Supporting Information

Intramolecular Aminocyanation of Alkenes Promoted by

Hypervalent Iodine

${ }^{a}$ School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China${ }^{b}$ State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, Chinaxiong@cqu.edu.cn
Table of contents

1. General Methods S2
2. Experimental Procedures S2
2.1 General procedure for synthesis of $\mathbf{2 a - p}$ 2
2.2 Procedure for synthesis of $\mathbf{2 q}$ 2
2.3 Procedure for synthesis of $\mathbf{2 r}$ S3
2.4 Procedure for synthesis of $\mathbf{2 s}$ S3
2.5 Procedure for synthesis of $\mathbf{2 t}$ S4
2.6 Procedure for synthesis of $\mathbf{2 u}$ and $\mathbf{2 w}$ S4
2.7 Procedure for synthesis of $\mathbf{2 v}$ and $\mathbf{2 x - z}$ S5
2.8 General procedure for synthesis of $\mathbf{3}$ S5
2.9 General procedure for synthesis of 5 S5
2.10 Procedure for synthesis of 8 S6
2.11 Procedure for synthesis of 9 S6
3. Optimization of reaction conditions S7
4. ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ analytical data S10
5. References S19
6. ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra S21

1. General Methods

${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR spectra were recorded in CDCl_{3} solution on a Bruker Avance 500 spectrometer at $20 \sim 25{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR spectra were reported in parts per million using tetramethylsilane TMS ($\delta=0.00 \mathrm{ppm})$ as an internal standard. The data of ${ }^{1} \mathrm{H}$ NMR are reported as follows: chemical shift, multiplicity $(\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, quin $=$ quintet, $\mathrm{m}=$ multiplet $)$, coupling constants $(J, \mathrm{~Hz})$, and integration. ${ }^{13} \mathrm{C}$ NMR spectra were reported in parts per million using solvent $\mathrm{CDCl}_{3}(\delta=77.2 \mathrm{ppm})$ as an internal standard, The data of ${ }^{13} \mathrm{C}$ NMR are reported as follows: chemical shift, multiplicity $(\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, quin $=$ quintet, $\mathrm{m}=$ multiplet $)$, and coupling constants $(J, \mathrm{~Hz})$. High resolution mass spectra (HRMS) were obtained with a Q-TOF MS spectrometer. Reactions were monitored by TLC and column chromatography was performed using silica gel. Commercially available reagents were used without further purification unless otherwise specified.

2. Experimental Procedures

2.1 General procedure for synthesis of 2a-p

Compound 2a-p were synthesized according to the reported method: ${ }^{1}$ To a solution of aniline (5 $\mathbf{m m o l}$) and 5-bromo-1-pentene (1 mmol for $\mathbf{2 a - d}, \mathbf{2 f}, \mathbf{2 0}, \mathbf{2 p}$ and 3 mmol for $\mathbf{2 e}, \mathbf{2 g - n}$) in ethanol $(25 \mathrm{~mL})$ was added $\mathrm{NaI}\left(0.1 \mathrm{mmol}\right.$,). The mixture was stirred overnight at $75^{\circ} \mathrm{C}$ and the solvent was removed in vacuo. The resulting oily residue was chromatographed to give 2a-p.

2.2 Procedure for synthesis of $\mathbf{2 q}$

Compound $\mathbf{2 q}$ were synthesized according to the reported method: ${ }^{1,2}$ To a solution of diphenylacetonitrile ($4.83 \mathrm{~g}, 25 \mathrm{mmol}$) in DMF $(10 \mathrm{~mL})$ was added slowly a suspension of NaH $(0.66 \mathrm{~g}, 28 \mathrm{mmol})$ in DMF $(25 \mathrm{~mL})$, and the resulting mixture was stirred at room temperature for 1 h . The resulting bright yellow suspension was cooled to $0^{\circ} \mathrm{C}$, treated with allyl bromide (3.33 g , 28 mmol), warmed to room temperature and stirred at room temperature for 12 hours. The resulting solution was poured into ice/water $(100 \mathrm{~mL})$ and was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The combined organic layer was washed with water ($2 \times 25 \mathrm{~mL}$), dried with anhydrous MgSO_{4}, and concentrated to give 2,2-diphenyl-4-pentenenitrile which was used in the subsequent step without further purification.
To a suspension of LAH ($1.52 \mathrm{~g}, 40 \mathrm{mmol}$) in ether (130 mL) was added 2,2-diphenyl-4-
pentenenitrile $(2.33 \mathrm{~g}, 10 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The mixture was slowly warmed to room temperature and stirred overnight. The resulting suspension was cooled to $0{ }^{\circ} \mathrm{C}$ and quenched by slow addition of $6 \mathrm{M} \mathrm{NaOH}(50 \mathrm{~mL})$. The resulting mixture was extracted with ether $(4 \times 100 \mathrm{~mL})$ and the combined ether extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The crude oil was purified by column chromatography to give 2,2-diphenyl-4-penten-1-amine as a pale yellow.

To a premixed ethyl acetate solution of $\mathrm{Cu}(\mathrm{OAc})_{2}(0.18 \mathrm{~g}, 1 \mathrm{mmol})$, benzoic acid $(0.31 \mathrm{~g}, 2.5$ $\mathrm{mmol})$, and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.69 \mathrm{~g}, 5 \mathrm{mmol})$ was added 2,2-diphenyl-4-penten-1-amine ($1.19 \mathrm{~g}, 5 \mathrm{mmol}$) and phenylboronic acid $(1.83 \mathrm{~g}, 15 \mathrm{mmol})$ at room temperature. The resulting mixture was allowed to run at $80{ }^{\circ} \mathrm{C}$ until the starting material is consumed completely. The solvent was removed using a rotary evaporator to produce a residue that was purified by column chromatography on silica gel to yield the final desired product $\mathbf{2 q}$ as white solid.

2.3 Procedure for synthesis of $\mathbf{2 r}$

Compound $2 \mathbf{r}$ were synthesized according to the reported method: ${ }^{3} \mathrm{To}$ an ice cooled, stirred mixture of aniline ($1.2 \mathrm{~mL}, 14 \mathrm{mmol}$), hex-5-en-2-one ($4 \mathrm{~mL}, 34 \mathrm{mmol}$) and propionic acid ($0.35 \mathrm{~mL}, 5 \mathrm{mmol}$) was added sodium borohydride (380 mg , 10 mmol) portionwise at such a rate as to keep the temperature less than $5^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm up to room temperature and stirred for 4 h . The reaction mixture was then poured into an ice water mixture, and extracted with ethyl acetate. The organic phase was washed with water, 2% hydrochloric acid and water. The dried organic phase was evaporated to purified by column chromatography on silica gel to yield $2 \mathbf{r}$ as yellow oil.

2.4 Procedure for synthesis of 2 s

Compound 2s were synthesized according to the reported method: ${ }^{4,5}$ Allyl bromide (1.40 mL , $16.24 \mathrm{mmol})$ was added dropwise to a solution of aniline $(16.24 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(5.39 \mathrm{~g}, 38.97$ mmol) in DMF (37 mL). The solution was stirred at room temperature for overnight. The reaction mixture was then filtered, washed with water ($3 \times 20 \mathrm{~mL}$) and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 15 \mathrm{~mL})$. The combined organic extracts were washed with brine (30 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude product was purified by column chromatography to afford the N-allyl aniline as yellowish oil.

Next, N-allyl aniline ($2 \mathrm{~g}, 15 \mathrm{mmol}$) was dissolved in p-xylene $\left(15 \mathrm{~mL}\right.$) at $0^{\circ} \mathrm{C}$ under nitrogen atmosphere. $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(2.1 \mathrm{~mL}, 16.5 \mathrm{mmol})$ was added and the solution was heated at $150{ }^{\circ} \mathrm{C}$ for

24 h . After dilution with ether $(30 \mathrm{~mL})$, the mixture was washed with a saturated NaHCO_{3} solution ($3 \times 50 \mathrm{~mL}$) and the aqueous phase was further extracted with ether (3 x 40 mL). The combined organic layers were washed with brine (2 x 40 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, then concentrated in vacuo. The reaction residue was purified by silica gel chromatography to afford o allylanline.

To a 50 mL oven-dried flask with a magnetic stirring bar, o-allylanline ($2.08 \mathrm{~g}, 10.0 \mathrm{mmol}$) and paraformaldehyde ($0.5 \mathrm{~g}, 15.0 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{3} \mathrm{OH}(20.0 \mathrm{~mL})$, and EtONa (3.43 g , 50 mmol) was added slowly over 5 min . After stirring at $80^{\circ} \mathrm{C}$ for $6 \mathrm{~h}, \mathrm{NaBH}_{4}(0.42 \mathrm{~g}, 11.0 \mathrm{mmol})$ was added slowly at rt . The mixture was refluxed for 5 h , and then the residue was quenched with saturated ammonium chloride solution (50 mL). The aqueous phase was extracted with ethyl acetate ($3 \times 25 \mathrm{~mL}$). The combined organic phase was dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the crude product was purified by column chromatography to obtain $2 \mathbf{s}$ as yellow oil.

2.5 Procedure for synthesis of 2 t

Compound $\mathbf{2 t}$ were synthesized according to the reported method: ${ }^{6} o$-allylanline ($2.08 \mathrm{~g}, 10 \mathrm{mmol}$) was added to a round-bottom flask via syringe and fitted with a rubber septum. The flask was purged with argon and dry DCM (30 mL) was added. Acetic anhydride ($1.13 \mathrm{~mL}, 12 \mathrm{mmol}$, was added and the reaction was stirred at room temperature and monitored by TLC. Upon completion the reaction mixture was washed with a saturated solution of sodium carbonate, the organic layers dried with anhydrous MgSO_{4} and the solvent removed under reduced pressure. The product was obtained in quantitative yield.

A round bottomed flask was charged with aryl amide ($1.40 \mathrm{~g}, 8 \mathrm{mmol}$) in THF (25 mL), flushed with argon and cooled to $0{ }^{\circ} \mathrm{C}$. LAH ($0.79 \mathrm{~g}, 21 \mathrm{mmol}$) was added slowly to the flask. The reaction was let warm to room temperature and react overnight. The reaction was quenched by cooling to $0{ }^{\circ} \mathrm{C}$ and adding $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}$ until LAH was consumed completely. The solution was let stir for 0.5 hour then filtered through a frit, the solid was washed with EtOAc. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The crude extracts were purified by column chromatography to obtain $\mathbf{2 t}$ as light yellow oil.

2.6 Procedure for synthesis of $2 u$ and $2 w$

Compound $\mathbf{2 u}$ and $\mathbf{2 w}$ were synthesized according to the reported method: ${ }^{7}$ To a water and
ethanol (1:1) solution (25 mL) of o-allylanline $(2.08 \mathrm{~g}, 10 \mathrm{mmol})$, sodium acetate trihydrate $(4.3 \mathrm{~g}$, $32 \mathrm{mmol})$, acetic acid (10 mL), and acetone or cyclohexanone (45 mmol), at $0{ }^{\circ} \mathrm{C}$ was added sodium borohydride ($1.89 \mathrm{~g}, 50 \mathrm{mmol}$) slowly; the reaction mixture was stirred at rt for 30 min before basified with 10% aqueous solution of NaOH . The organic layer was extracted with diethyl ether, concentrated and eluted through a silica gel column give compound $\mathbf{2 u}$ and $\mathbf{2 w}$ as light yellow oil.

2.7 Procedure for synthesis of 2 v and $2 \mathrm{x}-\mathrm{z}$

$2 \mathrm{v}, 2 \mathrm{x}-\mathrm{z}$
Compound 2v and $\mathbf{2 x - z}$ were synthesized according to the reported method: ${ }^{8}$ A solution of benzaldehyde ($0.3 \mathrm{~mL}, 3 \mathrm{mmol}$) and TFE (6 mL) was magnetically stirred at $35-40{ }^{\circ} \mathrm{C}$. After 5 min, the respective o-allylanline (3 mmol) was added and the mixture vigorously stirred. After stirring for $15 \mathrm{~min}, \mathrm{NaBH}_{4}(0.14 \mathrm{~g}, 3.6 \mathrm{mmol})$ was added and the progress of the reaction conversion was followed by TLC. After completion of the reaction, the mixture was filtered and the residue was washed with TFE (6 mL). The solvent was distilled off (to recover for the next run) and the crude product was further purified by silica gel column chromatography to give compound $\mathbf{2 v}$ and $\mathbf{2 x - z}$.

2.8 General procedure for synthesis of 3

To a stirred mixture of alkenylamine $2(0.5 \mathrm{mmol})$ and dichloromethane $(5 \mathrm{~mL})$ in a seal tube was successively added TMSCN ($0.32 \mathrm{~mL}, 2.5 \mathrm{mmol}$) and iodine ($127 \mathrm{mg}, 0.5 \mathrm{mmol}$) at room temperature. After three minutes, $\mathrm{ABX}(383 \mathrm{mg}, 1.25 \mathrm{mmol})$ was added and the resulting mixture was stirred at $35{ }^{\circ} \mathrm{C}$ for 5 h . Subsequently, into the mixture was poured saturated aqueous $\mathrm{NaHCO}_{3}(3 \mathrm{~mL})$ and $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(3 \mathrm{~mL})$, then extracted with dichloromethane. The organic layer was washed with brine, dried over anhydrous magnesium sulfate and concentrated in vacuo. The residue was chromatographed on a silica gel column to give cyanated pyrrolidine 3.

2.9 General procedure for synthesis of 5

To a stirred mixture of alkenylamine $2(0.5 \mathrm{mmol})$ and dichloroethane (5 mL) in a seal tube was successively added TMSCN $(0.19 \mathrm{~mL}, 1.5 \mathrm{mmol}), \mathrm{Na}_{2} \mathrm{SO}_{4}(36 \mathrm{mg}, 0.25 \mathrm{mmol})$ and iodine (102 $\mathrm{mg}, 0.4 \mathrm{mmol}$) at room temperature. After cooling to $0^{\circ} \mathrm{C}$ and addition of PIFA ($473 \mathrm{mg}, 1.1$
mmol), the resulting mixture was stirred for 0.5 h . Subsequently, into the mixture was poured saturated aqueous $\mathrm{NaHCO}_{3}(3 \mathrm{~mL})$ and $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(3 \mathrm{~mL})$, then extracted with dichloromethane. The organic layer was washed with brine, dried over magnesium sulfate and concentrated in vасиo.. The residue was chromatographed on a silica gel column to give 2-cyano pyrrolidine 5 .

2.10 Procedure for synthesis of 8

Compound $\mathbf{8}$ was synthesized according to the reported method: ${ }^{9,10} \mathbf{3 a}(744 \mathrm{mg}, 4 \mathrm{mmol})$ was added to a mixture of aqueous sodium hydroxide $(25 \%, 20 \mathrm{~mL})$ and methanol $(50 \mathrm{~mL})$. The solution was stirred under reflux for 6 h , cooled to $0{ }^{\circ} \mathrm{C}$, and then washed twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The aqueous layer was acidified to pH 5 with 2 N aqueous hydrochloric acid. Ethyl acetate and brine were then added. The organic layer was separated, dried over anhydrous MgSO_{4}, and evaporated to give the crude product which was further purified by silica gel column chromatography to give the desired acid 7 as colourless oil.
Triethylamine ($0.70 \mathrm{~mL}, 5 \mathrm{mmol}$) was added to a solution of compound $7(205 \mathrm{mg}, 1 \mathrm{mmol})$ in dry THF (2 mL).The solution was cooled to $0^{\circ} \mathrm{C}$, and ethyl chloroformate ($0.2 \mathrm{~mL}, 2 \mathrm{mmol}$) was added dropwise. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 40 min . The solvent was removed, and the crude solid was dissolved in dry ether. Triethylamine hydrochloride was removed by filtration. The filtrate was then evaporated to give the crude anhydride which was used in the subsequent step without further purification. The obtained anhydride was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(2 \mathrm{~mL})$ and added dropwise $(20 \mathrm{~min})$ at $40^{\circ} \mathrm{C}$ to a solution of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(0.63 \mathrm{~mL}, 5 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The solution was stirred under reflux for 3 h and then cooled. Water was added, and after decantation and separation, the aqueous layer was extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. The crude residue was purified by chromatography on silica gel to yield compound $\mathbf{8}$ as yellow solid.

2.11 Procedure for synthesis of 9

Compound 9 was synthesized according to the reported method: ${ }^{11}$ To a solution of the substrate (1 mmol) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ ware added solid $\mathrm{NaHCO}_{3}(1.1 \mathrm{mmol})$ and $\mathrm{I}_{2}(1.1 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. After stirring for 0.5 h , the reaction mixture was extracted with ethyl acetate, washed with aqueous NaHCO_{3}, saturated NaCl solution, dried over MgSO_{4}, filtrated and concentrated. The
crude residue was purified by chromatography on silica gel to give compound $\mathbf{9}$ as yellow oil in 65\% yield.

3. Optimization of reaction conditions

Table 1S. Evaluation of oxidants, solvents and reaction time for the synthesis of 3^{a}

${ }^{a}$ Reaction conditions: 2a (0.5 mmol), oxidant (0.75 mmol), TMSCN (1.5 mmol), $\mathrm{I}_{2}(0.5 \mathrm{mmol})$, solvent (4 mL), $10^{\circ} \mathrm{C} .{ }^{b}$ Isolated yields. ${ }^{c}$ In the absent of $\mathrm{I}_{2} .{ }^{d}$ In the absent of TMSCN.

Different oxidants, solvents and reaction time were screened, the highest yield was obtained when
using ABX as oxidant and DCM as solvent. The best reaction time was 5 h .

Table 2S. Optimization of reaction conditions for the synthesis of $\mathbf{3}^{a}$

Entry	I_{2} (eq.)	$\begin{aligned} & \text { ABX } \\ & \text { (eq.) } \end{aligned}$	TMSCN (eq.)	Temperature $\left({ }^{\circ} \mathrm{C}\right)$	$\underset{(\mathrm{mL})}{\mathrm{CH}_{2} \mathrm{Cl}_{2}}$	Additive ${ }^{\text {b }}$	Yield $(\%)^{c}$
1	0.5	1.5	3	10	4	-	43
2	1	1.5	3	10	4	-	48
3	1.5	1.5	3	10	4	-	21
4	0.2	1.5	3	10	4	-	16
5	1	2	3	10	4	-	47
6	1	2.5	3	10	4	-	53
7	1	3	3	10	4	-	53
8	1	3.5	3	10	4	-	52
9	1	2.5	2	10	4	-	28
10	1	2.5	4	10	4	-	67
11	1	2.5	5	10	4	-	72
12	1	2.5	5	10	3	-	70
13	1	2.5	5	10	5	-	74
14^{d}	1	2.5	5	10	5	-	78
15	1	2.5	5	0	5	-	36
16	1	2.5	5	35	5	-	80
17	1	2.5	5	55	5	-	71
18	1	2.5	5	35	5	HOAc	76
10	1	2.5	5	35	5	$\mathrm{Et}_{3} \mathrm{~N}$	0
20^{e}	1	2.5	5	35	5	$4 \AA$ M. S.	75
21	1	2.5	5	35	5	MgSO_{4}	77
22	1	2.5	5	35	5	FeCl_{2}	54
23	1	2.5	5	35	5	$\mathrm{Cu}(\mathrm{OAc})_{2}$	20
24^{f}	1	2.5	-	35	5	-	0
25^{g}	1	2.5	-	35	5	-	0
26^{h}	1	2.5	-	35	5	-	0

${ }^{a}$ Reaction conditions: 2a (specified), oxidant (specified), TMSCN (specified), I_{2} (specified), solvent (5 mL), $10{ }^{\circ} \mathrm{C}, 5 \mathrm{~h} .{ }^{b} 20 \mathrm{~mol} \%{ }^{c}{ }^{c}$ Isolated yields. ${ }^{d}$ Under the protection of argon in dry DCM. ${ }^{e} 0.2 \mathrm{wt} \% 4 \AA$ M. S. was added. ${ }^{f} \mathrm{CuCN}$ instead of TMSCN. ${ }^{g} \mathrm{~K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ instead of TMSCN. ${ }^{e}$ EtOOCCN instead of TMSCN. M. S. $=$ molecular sieve.

Different amounts of $\mathrm{I}_{2}, \mathrm{ABX}, \mathrm{TMSCN}, \mathrm{DCM}$, and reaction temperature were evaluated (Table 2 S), 1 equiv of $\mathrm{I}_{2}, 2.5$ equiv of $\mathrm{ABX}, 5$ equiv of TMSCN, 5 mL of DCM and $35^{\circ} \mathrm{C}$ were observed to be optimal for this reaction. Different additives and cyanide sources were also screened, but they are not beneficial to the reaction.

Table 3S. Optimization of reaction conditions for the synthesis of $\mathbf{5}^{\boldsymbol{a}}$

2a
5a

Entry	Solvent	Additive ${ }^{\text {b }}$	Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Time (h)	$\begin{gathered} \mathrm{I}_{2} \\ \text { (eq.) } \end{gathered}$	PIFA (eq.)	TMSCN (eq.)	Yield (\%) ${ }^{c}$
1	$\mathrm{CH}_{3} \mathrm{CN}$	-	rt	1	1	1.5	3	17
2	DCM	-	rt	1	1	1.5	3	20
3	CHCl_{3}	-	rt	1	1	1.5	3	19
4	acetone	-	rt	1	1	1.5	3	trace
5	THF	-	rt	1	1	1.5	3	trace
6	toluene	-	rt	1	1	1.5	3	21
7	dioxane	-	rt	1	1	1.5	3	15
8	DMF	-	rt	1	1	1.5	3	12
9	EtOAc	-	rt	1	1	1.5	3	20
10	$\mathrm{CH}_{3} \mathrm{OH}$	-	rt	1	1	1.5	3	0
11	cyclohexane	-	rt	1	1	1.5	3	16
12	DCE	-	rt	1	1	1.5	3	23
$13{ }^{\text {d }}$	DCE	$3 \AA$ M. S.	rt	1	1	1.5	3	14
14^{e}	DCE	$4 \AA$ M. S.	rt	1	1	1.5	3	21
15^{f}	DCE	$5 \AA$ M. S.	rt	1	1	1.5	3	14
16	DCE	NaI	rt	1	1	1.5	3	16
17	DCE	$\mathrm{Na}_{2} \mathrm{SO}_{3}$	rt	1	1	1.5	3	27
18	DCE	NaOAc	rt	1	1	1.5	3	9
19	DCE	FeCl_{2}	rt	1	1	1.5	3	7
20	DCE	FeCl_{3}	rt	1	1	1.5	3	0
21	DCE	$\mathrm{Cu}(\mathrm{OAc})_{2}$	rt	1	1	1.5	3	0
22	DCE	CuI	rt	1	1	1.5	3	0
23	DCE	HOAc	rt	1	1	1.5	3	18
24	DCE	$\mathrm{Et}_{3} \mathrm{~N}$	rt	1	1	1.5	3	0
25	DCE	TFA	rt	1	1	1.5	3	15
26	DCE	$\mathrm{Na}_{2} \mathrm{SO}_{4}$	rt	1	1	1.5	3	27
27	DCE	$\mathrm{Na}_{2} \mathrm{SO}_{4}$	40	1	1	1.5	3	18
28	DCE	$\mathrm{Na}_{2} \mathrm{SO}_{4}$	0	1	1	1.5	3	29
29	DCE	$\mathrm{Na}_{2} \mathrm{SO}_{4}$	-15	1	1	1.5	3	15
30	DCE	$\mathrm{Na}_{2} \mathrm{SO}_{4}$	0	1.5	1	1.5	3	28
31	DCE	$\mathrm{Na}_{2} \mathrm{SO}_{4}$	0	2.5	1	1.5	3	25
32	DCE	$\mathrm{Na}_{2} \mathrm{SO}_{4}$	0	0.5	1	1.5	3	28
33	DCE	$\mathrm{Na}_{2} \mathrm{SO}_{4}$	0	0.5	1	1.2	3	15
34	DCE	$\mathrm{Na}_{2} \mathrm{SO}_{4}$	0	0.5	1	2	3	31
35	DCE	$\mathrm{Na}_{2} \mathrm{SO}_{4}$	0	0.5	1	2.2	3	32
36	DCE	$\mathrm{Na}_{2} \mathrm{SO}_{4}$	0	0.5	1	2.5	3	28
37	DCE	$\mathrm{Na}_{2} \mathrm{SO}_{4}$	0	0.5	0.5	2.2	3	26
38	DCE	$\mathrm{Na}_{2} \mathrm{SO}_{4}$	0	0.5	0.8	2.2	3	34
39	DCE	$\mathrm{Na}_{2} \mathrm{SO}_{4}$	0	0.5	1.3	2.2	3	25
40	DCE	$\mathrm{Na}_{2} \mathrm{SO}_{4}$	0	0.5	0.8	2.2	2	30
41	DCE	$\mathrm{Na}_{2} \mathrm{SO}_{4}$	0	0.5	0.8	2.2	2.5	32

42	DCE	$\mathrm{Na}_{2} \mathrm{SO}_{4}$	0	0.5	0.8	2.2	3.5	34
43	DCE	$\mathrm{Na}_{2} \mathrm{SO}_{4}$	0	0.5	0.8	2.2	4	28

${ }^{a}$ Reaction conditions: 2a (0.5 mmol), PIFA (specified), TMSCN (specified), I_{2} (specified), solvent (5 mL). ${ }^{b} 20 \mathrm{~mol} \% .^{c}$ Isolated yields. ${ }^{d} 0.2 \mathrm{wt} \%$ of $3 \AA \mathrm{M} . \mathrm{S} .{ }^{e} 0.2 \mathrm{wt} \%$ of $4 \AA \mathrm{M} . \mathrm{S} .{ }^{f} 0.2$ $\mathrm{wt} \%$ of $5 \AA$ M. S. M. S. $=$ molecular sieve.

Different solvents, additives, reaction temperature, reaction time and amounts of I_{2}, PIFA, TMSCN were evaluated (Table 3S). DCE, $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and $0^{\circ} \mathrm{C}$ were the most favorable ones, and 0.8 equiv of $\mathrm{I}_{2}, 2.2$ equiv of PIFA, 3 equiv of TMSCN were observed to be optimal for this reaction.

4. ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR analytical data

N-(pent-4-en-1-yl)aniline (2a): Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.19-7.15 (m, 2H), $6.68(\mathrm{tt}, J=7.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{dd}, J=8.5,1.0 \mathrm{~Hz}$, $2 \mathrm{H}), 5.88-5.80(\mathrm{~m}, 1 \mathrm{H}), 5.08-5.03(\mathrm{~m}, 1 \mathrm{H}), 5.01-4.98(\mathrm{~m}, 1 \mathrm{H}), 3.60(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 3.12(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.19-2.14(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.68(\mathrm{~m}, 2 \mathrm{H})$.

3-Methyl- \boldsymbol{N}-(pent-4-en-1-yl)aniline (2b): Brown oil. ${ }^{1} \mathrm{H}$ NMR (500
 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.06(\mathrm{td}, J=7.5,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H})$, 6.42-6.41 (m, 2H), 5.88-5.80(m, 1H), 5.08-4.98 (m, 2H), $3.56(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $3.12(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 2.18-2.14(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.68(\mathrm{~m}, 2 \mathrm{H})$.

2-Methyl- N-(pent-4-en-1-yl)aniline (2c): Brown oil. ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.12(\mathrm{td}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.66-6.60$ $(\mathrm{m}, 2 \mathrm{H}), 5.90-5.82(\mathrm{~m}, 1 \mathrm{H}), 5.09-4.99(\mathrm{~m}, 2 \mathrm{H}), 3.47(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.18(\mathrm{t}, J=$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.22-2.17(\mathrm{~m}, 2 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 1.80-1.74(\mathrm{~m}, 2 \mathrm{H})$.

4-Methyl- N-(pent-4-en-1-yl)aniline (2d): Yellow oil. ${ }^{1} \mathrm{H}$ NMR (500
 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.98(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.53(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.88-$ $5.79(\mathrm{~m}, 1 \mathrm{H}), 5.07-4.97(\mathrm{~m}, 2 \mathrm{H}), 3.48(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.11(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$, $2.23(\mathrm{~s}, 3 \mathrm{H}), 2.18-2.14(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.68(\mathrm{~m}, 2 \mathrm{H})$.

3-Methoxy- N -(pent-4-en-1-yl)aniline (2e): Colorless oil. ${ }^{1} \mathrm{H}$ NMR
 ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.07(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.27-6.21(\mathrm{~m}, 2 \mathrm{H}), 6.15$ (t, $J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.88-5.79(\mathrm{~m}, 1 \mathrm{H}), 5.08-4.98(\mathrm{~m}, 2 \mathrm{H}), 3.77(\mathrm{~s}$, $3 \mathrm{H}), 3.65(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.12(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.19-2.14(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.68(\mathrm{~m}, 2 \mathrm{H})$.

4-Methoxy- \boldsymbol{N}-(pent-4-en-1-yl)aniline (2f): Brown oil. ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.78(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.53(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H})$, 5.88-5.80 (m, 1H), 5.07-4.98 (m, 2H), 3.74 (s, 3H), $3.35(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $3.09(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.19-2.14(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.67(\mathrm{~m}, 2 \mathrm{H})$.
N-(pent-4-en-1-yl)-4-(trifluoromethoxy)aniline (2g): Yellow oil.

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.93(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.43(\mathrm{~d}, J=$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.82-5.66(\mathrm{~m}, 1 \mathrm{H}), 4.99-4.91(\mathrm{~m}, 2 \mathrm{H}), 3.59(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $3.01(\mathrm{~m}, 2 \mathrm{H}), 2.08-2.07(\mathrm{~m}, 2 \mathrm{H}), 1.61(\mathrm{~m}, 2 \mathrm{H})$.

3-Fluoro- N-(pent-4-en-1-yl)aniline (2h): Yellow oil. ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.10-7.05(\mathrm{~m}, 1 \mathrm{H}), 6.38-6.33(\mathrm{~m}, 2 \mathrm{H}), 6.27(\mathrm{dt}, J=12.0$, $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.87-5.79(\mathrm{~m}, 1 \mathrm{H}), 5.08-4.99(\mathrm{~m}, 2 \mathrm{H}), 3.75(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.11$ ($\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$), 2.19-2.14 (m, 2H), 1.74-1.68 (m, 2H).

3-Chloro- N-(pent-4-en-1-yl)aniline (2i): Yellow oil. ${ }^{1} \mathrm{H}$ NMR (500
 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.06(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.65-6.63(\mathrm{~m}, 1 \mathrm{H}), 6.56(\mathrm{t}, J=$ $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{dd}, J=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.87-5.79(\mathrm{~m}, 1 \mathrm{H}), 5.08-$ $5.00(\mathrm{~m}, 2 \mathrm{H}), 3.71(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.13-3.09(\mathrm{~m}, 2 \mathrm{H}), 2.19-2.14(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.68(\mathrm{~m}, 2 \mathrm{H})$.

3-Bromo- \boldsymbol{N}-(pent-4-en-1-yl)aniline (2j): Yellow oil. ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.00(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.80-6.78(\mathrm{~m}, 1 \mathrm{H}), 6.72(\mathrm{t}, J=$ $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.50-6.48(\mathrm{~m}, 1 \mathrm{H}), 5.87-5.79(\mathrm{~m}, 1 \mathrm{H}), 5.08-5.00(\mathrm{~m}, 2 \mathrm{H})$, 3.69 (br s, 1H), $3.10(\mathrm{~m}, 2 \mathrm{H}), 2.18-2.14(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.68(\mathrm{~m}, 2 \mathrm{H})$.

4-Bromo- N-(pent-4-en-1-yl)aniline (2k): Yellow oil. ${ }^{1} \mathrm{H}$ NMR (500
 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.23(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.47(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H})$, 5.87-5.79 (m, 1H), 5.07-4.99 (m, 2H), $3.65(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.09(\mathrm{t}, J=7.0$ $\mathrm{Hz}, 2 \mathrm{H})$, 2.18-2.14 (m, 2H), 1.73-1.67 (m, 2H)

3-Iodo- \boldsymbol{N}-(pent-4-en-1-yl)aniline (21): Yellow oil. ${ }^{1} \mathrm{H}$ NMR (500 MHz ,

$\left.\mathrm{CDCl}_{3}\right) \delta 7.00-6.98(\mathrm{~m}, 1 \mathrm{H}), 6.93(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{t}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.54-6.52(\mathrm{~m}, 1 \mathrm{H}), 5.87-5.79(\mathrm{~m}, 1 \mathrm{H}), 5.08-5.00(\mathrm{~m}, 2 \mathrm{H}), 3.65(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}), 3.09(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.18-2.14(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.67(\mathrm{~m}, 2 \mathrm{H})$.

5-Fluoro-2-methyl- \boldsymbol{N}-(pent-4-en-1-yl)aniline (2m): Yellow oil. ${ }^{1} \mathrm{H}$
 NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.94(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.32-6.28(\mathrm{~m}, 2 \mathrm{H})$, $5.90-5.80(\mathrm{~m}, 1 \mathrm{H}), 5.10-5.00(\mathrm{~m}, 2 \mathrm{H}), 3.57(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.14(\mathrm{~m}, 2 \mathrm{H})$, 2.22-2.17 (m, 2H), $2.06(\mathrm{~s}, 3 \mathrm{H}), 1.80-1.73(\mathrm{~m}, 2 \mathrm{H})$.

2,3-Dimethyl- N-(pent-4-en-1-yl)aniline (2n): Yellow oil. ${ }^{1} \mathrm{H}$ NMR
 $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.01(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.50(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.89-5.81(\mathrm{~m}, 1 \mathrm{H}), 5.08-4.98(\mathrm{~m}, 2 \mathrm{H}), 3.46(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}), 3.15(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 2.19-2.17(\mathrm{~m}, 2 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 1.77-1.74(\mathrm{~m}, 2 \mathrm{H})$.
\boldsymbol{N}-(hex-5-en-1-yl)aniline (2o): Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
 $\delta 7.17(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.69(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 5.84-5.79(\mathrm{~m}, 1 \mathrm{H}), 5.04-4.96(\mathrm{~m}, 2 \mathrm{H}), 3.12(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$, 2.11-2.10 (m, 2H), 1.66-1.63 (m, 2H), 1.52-1.49 (m, 2H).
N-(pent-4-en-1-yl)naphthalen-1-amine (2p): Yellow oil. ${ }^{1} \mathrm{H}$ NMR (500
 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.79-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.34(\mathrm{t}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.22$ (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.94-5.86(\mathrm{~m}, 1 \mathrm{H})$, 5.12-5.02 (m, 2H), $4.34(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.30(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.29-2.24(\mathrm{~m}$, 2H), 1.91-1.85 (m, 2H).

N -(2,2-diphenylpent-4-en-1-yl)aniline (2q): White solid. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.24-7.22(\mathrm{~m}, 6 \mathrm{H}), 7.14-7.11(\mathrm{~m}, 2 \mathrm{H})$, 6.68-6.65 (m, 1H), 6.55-6.53 (m, 2H), 5.42-5.35 (m, 1H), 5.02-4.95 (m, $2 \mathrm{H}), 3.73(\mathrm{~s}, 2 \mathrm{H}), 3.21(\mathrm{~s}, 1 \mathrm{H}), 3.00(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H})$.
N-(hex-5-en-2-yl)aniline (2r): Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ
 7.17-7.14 (m, 2H), 6.67-6.64 (m, 1H), $6.57(\mathrm{dd}, J=8.5,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.86-$ $5.80(\mathrm{~m}, 1 \mathrm{H}), 5.05-4.96(\mathrm{~m}, 2 \mathrm{H}), 3.51-3.47(\mathrm{~m}, 1 \mathrm{H}), 3.40(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.18-$ $2.14(\mathrm{~m}, 2 \mathrm{H}), 1.68-1.63(\mathrm{~m}, 1 \mathrm{H}), 1.57-1.51(\mathrm{~m}, 1 \mathrm{H}), 1.18(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H})$.

2-Allyl- N-methylaniline (2s): Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.19$ (t, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.99-5.89(\mathrm{~m}, 1 \mathrm{H}), 5.13-5.07(\mathrm{~m}, 2 \mathrm{H}), 3.76(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.28(\mathrm{~d}, J=$ $6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.85(\mathrm{~s}, 3 \mathrm{H})$.

2-Allyl- N-ethylaniline (2t): Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.15(\mathrm{t}, \mathrm{J}$ $=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.98-5.90(\mathrm{~m}, 1 \mathrm{H}), 5.13-5.09(\mathrm{~m}, 2 \mathrm{H}), 3.61(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.28(\mathrm{~d}, J=6.5$ $\mathrm{Hz}, 2 \mathrm{H}), 3.16(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.26(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.

2-Allyl- \boldsymbol{N}-isopropylaniline (2u): Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.14$ (td, $J=8.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.67-6.64(\mathrm{~m}, 2 \mathrm{H}), 5.97-5.89$ $(\mathrm{m}, 1 \mathrm{H}), 5.13-5.08(\mathrm{~m}, 2 \mathrm{H}), 3.65-3.64(\mathrm{~m}, 1 \mathrm{H}), 3.55(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.26(\mathrm{~d}, J=6.0$ $\mathrm{Hz}, 2 \mathrm{H}), 1.20(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 6 \mathrm{H})$.

2-Allyl- N-benzylaniline (2v): Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-$ $7.32(\mathrm{~m}, 4 \mathrm{H}), 7.28-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.13(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.71(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.00-5.92(\mathrm{~m}, 1 \mathrm{H}), 5.13-$ $5.06(\mathrm{~m}, 2 \mathrm{H}), 4.35(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.12(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.32(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H})$.

2-Allyl-N-cyclohexylaniline (2w): Colorless oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.12(\mathrm{td}, J=8.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.66-6.62(\mathrm{~m}, 2 \mathrm{H}), 5.97-$ $5.89(\mathrm{~m}, 1 \mathrm{H}), 5.13-5.09(\mathrm{~m}, 2 \mathrm{H}), 3.65(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.27(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.05-$ $2.01(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.65-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.43-1.34(\mathrm{~m}, 2 \mathrm{H}), 1.29-$ $1.14(\mathrm{~m}, 4 \mathrm{H})$.

2-Allyl-N-benzyl-4-methylaniline (2x): Yellow oil. ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.38-7.26(\mathrm{~m}, 5 \mathrm{H}), 6.93(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~s}, 1 \mathrm{H}), 6.54(\mathrm{~d}, J$ $=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.00-5.92(\mathrm{~m}, 1 \mathrm{H}), 5.12-5.06(\mathrm{~m}, 2 \mathrm{H}), 4.33(\mathrm{~s}, 2 \mathrm{H}), 3.99(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 3.30(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H})$.

2-Allyl- N-benzyl-4-fluoroaniline (2y): Yellow oil. ${ }^{1} \mathrm{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.33-7.27(\mathrm{~m}, 5 \mathrm{H}), 6.81(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.52(\mathrm{~d}, J=4.5 \mathrm{~Hz}$, $1 \mathrm{H}), 5.94-5.90(\mathrm{~m}, 1 \mathrm{H}), 5.15-5.06(\mathrm{~m}, 2 \mathrm{H}), 4.29(\mathrm{~s}, 2 \mathrm{H}), 3.91(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.27$ (m, 2H).

2-Allyl- N-benzyl-4-bromoaniline (2z): Yellow oil. ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.30-7.15(\mathrm{~m}, 5 \mathrm{H}), 7.16(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.45-6.44(\mathrm{~m}, 1 \mathrm{H})$, 5.92-5.86 (m, 1H), 5.14-5.05 (m, 2H), 4.28 (s, 2H), $4.10(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.24(\mathrm{~m}$, 2H).

2-(1-Phenylpyrrolidin-2-yl)acetonitrile (3a): Yellow solid; 80% yield, 75 mg ; $\mathrm{mp} 36-38{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.28-7.24(\mathrm{~m}, 2 \mathrm{H}), 6.75(\mathrm{t}, J=7.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.58(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.11-4.07(\mathrm{~m}, 1 \mathrm{H}), 3.55-3.51(\mathrm{~m}, 1 \mathrm{H}), 3.25-$ $3.20(\mathrm{~m}, 1 \mathrm{H}), 2.71(\mathrm{dd}, J=17.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{dd}, J=17.0,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.24-2.06(\mathrm{~m}, 4 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 146.1,129.7,118.3,117.1,112.3,55.3,48.7,31.0,23.1,21.6$. HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$187.1230, found 187.1224.
 2-(1-(m-Tolyl)pyrrolidin-2-yl)acetonitrile (3b): Yellow solid; 64\% yield, 64 $\mathrm{mg} ; \mathrm{mp} 36-38{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.16-7.13(\mathrm{~m}, 1 \mathrm{H}), 6.58(\mathrm{~d}, J$ $=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.40-6.39(\mathrm{~m}, 2 \mathrm{H}), 4.10-4.07(\mathrm{~m}, 1 \mathrm{H}), 3.54-3.50(\mathrm{~m}, 1 \mathrm{H}), 3.24-$ $3.19(\mathrm{~m}, 1 \mathrm{H}), 2.72(\mathrm{dd}, J=16.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{dd}, J=16.5,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.22-$ $2.06(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.2,139.5,129.6,118.4,118.1,113.0,109.5,55.3$, 48.7, 31.0, 23.1, 22.0, 21.6. HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$201.1386, found 201.1390.

2-(1-(0-Tolyl)pyrrolidin-2-yl)acetonitrile (3c): Colourless oil; 80\% yield, 80
 $\mathrm{mg} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.18-7.13(\mathrm{~m}, 2 \mathrm{H}), 7.00-6.96(\mathrm{~m}, 2 \mathrm{H}), 3.93-$ $3.88(\mathrm{~m}, 1 \mathrm{H}), 3.62-3.57(\mathrm{~m}, 1 \mathrm{H}), 2.85-2.80(\mathrm{~m}, 1 \mathrm{H}), 2.46(\mathrm{dd}, J=17.0,3.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.35(\mathrm{dd}, J=17.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.33-2.30(\mathrm{~m}, 4 \mathrm{H}), 2.07-2.01(\mathrm{~m}, 1 \mathrm{H})$, 1.96-1.87 (m, 2H). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.7,133.8,131.8,126.7,123.3,119.1,118.3$, 56.2, 53.9, 31.3, 23.9, 22.4, 19.2. HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$201.1386, found 201.1383

2-(1-(p-Tolyl)pyrrolidin-2-yl)acetonitrile (3d): Yellow solid; 67\% yield, 67 $\mathrm{mg} ; \mathrm{mp} 51-53{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.07(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, $6.50(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.07-4.03(\mathrm{~m}, 1 \mathrm{H}), 3.53-3.49(\mathrm{~m}, 1 \mathrm{H}), 3.21-3.16(\mathrm{~m}$, $1 \mathrm{H}), 2.70(\mathrm{dd}, J=17.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{dd}, J=17.0,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 2.23-2.03(\mathrm{~m}$, 4H). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.1,130.2,126.3,118.5,112.3,55.5,48.9,31.1,23.2,21.7$, 20.4. HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$201.1386, found 201.1378.

2-(1-(3-Methoxyphenyl)pyrrolidin-2-yl)acetonitrile (3e): Yellow oil; 46\% yield, $50 \mathrm{mg} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.17(\mathrm{t}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.32$ (dd, $J=8.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{dd}, J=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.12(\mathrm{t}, J=2.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.09-4.05(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.53-3.49(\mathrm{~m}, 1 \mathrm{H}), 3.25-3.20(\mathrm{~m}, 1 \mathrm{H}) 2.71(\mathrm{dd}, J=17.0,3.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.44(\mathrm{dd}, J=17.0,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.23-2.13(\mathrm{~m}, 2 \mathrm{H}), 2.12-2.04(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.2,147.5,130.5,118.3,105.5,101.9,99.1,55.40,55.36,48.8,31.0,23.1,21.6$. HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$217.1336, found 217.1334.

2-(1-(4-Methoxyphenyl)pyrrolidin-2-yl)acetonitrile (3f): Brown solid; 57\%
 yield, 62 mg ; $\mathrm{mp} 43-45{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.87(\mathrm{~d}, J=9.0$
$\mathrm{Hz}, 2 \mathrm{H}), 6.54(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.03-4.00(\mathrm{~m}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.52-3.49(\mathrm{~m}, 1 \mathrm{H}), 3.19-3.14$ (m, 1H), $2.68(\mathrm{dd}, J=17.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{dd}, J=17.0,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.24-2.12(\mathrm{~m}, 2 \mathrm{H}), 2.09-$ $2.05(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.8,140.8,118.5,115.4,113.3,56.1,55.8,49.4$, 31.2, 23.3, 21.8. HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$217.1336, found 217.1340.

2-(1-(4-(Trifluoromethoxy)phenyl)pyrrolidin-2-yl)acetonitrile (3g): Yellow oil; 66% yield, $89 \mathrm{mg} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.12(\mathrm{~d}, J=$ $9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.53(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.08-4.05(\mathrm{~m}, 1 \mathrm{H}), 3.55-3.51(\mathrm{~m}, 1 \mathrm{H})$, 3.24-3.19 (m, 1H), 2.68 (dd, $J=16.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{dd}, J=17.0,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.26-2.08(\mathrm{~m}$, $4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.9,140.4,122.9,120.8(\mathrm{q}, J=250 \mathrm{~Hz}$), 118.1, 112.5, 55.5 , 49.1, 31.2, 23.2, 21.6. HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{OF}_{3}[\mathrm{M}+\mathrm{H}]^{+}$271.1053, found 271.1065.

2-(1-(3-Fluorophenyl)pyrrolidin-2-yl)acetonitrile (3h): Light yellow solid; 46% yield, $47 \mathrm{mg} ; \mathrm{mp} 34-36^{\circ} \mathrm{C}$;. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.18$ $(\mathrm{td}, J=8.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{td}, J=8.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{dd}, J=8.0,2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.26(\mathrm{dt}, J=12.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.08-4.04(\mathrm{~m}, 1 \mathrm{H}), 3.53-3.49(\mathrm{~m}, 1 \mathrm{H}), 3.25-3.21(\mathrm{~m}, 1 \mathrm{H})$ $2.69(\mathrm{dd}, J=17.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{dd}, J=17.0,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.24-2.16(\mathrm{~m}, 2 \mathrm{H}), 2.15-2.08(\mathrm{~m}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.4(\mathrm{~d}, J=241.3 \mathrm{~Hz}), 147.8(\mathrm{~d}, J=11.3 \mathrm{~Hz}), 130.8(\mathrm{~d}, J=$ $11.3 \mathrm{~Hz}), 118.1,108.0(\mathrm{~d}, J=1.3 \mathrm{~Hz}), 103.7(\mathrm{~d}, J=22.5 \mathrm{~Hz}), 99.5(\mathrm{~d}, J=26.3 \mathrm{~Hz}), 55.5,48.9$, 31.1, 23.1, 21.5. HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{~F}[\mathrm{M}+\mathrm{H}]^{+}$205.1136, found 205.1127.

2-(1-(3-Chlorophenyl)pyrrolidin-2-yl)acetonitrile (3i): Yellow soild; 56\% yield, $62 \mathrm{mg} ; \mathrm{mp} 61-62{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.16(\mathrm{t}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.71(\mathrm{dd}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{dd}, J$ $=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.08-4.04(\mathrm{~m}, 1 \mathrm{H}), 3.53-3.50(\mathrm{~m}, 1 \mathrm{H}), 3.24-3.19(\mathrm{~m}, 1 \mathrm{H}), 2.68(\mathrm{dd}, J=17.0$, $3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{dd}, J=17.0,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.27-2.14(\mathrm{~m}, 2 \mathrm{H}), 2.10-2.06(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 147.2,135.6,130.6,118.0,117.1,112.3,110.5,55.3,48.8,31.0,23.1,21.5$. HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{Cl}[\mathrm{M}+\mathrm{H}]^{+}$221.0840, found 221.0844.

2-(1-(3-Bromophenyl)pyrrolidin-2-yl)acetonitrile (3j): Yellow soild; 52\% yield, $69 \mathrm{mg} ; \mathrm{mp} 60-62{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.10(\mathrm{t}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.86(\mathrm{dd}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{dd}, J$ $=8.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.08-4.05(\mathrm{~m}, 1 \mathrm{H}), 3.53-3.49(\mathrm{~m}, 1 \mathrm{H}), 3.24-3.19(\mathrm{~m}, 1 \mathrm{H}), 2.68(\mathrm{dd}, J=17.0$, $3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{dd}, J=17.0,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.27-2.16(\mathrm{~m}, 2 \mathrm{H}), 2.14-2.07(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 147.3,130.9,123.9,120.0,118.1,115.1,110.9,55.3,48.8,31.0,23.1,21.5$. HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{Br}[\mathrm{M}+\mathrm{H}]^{+}$265.0335, found 265.0323.

2-(1-(4-Bromophenyl)pyrrolidin-2-yl)acetonitrile (3k): Yellow solid; 64\%

yield, 85 mg ; $\mathrm{mp} 60-62{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33(\mathrm{~d}, J=9.0$ $\mathrm{Hz}, 2 \mathrm{H}), 6.45(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.06-4.03(\mathrm{~m}, 1 \mathrm{H}), 3.52-3.48(\mathrm{~m}, 1 \mathrm{H})$, 3.21-3.18 (m, 1H), $2.67(\mathrm{dd}, J=17.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{dd}, J=17.0,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.23-2.08(\mathrm{~m}$, $4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.1,132.4,118.1,113.9,109.1,55.4,48.9,31.1,23.2,21.5$. HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{Br}[\mathrm{M}+\mathrm{H}]^{+}$265.0335, found 265.0348.

2-(1-(3-Iodophenyl)pyrrolidin-2-yl)acetonitrile (31): Light yellow oil; 63\% yield, $98 \mathrm{mg} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.06(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{t}$, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{dd}, J=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.07-$ $4.03(\mathrm{~m}, 1 \mathrm{H}), 3.52-3.48(\mathrm{~m}, 1 \mathrm{H}), 3.22-3.17(\mathrm{~m}, 1 \mathrm{H}), 2.67(\mathrm{dd}, J=17.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{dd}, J=$ $17.0,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.26-2.15(\mathrm{~m}, 2 \mathrm{H}), 2.13-2.06(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.2$, $131.0,126.1,121.1,118.0,111.6,95.9,55.2,48.8,31.0,23.1,21.5$. HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{I}[\mathrm{M}+\mathrm{H}]^{+}$313.0196, found 313.0202.

2-(1-(5-Fluoro-2-methylphenyl)pyrrolidin-2-yl)acetonitrile (3m): Yellow oil; 70% yield, $76 \mathrm{mg} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.10(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$), 6.68-6.63 (m, 2H), 3.89-3.87 (m, 1H), 3.66-3.60(m, 1H), 2.89-2.83 (m, 1H), 2.50-2.30 (m, 3H), $2.24(\mathrm{~s}, 3 \mathrm{H}), 2.08-1.88(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 161.9(\mathrm{~d}, J=$ $242.5 \mathrm{~Hz}), 148.1(\mathrm{~d}, J=7.5 \mathrm{~Hz}), 132.6(\mathrm{~d}, J=8.8 \mathrm{~Hz}), 128.3(\mathrm{~d}, J=5.0 \mathrm{~Hz}), 118.0,109.3(\mathrm{~d}, J=$ 20.0 Hz), $105.7(\mathrm{~d}, J=22.5 \mathrm{~Hz}), 56.0,53.7,31.3,24.0,22.3,18.9$. HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{~F}[\mathrm{M}+\mathrm{H}]^{+}$219.1292, found 219.1302.

2-(1-(2,3-Dimethylphenyl)pyrrolidin-2-yl)acetonitrile (3n): Light yellow oil; 77% yield, $82 \mathrm{mg} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.06(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.92$ $(\mathrm{d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.82-3.79(\mathrm{~m}, 1 \mathrm{H}), 3.54-3.49(\mathrm{~m}, 1 \mathrm{H}), 2.77-2.72(\mathrm{~m}, 1 \mathrm{H})$, 2.46-2.28 (m, 6H), 2.22 ($\mathrm{s}, 3 \mathrm{H}$), 2.05-2.02 (m, 1H), 1.95-1.89 (m, 2H). ${ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 146.7,138.6,133.5,126.0,125.6,118.4,117.5,56.8,54.5,31.1,23.6,22.5,20.9,14.6$. HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$215.1543, found 215.1542.

2-(1-Phenylpiperidin-2-yl)acetonitrile (30): Yellow oil; 34\% yield, $34 \mathrm{mg} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.24(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.75-6.70(\mathrm{~m}, 3 \mathrm{H}), 4.08$ (dd, $J=15.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.74-3.69(\mathrm{~m}, 1 \mathrm{H}), 3.51(\mathrm{dd}, J=15.0,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.31-$ $3.26(\mathrm{~m}, 1 \mathrm{H}), 3.09-3.03(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.74(\mathrm{~m}, 4 \mathrm{H}), 1.57-1.51(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.4,129.9,121.8,117.3,111.7,51.4,50.3,30.9,29.8,27.4,24.6$. HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$201.1386, found 201.1381.

2-(1-(Naphthalen-1-yl)pyrrolidin-2-yl)acetonitrile (3p): Yellow oil; 70\% yield, $83 \mathrm{mg} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.25-8.23(\mathrm{~m}, 1 \mathrm{H}), 7.83-7.81(\mathrm{~m}$, $1 \mathrm{H}), 7.58(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.12$ (d, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.07-4.03(\mathrm{~m}, 1 \mathrm{H}), 3.87-3.83(\mathrm{~m}, 1 \mathrm{H}), 3.01-2.96(\mathrm{~m}, 1 \mathrm{H})$, $2,50(\mathrm{dd}, J=16.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.44-2.39(\mathrm{~m}, 2 \mathrm{H}), 2.17-2.13(\mathrm{~m}, 1 \mathrm{H}), 2.08-1.95(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.3,135.1,130.7,128.3,126.3,125.9,125.6,124.4,124.1,118.4$, 115.4, 56.9, 55.9, 31.3, 23.9, 22.4. HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$237.1386, found 237.1377.

2-(1,4,4-Triphenylpyrrolidin-2-yl)acetonitrile (3q): White solid ; 34\% yield, 58 mg ; mp 60-62 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34-7.29(\mathrm{~m}, 6 \mathrm{H})$, $7.25-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.15(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-7.09(\mathrm{~m}, 2 \mathrm{H}), 6.83(\mathrm{t}, J=$ $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.24(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.01-3.96$
(m, 2H), $3.00(\mathrm{dd}, J=12.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{dd}, J=12.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{dd}, J=17.0,3.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.26(\mathrm{dd}, J=17.0,8.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.04,145.98,145.6$, $129.8,128.9,128.7,127.1,127.0,126.7,118.04,118.00,113.2,60.1,54.5,53.0,43.8,21.7$. HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$339.1856, found 339.1846.

2-(5-Methyl-1-phenylpyrrolidin-2-yl)acetonitrile (3r): Yellow solid; mixture of two diastereoisomers $(\mathrm{dr}=10: 1) ; 79 \%$ yield, $79 \mathrm{mg} ; \mathrm{mp} 63-65^{\circ} \mathrm{C}$. Major isomer: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.26-7.22(\mathrm{~m}, 2 \mathrm{H}), 6.70(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{~d}$, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.19(\mathrm{td}, J=9.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.13-4.08(\mathrm{~m}, 1 \mathrm{H}), 2.72(\mathrm{dd}, J=$ $17.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.41-2.25(\mathrm{~m}, 3 \mathrm{H}), 2.03(\mathrm{dd}, J=12.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.75(\mathrm{dd}, J=11.5,6.5 \mathrm{~Hz}$, $1 \mathrm{H}), 1.11(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 144.0,129.7,118.5,116.8,114.0$, 54.5, 53.4, 30.1, 28.4, 20.2, 18.2. HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$201.1386, found 201.1393.

2-(1-Methylindolin-2-yl)acetonitrile (3s): Light yellow oil; 42\% yield, 36 mg .
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.13-7.07(\mathrm{~m}, 2 \mathrm{H}), 6.72(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.49$ (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.69-3.67(\mathrm{~m}, 1 \mathrm{H}), 3.28(\mathrm{dd}, J=15.6,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.89$ (dd, $J=15.6,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{~s}, 3 \mathrm{H}), 2.73-2.61(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.4$, 128.1, 127.4, 124.5, 119.0, 117.6, 107.9, 63.1, 35.3, 34.5, 22.1. HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+}$173.1073, found 173.1078.

2-(1-Ethylindolin-2-yl)acetonitrile (3t): Light yellow oil; 42% yield, $39 \mathrm{mg} .{ }^{1} \mathrm{H}$

NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.10-7.06(\mathrm{~m}, 2 \mathrm{H}), 6.68(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J$ $=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.96-3.93(\mathrm{~m}, 1 \mathrm{H}), 3.36-3.28(\mathrm{~m}, 2 \mathrm{H}), 3.20-3.14(\mathrm{~m}, 1 \mathrm{H}), 2.88$ (dd, $J=16.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{dd}, J=16.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{dd}, J=16.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.15(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.8,128.0,127.4,124.6,118.4,117.7,107.5$, 59.3, 40.8, 35.3, 22.7, 11.6. HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$187.1230, found 187.1232.

2-(1-Isopropylindolin-2-yl)acetonitrile (3u): Yellow oil; 38% yield, $38 \mathrm{mg} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.09-7.06(\mathrm{~m}, 2 \mathrm{H}), 6.69(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{~d}, J$ $=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.04-3.99(\mathrm{~m}, 1 \mathrm{H}), 3.73-3.68(\mathrm{~m}, 1 \mathrm{H}), 3.38(\mathrm{dd}, J=16.0,9.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.86(\mathrm{dd}, J=16.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{dd}, J=16.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{dd}, J=16.5,7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 1.28(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.22(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.0$, $127.93,127.89,124.9,118.7,118.0,109.6,56.1,49.2,35.9,25.6,20.7,19.5$. HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$201.1386, found 201.1391.

2-(1-Benzylindolin-2-yl)acetonitrile (3v): Light yellow oil; 66% yield, 82 mg .
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.10(\mathrm{~d}, \mathrm{~J}=$
$7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.37(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.95-3.89(\mathrm{~m}, 1 \mathrm{H}), 3.36(\mathrm{dd}, J=16.0$, $9.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{dd}, J=16.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{dd}, J=17.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{dd}, J=16.5$, $7.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.7,138.1,129.0,128.1,127.7,127.5,127.2,124.7$, 119.0, 117.5, 107.9, 61.0, 52.3, 35.3, 22.9. HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$249.1386,

2-(1-Cyclohexylindolin-2-yl)acetonitrile (3w): Light yellow oil; 36\% yield, 43 mg. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.08-7.05(\mathrm{~m}, 2 \mathrm{H}), 6.68(\mathrm{td}, J=7.5,0.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.55(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.08-4.03(\mathrm{~m}, 1 \mathrm{H}), 3.39(\mathrm{dd}, J=16.5,10.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.25(\mathrm{tt}, J=11.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{dd}, J=16.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{dd}, J=16.5$, $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{dd}, J=16.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.96(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.90-1.78(\mathrm{~m}, 3 \mathrm{H}), 1.70(\mathrm{~d}$, $J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.51-1.26(\mathrm{~m}, 4 \mathrm{H}), 1.16(\mathrm{ddt}, J=26.0,13.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 150.1,127.9,127.8,124.9,118.5,118.1,109.4,58.1,56.2,35.9,31.9,29.9,26.5,26.3$, 26.0, 25.9. HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$241.1699, found 241.1706.

2-(1-Benzyl-5-methylindolin-2-yl)acetonitrile (3x): Light yellow solid; 45\%
 yield, $59 \mathrm{mg} ; \mathrm{mp} 80-82{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.26(\mathrm{~m}, 5 \mathrm{H})$, $6.94(\mathrm{~s}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~d}, J=$ $16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.89-3.85(\mathrm{~m}, 1 \mathrm{H}), 3.32(\mathrm{dd}, J=16.0,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.94$ (dd, $J=15.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{dd}, J=17.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{dd}, J=16.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.6,138.3,128.9,128.4,128.2,127.62,127.57,127.5$, 125.6, 117.6, 107.9, 61.4, 52.9, 35.3, 22.9, 20.9. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ 263.1543, found 263.1538 .

2-(1-Benzyl-5-fluoroindolin-2-yl)acetonitrile (3y): Light yellow solid; 54\% yield, 72 mg ; $\mathrm{mp} 78-80^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.33(\mathrm{~m}, 4 \mathrm{H})$, 7.31-7.28 (m, 1H), 6.85-6.82 (m, 1H), $6.73(\mathrm{td}, J=9.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{dd}$, $J=8.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.93-3.88(\mathrm{~m}, 1 \mathrm{H}), 3.33$ (dd, $J=16.0,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{dd}, J=16.5,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{dd}, J=16.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.55$ $(\mathrm{dd}, J=16.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.1(\mathrm{~d}, J=235 \mathrm{~Hz}), 148.0,137.8$, $129.0,128.8(\mathrm{~d}, J=8.8 \mathrm{~Hz}), 127.8,127.5,117.4,113.9(\mathrm{~d}, J=22.5 \mathrm{~Hz}), 112.3(\mathrm{~d}, J=23.8 \mathrm{~Hz})$, $108.2(\mathrm{~d}, J=8.8 \mathrm{~Hz}), 61.6,53.1,35.2(\mathrm{~d}, J=1.25 \mathrm{~Hz}), 22.9$. HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{~F}$ $[\mathrm{M}+\mathrm{H}]^{+}$267.1292, found 267.1298.

2-(1-Benzyl-5-bromoindolin-2-yl)acetonitrile (3z): White solid; 28\%
 yield, $46 \mathrm{mg} ; \mathrm{mp} 82-84{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36-7.28(\mathrm{~m}$, $5 \mathrm{H}), 7.19(\mathrm{~s}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~d}$, $J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.97-3.91(\mathrm{~m}, 1 \mathrm{H}), 3.34(\mathrm{dd}, J=16.5,9.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.97(\mathrm{dd}, J=16.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{dd}, J=17.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{dd}, J=17.0,7.0 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.7,137.4,130.7,129.5,129.1,127.9,127.7,127.5,117.2$, $110.5,109.1,60.9,51.9,34.9,22.8$. HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{Br}[\mathrm{M}+\mathrm{H}]^{+} 327.0492$, found 327.0493.

(1-Phenylpyrrolidin-2-yl)methyl acetate (4): Yellow oil; 23\% yield, 25 mg . ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.23(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.71-6.70(\mathrm{~m}, 3 \mathrm{H}), 4.30$ $(\mathrm{dd}, J=11.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.00-3.92(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{t}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.16-3.11(\mathrm{~m}, 1 \mathrm{H}), 2.07-1.97(\mathrm{~m}, 7 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.2$,
$147.5,129.5,116.5,112.2,64.3,57.2,48.7,28.8,23.4,21.1$. HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}$ $[\mathrm{M}+\mathrm{H}]^{+}$220.1332, found 220.1339.

2-Methyl-1-phenylpyrrolidine-2-carbonitrile (5a): Yellow oil; 34\% yield, 32 mg. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.29(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 6.84(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.62-3.57(\mathrm{~m}, 1 \mathrm{H}), 3.45-3.41(\mathrm{~m}, 1 \mathrm{H}), 2.67-2.63(\mathrm{~m}$, 1 H), 2.19-2.07 (m, 3H), $1.70(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.6,129.3,121.9,118.8$, 115.3, 56.7, 50.6, 42.8, 24.3, 22.8. HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$187.1230, found 187.1238

2-Methyl-1-(p-tolyl)pyrrolidine-2-carbonitrile (5b): Yellow oil; 45\% yield, $45 \mathrm{mg} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.10(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 2 \mathrm{H}), 3.59-3.55(\mathrm{~m}, 1 \mathrm{H}), 3.41-3.37(\mathrm{~m}, 1 \mathrm{H}), 2.64-2.59(\mathrm{~m}, 1 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.17-2.04(\mathrm{~m}, 3 \mathrm{H})$, $1.67(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 142.4,129.8,128.6,122.0,116.0,57.1,50.8,42.6$, 24.4, 22.6, 20.6. HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$201.1386, found 201.1392.

1-(3-Fluorophenyl)-2-methylpyrrolidine-2-carbonitrile (5c): Yellow oil; 23\% yield, $23 \mathrm{mg} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.22(\mathrm{dd}, J=16.0,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.65$ $(\mathrm{d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.56-6.51(\mathrm{~m}, 2 \mathrm{H}), 3.59-3.54(\mathrm{~m}, 1 \mathrm{H}), 3.44-3.40(\mathrm{~m}, 1 \mathrm{H})$, 2.69-2.66 (m, 1H), 2.21-2.07 (m, 3H), $1.71(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.8(\mathrm{~d}, J=$ $242.5 \mathrm{~Hz}), 146.20(\mathrm{~d}, J=8.8 \mathrm{~Hz}), 130.3(\mathrm{~d}, J=10.0 \mathrm{~Hz}), 121.5,110.5(\mathrm{~d}, J=2.5 \mathrm{~Hz}), 105.2(\mathrm{~d}, J$ $=21.3 \mathrm{~Hz}), 102.1(\mathrm{~d}, J=26.3 \mathrm{~Hz}), 56.6,50.7,42.8,24.2,22.8$. HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{~F}$ $[\mathrm{M}+\mathrm{H}]^{+}$205.1136, found 205.1127.

1-(3-Chlorophenyl)-2-methylpyrrolidine-2-carbonitrile (5d): Yellow oil; 28\% yield, $31 \mathrm{mg} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.19(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.81-6.78$ $(\mathrm{m}, 3 \mathrm{H}), 3.59-3.54(\mathrm{~m}, 1 \mathrm{H}), 3.44-3.40(\mathrm{~m}, 1 \mathrm{H}), 2.69-2.64(\mathrm{~m}, 1 \mathrm{H}), 2.19-2.08(\mathrm{~m}$, 3 H), $1.71(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.7,135.1,130.2,121.5,118.6,115.0,113.0$, 56.6, 50.7, 42.8, 24.2, 22.8. HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{Cl}[\mathrm{M}+\mathrm{H}]^{+}$221.0840, found 221.0846 .

1-(3-Bromophenyl)-2-methylpyrrolidine-2-carbonitrile (5e): Yellow oil; 24\% yield, $32 \mathrm{mg} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.13$ (t, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 6.96-6.95 $(\mathrm{m}, 2 \mathrm{H}), 6.84(\mathrm{dd}, J=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.59-3.54(\mathrm{~m}, 1 \mathrm{H}), 3.43-3.39(\mathrm{~m}, 1 \mathrm{H})$, 2.69-2.63 (m, 1H), 2.20-2.06 (m, 3H), $1.70(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.8,130.4$, $123.4,121.5,121.4,117.9,113.5,56.6,50.7,42.8,24.2,22.8$. HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{Br}$ $[\mathrm{M}+\mathrm{H}]^{+} 265.0335$, found 265.0342 .

1-(4-Bromophenyl)-2-methylpyrrolidine-2-carbonitrile (5f): Yellow oil; 38% yield, $50 \mathrm{mg} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H})$, $6.76(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.58-3.54(\mathrm{~m}, 1 \mathrm{H}), 3.41-3.37(\mathrm{~m}, 1 \mathrm{H}), 2.68-2.62(\mathrm{~m}$, $1 \mathrm{H}), 2.16-2.05(\mathrm{~m}, 3 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.6,132.0,121.5,116.7$, 111.1, 56.7, 50.7, 42.7, 24.2, 22.8. HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{Br}[\mathrm{M}+\mathrm{H}]^{+}$265.0335, found 265.0347.

1-(3-Iodophenyl)-2-methylpyrrolidine-2-carbonitrile (5g): Yellow oil; 24\% yield, $37 \mathrm{mg} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.17-7.14$ (m, 2H), $6.99(\mathrm{t}, J=8.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.89(\mathrm{dd}, J=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.58-3.53(\mathrm{~m}, 1 \mathrm{H}), 3.42-3.38(\mathrm{~m}, 1 \mathrm{H})$, 2.68-2.62 (m, 1H), 2.18-2.07 (m, 3H), $1.69(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.7,130.6$, $127.6,123.8,121.4,114.1,95.3,56.5,50.6,42.8,24.2,22.8$. HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{I}$ $[\mathrm{M}+\mathrm{H}]^{+} 313.0196$, found 313.0190.

3-Allyl-4-(isopropylamino)benzonitrile (6): Yellow oil; 12% yield, 12 mg . ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~s}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J$ $=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.92-5.84(\mathrm{~m}, 1 \mathrm{H}), 5.19(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~d}, J=17.0$ Hz, 1H), 4.09 (br s, 1H), 3.70-3.66 (m, 1H), 3.23 (d, $J=6.0 \mathrm{~Hz}, 2 \mathrm{H}$), 1.23 (d, J $=6.0 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 149.0,134.7,133.7,132.7,123.3,120.8,117.6$, 110.2, 98.1, 44.1, 36.2, 22.9. HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$201.1386, found 201.1386.
 2,3,3a,4-Tetrahydropyrrolo[1,2-a]quinolin-5(1H)-one (8): Yellow solid; 28\% yield, 52 mg ; $\mathrm{mp} 68-70{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.84$ (dd, $J=8.0,1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.37$ (t, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, 1 H), 3.65-3.60 (m, 1H), 3.52-3.47 (m, 1H), 3.29 (td, $J=9.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.77$ (dd, $J=16.0,3.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.47(\mathrm{t}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.27-2.16(\mathrm{~m}, 2 \mathrm{H}), 1.99-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.68(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 194.1,150.2,135.7,128.2,118.5,116.1,113.0,58.3,46.3,43.9,33.0$, 23.1. HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$188.1070, found 188.1070. All spectroscopic data are in agreement with the reported ones. ${ }^{12}$

2-(Iodomethyl)-1-phenylpyrrolidine (9): Yellow oil; 65% yield, $187 \mathrm{mg} .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.72(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.56$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.05-4.02(\mathrm{~m}, 1 \mathrm{H}), 3.49(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{~d}, J=9.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.17$ (dd, $J=15.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{t}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.15-2.02(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 146.3,129.7,116.7,120.0,60.9,49.2,30.6,23.0,9.76$.

5. References

(1) G.-Q. Liu, W. Li and Y.-M. Li, Adv. Synth. Catal., 2013, 355, 395-402.
(2) X. Wang and H.-Y. Jang, Bull. Korean Chem. Soc., 2012, 33, 1785-1787.
(3) A. Leaver, D. Brierley and J. F. Bullock, World Patent 2000022048, 2000.
(4) P. Mizar, A. Burrelli, E. Gunther, M. Sçftje, U. Farooq and T. Wirth, Chem. Eur. J., 2014, 20, 13113-13116.
(5) X. Wang, K. Dong, B. Yan, C. Zhang, L. Qiu and X. Xu, RSC Adv., 2016, 6, 70221-70225.
(6) Y. Gao, Y. Huang, W. Wu, K. Huang and H. Jiang, Chem. Commun., 2014, 50, 8370-8373.
(7) R. K. Kawade, D. B. Huple, R.-J. Lin and R.-S. Liu, Chem. Commun., 2015, 51, 6625-6628.
(8) M. Tajbakhsh, R. Hosseinzadeh, H. Alinezhad, S. Ghahari, H. Somayeh, A. Heydari and S. Khaksar, Synthesis, 2011, 3, 490-496.
(9) B. Sayah, N. Pelloux-Léon and Y. Vallée, J. Org. Chem., 2000, 65, 2824-2826.
(10) Y. Ishihara, Y. Kiyota and G. Goto, Chem. Pharm. Bull., 1990, 38, 3024-3030.
(11) H. M. C. Ferraz, F. L. C. Pereira, F. S. Leite, M. R. S. Nunes and M. E. Payret-Arrua, Tetrahedron, 1999, 55, 10915-10924.
(12) D.-F. Chen, Z.-Y. Han, Y.-P. He, J. Yu and L.-Z. Gong, Angew. Chem. Int. Ed., 2012, 51, 12307-12310.

6. ${ }^{1} \mathrm{H}-$ and ${ }^{13} \mathrm{C}$-NMR spectra

N-(pent-4-en-1-yl)aniline (2a)

3-Methyl- N-(pent-4-en-1-yl)aniline (2b)

2-Methyl- N-(pent-4-en-1-yl)aniline (2c)

3-Methoxy- N-(pent-4-en-1-yl)aniline (2e)

4-Methoxy- N-(pent-4-en-1-yl)aniline (2f)

N-(pent-4-en-1-yl)-4-(trifluoromethoxy)aniline (2g)

3-Fluoro- N-(pent-4-en-1-yl)aniline (2h)

3-Chloro- N-(pent-4-en-1-yl)aniline (2i)

4-Bromo- N-(pent-4-en-1-yl)aniline (2k)

3-Iodo- N -(pent-4-en-1-yl)aniline (21)

5-Fluoro-2-methyl- N -(pent-4-en-1-yl)aniline (2m)
(

2,3-Dimethyl- N-(pent-4-en-1-yl)aniline (2n)

N -(hex-5-en-1-yl)aniline (20)

N-(pent-4-en-1-yl)naphthalen-1-amine (2p)

N -(2,2-diphenylpent-4-en-1-yl)aniline (2q)

N-(hex-5-en-2-yl)aniline (2r)

2-Allyl- N -methylaniline (2s)

2-Allyl- N-ethylaniline (2t)

2-Allyl- N -isopropylaniline (2u)

2-Allyl- N-benzylaniline (2v)

2-Allyl- N -cyclohexylaniline (2w)

2-Allyl- N-benzyl-4-methylaniline (2x)

2-Allyl- N-benzyl-4-fluoroaniline (2y)

2-Allyl- N-benzyl-4-bromoaniline (2z)

2-(1-Phenylpyrrolidin-2-yl)acetonitrile (3a)

2-(1-(m-Tolyl)pyrrolidin-2-yl)acetonitrile (3b)

2-(1-(o-Tolyl)pyrrolidin-2-yl)acetonitrile (3c)

2-(1-(p-Tolyl)pyrrolidin-2-yl)acetonitrile (3d)

2-(1-(3-Methoxyphenyl)pyrrolidin-2-yl)acetonitrile (3e)

2-(1-(4-Methoxyphenyl)pyrrolidin-2-yl)acetonitrile (3f)

2-(1-(4-(Trifluoromethoxy)phenyl)pyrrolidin-2-yl)acetonitrile (3g)

2-(1-(3-Fluorophenyl)pyrrolidin-2-yl)acetonitrile (3h)

2-(1-(3-Chlorophenyl)pyrrolidin-2-yl)acetonitrile (3i)

2-(1-(3-Bromophenyl)pyrrolidin-2-yl)acetonitrile (3j)

2-(1-(4-Bromophenyl)pyrrolidin-2-yl)acetonitrile (3k)

2-(1-(3-Iodophenyl)pyrrolidin-2-yl)acetonitrile (31)

2-(1-(5-Fluoro-2-methylphenyl)pyrrolidin-2-yl)acetonitrile (3m)

2-(1-(2,3-Dimethylphenyl)pyrrolidin-2-yl)acetonitrile (3n)

2-(1-Phenylpiperidin-2-yl)acetonitrile (3o)

2-(1-(Naphthalen-1-yl)pyrrolidin-2-yl)acetonitrile (3p)

2-(1,4,4-Triphenylpyrrolidin-2-yl)acetonitrile (3q)

2-(5-Methyl-1-phenylpyrrolidin-2-yl)acetonitrile (3r)

2-(1-Methylindolin-2-yl)acetonitrile (3s)

2-(1-Ethylindolin-2-yl)acetonitrile (3t)

2-(1-Isopropylindolin-2-yl)acetonitrile (3u)

2-(1-Benzylindolin-2-yl)acetonitrile (3v)

(

															6								
210	200	190	180	170	160	150	140	130	120	110	${ }_{f 1} \stackrel{100}{(p R A)}$	90	80	70	60	50	40	30	20	10	0		-10

2-(1-Cyclohexylindolin-2-yl)acetonitrile (3w)

2-(1-Benzyl-5-methylindolin-2-yl)acetonitrile (3x)

2-(1-Benzyl-5-fluoroindolin-2-yl)acetonitrile (3y)

2-(1-Benzyl-5-bromoindolin-2-yl)acetonitrile (3z)

2-(1-Phenylpyrrolidin-2-yl)acetonitrile (4)

2-Methyl-1-phenylpyrrolidine-2-carbonitrile (5a)

2-Methyl-1-(p-tolyl)pyrrolidine-2-carbonitrile (5b)

1-(3-Fluorophenyl)-2-methylpyrrolidine-2-carbonitrile (5c)

1-(3-Chlorophenyl)-2-methylpyrrolidine-2-carbonitrile (5d)

1-(3-Bromophenyl)-2-methylpyrrolidine-2-carbonitrile (5e)

$\stackrel{ָ}{\sim}$

1-(4-Bromophenyl)-2-methylpyrrolidine-2-carbonitrile (5f)

号

3-Allyl-4-(isopropylamino)benzonitrile (6)

2,3,3a,4-Tetrahydropyrrolo[1,2-a]quinolin-5(1H)-one (8)

2-(Iodomethyl)-1-phenylpyrrolidine (9)

