 128.30 , 128.09 , 127.95 , 127.81 , 122.87 , 119.41 , 65.68 , 18.15 . HRMS (TOF MS ESI): calcd for C₂₀H₂₁N₂O₂S + [M+H]⁺ 353.1318, found 353.1310. IR v_{max} (neat)/cm⁻¹ 3422, 2925, 1621, 1447, 1384, 1140, 752, 689, 596.

N'-(pentan-3-yl)-N'-phenylbenzenesulfonohydrazide (3ar)

Light yellow oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.96 – 7.64 (m, 2H), 7.48 – 7.35 (m, 1H), 7.32 – 7.24 (m, 2H), 7.09 – 6.97 (m, 2H), 6.80 – 6.68 (m, 3H), 6.49 (s, 1H), 3.15 (tt, *J* = 8.1, 5.5 Hz, 1H), 1.56 (td, *J* = 14.7, 7.4 Hz, 2H), 1.42 (dqd, *J* = 14.5, 7.3, 5.5 Hz, 2H), 1.11 – 0.55 (m, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 149.76 , 138.94 , 132.79 , 128.60 , 128.49 , 128.16 , 121.42 , 117.18 , 71.22 , 11.93. HRMS (TOF MS ESI): calcd for C₁₇H₂₂N₂O₂SNa⁺ [M+Na]⁺ 341.1294, found 341.1309. IR ν_{max} (neat)/cm⁻¹ 3442, 2923, 2852, 2361, 1633, 1401, 1143,752, 618.

2,2,6,6-tetramethyl-1-phenoxypiperidine¹(4)

Colourless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.24 – 7.13 (m, 4H), 6.84 (tt, *J* = 6.8, 1.8 Hz, 1H), 1.62 – 1.52 (m, 6H), 1.23 (s, 6H), 1.01 (s, 6H).¹³C NMR (101 MHz, CDCl₃) δ 163.59, 128.65, 119.84, 113.89, 60.31, 39.79, 32.60, 20.45, 17.07.

- 1. Zheng, D.; An, Y.; Li, Z.; Wu, J. Angew. Chem. Int. Ed. 2014, 53, 2451.
- 2. Ye, S.; Wu, J. Chem. Commun. 2012, 48, 10037.
- 3. Li, W.; Beller, M.; Wu, X. F. Chem. Commun. 2014, 50, 9513.
- 4. Li, W.; Li, H.; Langer, P.; Beller, M.; Wu, X.-F. Eur. J. Org. Chem. 2014, 3101.
- 5. Emmett, E. J.; Richards-Taylor, C. S.; Nguyen, B.; Garcia-Rubia, A.; Hayter, B. R.; Willis, M.
- C. Org. Biomol. Chem. 2012, 10, 4007.

4. NMR spectra for compounds 3 and 4

¹H and ¹³C NMR for **3ba**

¹H and ¹³C NMR for **3ca**

¹H and ¹³C NMR for 3da

¹H and ¹³C NMR for **3ea**

¹H and ¹³C NMR for **3fa**

¹H and ¹³C NMR for **3ga**

¹H and ¹³C NMR for **3ha**

¹H and ¹³C NMR for **3ia**

¹H and ¹³C NMR for **3ja**

¹H and ¹³C NMR for **3ka**

¹H and ¹³C NMR for **3ai**

¹H and ¹³C NMR for **3ak**

¹H and ¹³C NMR for 4

2016-9-5 21:36:34 1 / 1

==== Shimadzu LabSolutions Data Report ====

E:\LCMS-data\ナヒメ耡耡糠糠糠₩wy\wy20160905-2.lcd

==== Shimadzu LabSolutions Data Report ====

E:\LCMS-data\ナヒメ糖糖糖糖糖wy\wy20160905-5.lcd