Supporting information

for

Sodium nitrite-promoted aerobic oxidative coupling of aryl methyl ketones with ammonium under metal-free conditions: A facile

access to polysubstitution imidazoles

Chengkou Liu,^a Zhao Yang,^b Yu Zeng,^a Zheng Fang,^{*, a} Kai Guo^{*, a, c} and Bo Li^d

^aCollege of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing, 211816, China ^bCollege of Engineering, China Pharmaceutical University, 24 Tongjiaxiang, NanJing, 210003, China ^cState Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing, 211816, China

^dHarbin Pharmaceutical Group Co, Ltd, 7 Qunli Road, Harbin,150070,China

Table of contents:

General Experimental Information	3
Table S1. The Equiv. of NaNO ₂ Screening	3
Table S2. The Temperature Screening	4
Table S3. The Equiv. of Morpholine Screening	4
Table S4. The Equiv. of Amine (2a) Screening	5
General Experimental Details for the Synthesis of (4 or	5
5)-Aryl-2-Aroyl-Imidazole Analogues	
Table S5. Screening of the Direct Oxidative Synthesis of	6-7
1,2,4-Trisubstituted Imidazoles from Aryl Methyl	
Ketones and Benzylamine	
General Experimental Details for the Synthesis of 1,2,4-	8
Trisubstituted Imidazoles	
Analytical Data for Compounds 3, 4 and Intermediate ${ m IV}$	8-19
The Picture of the Single-Crystal for 4k	20
¹ H NMR and ¹³ C NMR Spectra of those Compounds	21-46

General Experimental Information

Reagents and solvents: Commercially available reagents were used without any further purification. All organic solvents were also of reagent grade quality without any further purification.

Chromatography: Flash column chromatography was performed using silicycle silica gel (200-300 mesh).

Analytical thin-layer chromatography (TLC) was performed on 0.2 mm coated silica gel plates (HSGF 254) and visualized using a UV lamp (254 nm or 365 nm).

Nuclear Magnetic Resonance Spectroscopy:

¹H NMR was recorded on magnet system 400'54 ascend purchased from Bruker Biospin AG. ¹H NMR spectra chemical shifts (δ) are reported in parts per million (ppm) referenced to TMS (0 ppm).

¹³C NMR spectra chemical shifts (δ) are reported in parts per million (ppm) were referenced to carbon resonances in the NMR solvent.

ESI-MS spectra were recorded on Agilent Q-TOF 6520.

Table S1. The Equiv. of NaNO₂ Screening^a

^aReaction conditions: 1a (1 mmol), 2a (2 mmol), NaNO₂, morpholine (0.2 mmol), AcOH (2 mL), 90 $^{\circ}$ C, O₂ (O₂ balloon), 48h. ^bIsolated yield. ^cUnder N₂.

Table S2. The Temperature Screening^a

Ph +	- NH ₄ I	conditions	$ \underbrace{\bigvee_{\substack{N\\H}}^{N}}_{\substack{N\\H}} \underbrace{\xrightarrow{O}}_{Ph} \underbrace{\bigvee_{\substack{N\\H}}^{H}}_{\substack{N\\\beta}} \underbrace{\xrightarrow{H}}_{\beta} $	O (Ph
1a	2a		3а	
	Entry	T (℃)	Yield ^b (%)	
	1	90	93	
	2	80	94	
	3	70	85	
	4	60	63	
	5	50	42	

^aReaction conditions: 1a (1 mmol), 2a (2 mmol), NaNO₂ (0.4 mmol), morpholine (0.2 mmol), AcOH (2 mL), T ($^{\circ}$ C), O₂ (O₂ balloon), 48h. ^bIsolated yield.

Table S3. The Equiv. of Morpholine Screening^a

^aReaction conditions: 1a (1 mmol), 2a (2 mmol), NaNO₂ (0.4 mmol), morpholine, AcOH (2 mL), T (80° C), O₂ (O₂ balloon), 48h. ^bIsolated yield.

Table S4. The Equiv. of Amine (2a) Screening^a

O Ph 1a	+ NH₄I 2a	conditions	A Ph Ph 3a	H N O N Ph β
	Entry	Equiv. of 2a	Yield ^b (%)	
	1	2	93	
	2	1.8	94	
	3	1.5	92	
	4	1.2	81	

^aReaction conditions: 1a (1 mmol), 2a, NaNO₂ (0.4 mmol), morpholine (0.15 mmol), AcOH (2 mL), T (80 $^{\circ}$ C), O₂ (O₂ balloon), 48h. ^bIsolated yield.

General Experimental Details for the Synthesis of (4 or 5)-

Aryl-2-Benzoyl-Imidazole Analogues

The specific ketone (1 mmol, 1.0 eq), ammonium iodide (1.5 mmol, 1.5 eq) and morpholine (0.15 mmol, 0.15 eq) were dissolved in AcOH (2 mL), then sodium nitrite (0.4 mmol, 0.4 eq) was added to the reaction mixture and stirred for about 48h in a preheated oil batch at 80 °C under O_2 atmosphere (O_2 balloon). After the TLC revealed that the full conversion of corresponding ketone was completed, the reaction mixture was cooled and diluted with ethyl acetate (30 mL). The crude product was washed with saturated $Na_2S_2O_3$ solution (30 mL) and water (30 mL). The separated organic layer was dried over by anhydrous Na_2SO_4 and filtered. The filtrate was concentrated under reduced pressure and the residue was chromatographed on silica gel using hexane/dichloromethane/ethyl acetate to afford the desired product.

Table S5. Screening of the Direct Oxidative Synthesis of

1,2,4-Trisubstituted Imidazoles from Aryl Methyl Ketones and Benzylamine^a

	O Ph +	Ph NH ₂ conditions	Ph N Ph	
	1a	2b	Phź 🚺 4a	
Entry	Solvent (v/v)	Additive1	Additive2	Yield ^b (%)
1 ^c	AcOH	KI		NO
2	dioxane	KI		45
3	PhCl	KI		8
4	PhCN	KI		55
5	DMSO	KI		5
6	DMF	KI		trace
7	DMC	KI		3
8	АсОН	KI		NO
9	PhCN	KI	H_2SO_4	trace
10	PhCN	KI	TFA	23
11	PhCN	KI	АсОН	trace
12	PhCN	KI	AlCl ₃	trace
13	PhCN	KI	FeCl ₃	trace
14	PhCN	KI	Pyridine	52
15	PhCN	KI	TEA	61
16	PhCN	KI	CH ₃ COONa	19
17 ^d	PhCN	KI	TEA	26
18	PhCN	TBAI	TEA	67
19	PhCN	I ₂	TEA	trace
20 ^e	PhCN	TBAI	TEA	69
21 ^f	PhCN	TBAI	TEA	65
22 ^g	PhCN	TBAI	TEA	59

^aReaction conditions: 1a (1 mmol), 2b (3 mmol), NaNO₂ (0.4 mmol), additive 1 (0.15 mmol), additive 2 (0.2 mmol), solvent (2 mL), T (80° C), O₂ (O₂ balloon), 48h. ^bIsolated yield.

^cReaction conditions: 1a (1 mmol), 2b (3 mmol), NaNO₂ (0.4 mmol), morpholine (0.15 mmol), KI (0.15 mmol), AcOH (2 mL), T (80 $^{\circ}$ C), O₂ (O₂ balloon), 48h. ^dIn the presence of morpholine (0.15 mmol). ^eO.5 mmol TEA was used. ^f1 mmol TEA was used. ^g1.5 mmol TEA was used.

Initially, the reaction was carried out under the standard conditions of the coupling of 1a and 2a with the KI added. However, it was failed to give the desired product (entry 1). Then, the detailed screenings of solvents and additives were performed. Among various solvents examined, PhCN turned out to be the best choice (entries .2-8). In contrast to the coupling of 1a and 2a, AcOH was not effective (entry 8). The reaction was improved mostly with 61% isolated yield obtained when TEA was added (entry 15). Other additives 2 exhibited inferior reactivity (entries 9-14, 16). However, the addition of morpholine decreased the yield (entries 15, 17). Some other iodine salts were examined and TBAI was the most effective (entries 15, 18, 19). The loading amounts of TEA were screened (entries 18, 20-22). It was found that the reaction was not affect by the amounts of TEA remarkably. Based on the screening of the reaction parameters above, the optimal reaction conditions were obtained: 1a (1 mmol), 2b (3 mmol), NaNO₂ (0.4 mmol), TBAI (0.15 mmol), TEA (0.2 mmol) in PhCN (2 mL) at 80 $^{\circ}$ C under O₂ (O₂ balloon) for 48h.

General Experimental Details for the Synthesis of 1,2,4-

Trisubstituted Imidazoles

The specific ketone (1 mmol, 1.0 eq), benzylamine (3 mmol, 3 eq), TBAI (0.15 mmol, 0.15 eq), TEA (0.2 mmol, 0.2 eq) were dissolved in PhCN (2 mL), then sodium nitrite (0.4 mmol, 0.4 eq) was added to the reaction mixture and stirred for about 48h in a preheated oil batch at 80 °C under O_2 atmosphere (O_2 balloon). After the TLC revealed that the full conversion of corresponding ketone was completed, the reaction mixture was cooled and diluted with ethyl acetate (30 mL). The crude product was washed with saturated Na₂S₂O₃ solution (30 mL) and water (30 mL). The separated organic layer was dried over by anhydrous Na₂SO₄ and filtered. The filtrate was concentrated under reduced pressure and the residue was chromatographed on silica gel using hexane/ethyl acetate to afford the desired product.

Analytical Data for Compounds 3 and 4

3a

Phenyl-(5-phenyl-1*H*-imidazol-2-yl)ketone (α) and Phenyl-(4-phenyl-1*H*-imidazol-2-yl)ketone (β)

Purified by column chromatography (dichloromethane/hexane/ethyl acetate 50:60:3); white solid (114 mg, 92% yield); ¹H NMR (400 MHz, DMSO) δ 13.80 (s, 0.23H), 13.63 (s, 1H), 8.60-8.58 (m, 2H), 8.48–8.44 (m, 1H), 8.09 (d, *J* = 2.5 Hz, 1H), 7.99–7.92 (m, 2.23H), 7.79 (d, *J* = 1.6 Hz, 0.23H), 7.70 (qt, *J* = 9.1, 1.3 Hz, 1.23H), 7.64-7.55 (m, 2.46H), 7.50-7.40 (m, 2.46H), 7.37 (tt, *J* = 8.1, 2,4 Hz, 0.23H), 7.29 (tt, *J* = 8.0, 2.8 Hz, 1H); HRMS (TOF) m/z [M + H]⁺ Calcd for C₁₆H₁₂N₂O 249.1022 found 249.1020.

2-Methylphenyl-[5-(2-methylphenyl)-1*H*-imidazol-2-yl]ketone (α) and 2-Methylphenyl-[4-(2-methylphenyl)-1*H*-imidazol-2-yl]ketone (β)

Purified by column chromatography (dichloromethane/hexane/ethyl acetate 50:60:3); yellow solid (123 mg, 89% yield); ¹H NMR (400 MHz, DMSO) δ 13.66 (s, 1H), 13.62 (s, 0.35H), 7.89 (dd, *J* = 3.6, 1.2 Hz, 1H), 7.79 (dd, *J* = 3.6, 1.2 Hz, 0.35H), 7.77 (d, *J* = 2.5 Hz, 1H), 7.67–7.63 (m, 1H), 7.56–7.53 (m, 0.35H), 7.49–7.43 (m, 1H), 7.38–7.28 (m, 4.05H), 7.26–7.16 (m, 3.05H), 2.45 (s, 3H), 2.41 (s, 1.05H), 2.40 (s, 3H), 2.38 (s, 1.05H); HRMS (TOF) m/z [M + H]⁺ Calcd for C₁₈H₁₆N₂O 277.1335 found 277.1341.

3-Methylphenyl-[5-(3-methylphenyl)-1*H*-imidazol-2-yl]ketone (α) and 3-Methylphenyl-[4-(3-methylphenyl)-1*H*-imidazol-2-yl]ketone (β)

Purified by column chromatography (dichloromethane/hexane/ethyl acetate 50:60:3); yellow solid (126 mg, 91% yield); ¹H NMR (400 MHz, DMSO) δ 13.72 (s, 0.3H), 13.58 (s, 1H), 8.50-8.44 (m, 1H), 8.31-8.27 (m, 1.3H), 8.24 (s, 0.3H), 8.03 (d, *J* = 2.2 Hz, 1H), 7.82 (s, 0.3H), 7.78-7.70 (m, 2.6H), 7.52 – 7.41 (m, 2.6H), 7.36-7.26 (m, 1.3H), 7.16 (d, *J* = 7.5 Hz, 0.3H), 7.09 (d, *J* = 7.5 Hz, 1H), 2.43 (s, 3H), 2.41 (s, 0.9H), 2.35 (s, 3.9H); ¹³C NMR (101 MHz, DMSO) δ 181.04, 180.90, 145.71, 144.66, 142.95, 138.10, 137.65, 137.53, 137.40, 136.21, 135.98, 135.73, 133.64, 133.58, 133.45, 130.72, 128.90, 128.78, 128.51, 128.17(d, *J* = 0.9 Hz), 128.04, 127.91, 127.78, 126.23, 125.40, 122.81, 122.07, 118.45, 21.11, 21.00, 20.96; HRMS (TOF) m/z [M + H]⁺ Calcd for C₁₈H₁₆N₂O 277.1335 found 277.1340.

4-Methylphenyl-[5-(4-methylphenyl)-1*H*-imidazol-2-yl]ketone (α) and 4-Methylphenyl-[4-(4-methylphenyl)-1*H*-imidazol-2-yl]ketone (β)

Purified by column chromatography (dichloromethane/hexane/ethyl acetate 50:60:3); yellow solid (119 mg, 86% yield); ¹H NMR (400 MHz, DMSO) δ 13.66 (s, 0.3H), 13.52 (s, 1H), 8.52 (d, *J* = 8.2 Hz, 2H), 8.41 (d, *J* = 8.2 Hz, 0.6H), 7.99 (d, *J* = 2.4 Hz, 1H), 7.85 (d, *J* = 8.2 Hz, 0.6H), 7.82 (d, *J* = 8.1 Hz, 2H), 7.72 (d, *J* = 1.5 Hz, 0.3H), 7.41 (d, *J* = 8.0 Hz, 2H), 7.37 (d, *J* = 8.1 Hz, 0.6H), 7.27 (d, *J* = 8.0 Hz, 0.6H), 7.23 (d, *J* = 7.9 Hz, 2H), 2.43 (s, 3H), 2.41 (s, 0.9H), 2.34 (s, 0.9H), 2.33 (s, 3H); HRMS (TOF) m/z [M + H]⁺ Calcd for C₁₈H₁₆N₂O 277.1335 found 277.1334.

4-Ethylphenyl-[5-(4-ethylphenyl)-1*H*-imidazol-2-yl]ketone (α) and

4-Ethylphenyl-[4-(4-ethylphenyl)-1*H*-imidazol-2-yl]ketone (β)

Purified by column chromatography (dichloromethane/hexane/ethyl acetate 50:60:3); yellow solid (135 mg, 89% yield); ¹H NMR (400 MHz, DMSO) δ 13.68 (s, 0.3H), 13.53 (s, 1H), 8.53 (d, *J* = 8.2 Hz, 2H), 8.41 (d, *J* = 8.2 Hz, 0.6H), 8.00 (s, 1H), 7.88 (d, *J* = 8.1 Hz, 0.6H), 7.83 (d, *J* = 8.1 Hz, 2H), 7.73 (s, 0.3 H), 7.45 (d, *J* = 8.2 Hz, 2H), 7.41 (d, *J* = 8.2 Hz, 0.6H), 7.30 (d, *J* = 8.2 Hz, 0.6H), 7.26 (d, *J* = 8.0 Hz, 2H), 2.77-2.68 (m, 2.6H), 2.68-2.59 (m, 2.6H), 1.29-1.18 (m, 7.8H); HRMS (TOF) m/z [M + H]⁺ Calcd for C₂₀H₂₀N₂O 305.1648 found 305.1649.

4-Methoxyphenyl-[5-(4-methoxyphenyl)-1*H*-imidazol-2-yl]ketone (α) and
4-Methoxyphenyl-[4-(4-methoxyphenyl)-1*H*-imidazol-2-yl]ketone (β)
Purified by column chromatography (dichloromethane/hexane/ethyl acetate 40:60:3); white

solid (101 mg, 66% yield); ¹H NMR (500 MHz, DMSO) δ 13.50 (s, 0.29H), 13.38 (s, 1H), 8.68 (d, J = 5.2 Hz, 2H), 8.57 (s, 0.58H), 7.92-7.82 (m, 3.87H), 7.13 (d, J = 7.6 Hz, 2.58H), 7.00 (d, J = 8.1 Hz, 2.58H), 3.88 (s, 3.87H), 3.79 (s, 3.87H); HRMS (TOF) m/z [M + H]⁺ Calcd for C₁₈H₁₆N₂O₃ 309.1234 found 309.1269.

4-Fluorophenyl-[5-(4-fluorophenyl)-1*H*-imidazol-2-yl]ketone (α) and 4-Fluorophenyl-[4-(4-fluorophenyl)-1*H*-imidazol-2-yl]ketone (β) Purified by column chromatography (dichloromethane/hexane/ethyl acetate 20:20:1); yellow solid (112 mg, 79% yield); ¹H NMR (400 MHz, DMSO) δ 13.82 (s, 0.19H), 13.65 (s, 1H), 8.72 (dd, *J* = 8.8, 5.8 Hz, 2H), 8.59 (t, *J* = 6.8 Hz 0.38H), 8.08 (s, 1H), 7.97 (dd, *J* = 8.6, 5.6 Hz, 2.38H), 7.78 (s, 0.19H), 7.44 (t, *J* = 8.7 Hz, 2.38H), 7.35–7.23 (m, 2.38H); HRMS (TOF) m/z [M + H]⁺ Calcd for C₁₆H₁₀N₂OF₂ 285.0834 found 285.0832.

4-Chlorophenyl-[5-(4-chlorophenyl)-1*H*-imidazol-2-yl]ketone (α) and 4-Chlorophenyl-[4-(4-chlorophenyl)-1*H*-imidazol-2-yl]ketone (β) Purified by column chromatography (dichloromethane/hexane/ethyl acetate 20:20:1); yellow solid (138 mg, 87% yield); ¹H NMR (400 MHz, DMSO) δ 13.91 (s, 0.15H), 13.73 (s, 1H), 8.61 (t, *J* = 1.6 Hz, 1H), 8.59 (t, *J* = 2.1 Hz, 1H), 8.51 (t, *J* = 2.8 Hz, 0.15H), 8.49 (t, *J* = 2.0 Hz, 0.15H), 8.16 (d, *J* = 2.4 Hz, 1H), 8.01 (s, 0.16H), 7.99 (s, 0.16H), 7.96 (t, *J* = 2.0 Hz, 1H), 7.94 (t, *J* = 1.6 Hz, 1H), 7.84 (s, 0.15H), 7.69 (s, 1H), 7.68-7.65 (m, 1.15 H), 7.64 (s, 0.15H), 7.54 (s, 0.15H), 7.52 (s, 0.15H), 7.50-7.48 (m, 1H), 7.48-7.46 (m, 1H); HRMS (TOF) m/z [M + H]⁺ Calcd for C₁₆H₁₀N₂OCl₂ 317.0243 found 317.0279.

3-Chlorophenyl-[5-(3-chlorophenyl)-1*H*-imidazol-2-yl]ketone (α) and 3-Chlorophenyl-[4-(3-chlorophenyl)-1*H*-imidazol-2-yl]ketone (β) Purified by column chromatography (dichloromethane/hexane/ethyl acetate 20:20:1); yellow solid (134 mg, 85% yield); ¹H NMR (400 MHz, DMSO) δ 13.97 (s, 0.18H), 13.80 (s, 1H), 8.56 (t, *J* = 2.0 Hz, 1H), 8.53 (dt, *J* = 7.6, 1.2 Hz, 1.18H), 8.38 (d, *J* = 7.9 Hz, 0.18H), 8.25-8.20 (m, 1H), 8.16-8.12 (m, 0.18H), 7.98–7.87 (m, 2.36H), 7.80–7.73 (m, 1.18H), 7.69–7.60 (m, 1.18H), 7.51–7.39 (m, 1.36H), 7.37-7.31 (m, 1H); ¹³C NMR (101 MHz, DMSO) δ 179.15, 145.67, 144.38, 141.50, 137.75, 137.54, 135.64, 134.50, 133.85, 133.58, 133.07, 132.94, 132.79, 132.63, 130.76, 130.60, 130.40, 130.21, 130.13, 129.99, 129.26, 129.00, 128.05, 126.94, 125.31, 124.38, 124.27, 123.35, 119.99; HRMS (TOF) m/z [M + H]⁺ Calcd for C₁₆H₁₀N₂OCl₂ 317.0243 found 317.0281.

2-Chlorophenyl-[5-(2-chlorophenyl)-1*H*-imidazol-2-yl]ketone (α) and 2-Chlorophenyl-[4-(2-chlorophenyl)-1*H*-imidazol-2-yl]ketone (β) Purified by column chromatography (dichloromethane/hexane/ethyl acetate 20:20:1); white solid (141 mg, 89% yield); ¹H NMR (400 MHz, DMSO) δ 14.00 (s, 1.14H), 8.09 (s, 1H), 7.87 (d, *J* = 7.4 Hz, 1H), 7.78 (d, *J* = 7.4 Hz, 1.28H), 7.59 (q, *J* = 7.9 Hz, 2.70H), 7.50 (t, *J* = 7.2 Hz, 2.28H), 7.37 (t, *J* = 7.3 Hz, 1H), 7.31 (t, *J* = 7.3 Hz, 1H); ¹³C NMR (101 MHz, DMSO) δ 183.59, 144.33, 140.23, 137.50, 135.86, 132.40, 132.09, 131.11, 131.07, 130.85, 130.59, 130.43, 130.32, 129.22, 127.77, 127.23, 122.98; HRMS (TOF) m/z [M + H]⁺ Calcd for C₁₆H₁₀N₂OCl₂ 317.0243 found 317.0255.

4-Bromophenyl-[5-(4-bromophenyl)-1*H*-imidazol-2-yl]ketone (α) and 4-Bromophenyl-[4-(4-bromophenyl)-1*H*-imidazol-2-yl]ketone (β) Purified by column chromatography (dichloromethane/hexane/ethyl acetate 20:20:1); brown solid (163 mg, 81% yield); ¹H NMR (400 MHz, DMSO) δ 13.92 (s, 0.15H), 13.75 (s, 1H), 8.52 (d, J = 8.6 Hz, 2H), 8.42 (d, J = 8.5 Hz, 0.3H), 8.17 (s, 1H), 7.93 (d, J = 8.3 Hz, 0.3H), 7.89 (d, J = 8.4Hz, 2H), 7.85-7.77 (m, 2.45H), 7.67 (d, J = 7.6 Hz, 0.3H), 7.62 (d, J = 8.1 Hz, 2H); HRMS (TOF) m/z [M - H]⁻ Calcd for C₁₆H₁₀N₂OBr₂ 402.9087 found 402.9078.

4-(Methoxycarbonyl)phenyl-[5-(4-(methoxycarbonyl)phenyl)-1*H*-imidazol-2-yl]ketone (α) 4-(Methoxycarbonyl)phenyl-[4-(4-(methoxycarbonyl)phenyl)-1*H*-imidazol-2-yl]ketone (β) Purified by column chromatography (dichloromethane/hexane/ethyl acetate 8:5:1); yellow solid (142 mg, 78% yield); ¹H NMR (400 MHz, DMSO) δ 14.10 (s, 0.13H), 13.89 (s, 1H), 8.62 (d, *J* = 8.1 Hz, 2H), 8.54 (d, *J* = 8.2 Hz, 0.26H), 8.30 (s, 1H), 8.19–7.98 (m, 6.91H), 3.89 (d, *J* = 22.4 Hz, 6.78H); HRMS (TOF) m/z [M + H]⁺ Calcd for C₂₀H₁₆N₂O₅ 365.1132 found 365.1126.

4-Cyanophenyl-[5-(4-cyanophenyl)-1*H*-imidazol-2-yl]ketone (α) and

4-Cyanophenyl-[4-(4-cyanophenyl)-1*H*-imidazol-2-yl]ketone (β)

Purified by column chromatography (dichloromethane/hexane/ethyl acetate 15:20:1); yellow solid (118 mg, 79% yield); ¹H NMR (400 MHz, DMSO) δ 14.17 (s, 0.1H), 13.97 (s, 1H), 8.66 (d, *J* = 8.3 Hz, 2H), 8.55 (d, *J* = 8.2 Hz, 0.2H), 8.48 (d, *J* = 8.2 Hz, 0.1H), 8.37 (s, 1H), 8.19 (d, *J* = 8.5 Hz, 0.2H), 8.14–8.01 (m, 4.2H), 7.94 (d, *J* = 8.2 Hz, 0.2H), 7.90 (d, *J* = 8.3 Hz, 2H); HRMS (TOF) m/z [M - H]⁻ Calcd for C₁₈H₁₀N₄O 297.0782 found 297.0751.

4-(Trifluoromethyl)phenyl-[5-(4-(trifluoromethyl)phenyl)-1*H*-imidazol-2-yl]ketone (α) and 4-(Trifluoromethyl)phenyl-[4-(4-(trifluoromethyl)phenyl)-1*H*-imidazol-2-yl]ketone (β) Purified by column chromatography (dichloromethane/hexane/ethyl acetate 10:12:1); yellow solid (159 mg, 83% yield); ¹H NMR (400 MHz, DMSO) δ 14.16 (s, 0.11H), 13.93 (s, 1H), 8.70 (d, *J* = 8.1 Hz, 2H), 8.62 (d, *J* = 6.0 Hz, 0.22H), 8.33 (s, 1H), 8.25-8.10 m, 2.22H), 7.99 (d, *J* = 8.3 Hz, 2.33H), 7.86-7.75 (m, 2.22 H); HRMS (TOF) m/z [M + H]⁺ Calcd for C₁₈H₁₀N₂OF₆ 385.0770 found 385.0767.

3-Pyridinyl-[5-(3-pyridinyl)-1*H*-imidazol-2-yl]-methanone (α) and 3-Pyridinyl-[4-(3-pyridinyl)-1*H*-imidazol-2-yl]-methanone (β) Purified by column chromatography (dichloromethane/hexane/ethyl acetate 9:12:1); yellow solid (103 mg, 82% yield); ¹H NMR (400 MHz, DMSO) δ 14.14 (s, 0.15H), 13.91 (s, 1H), 9.70-9.550 (m, 1H), 9.47–9.24 (m, 0.15H), 9.16 (s, 1H), 9.11-9.01 (m, 0.15H), 8.95–8.68 (m, 2.30H), 8.62-8.45 (m, 1.15H), 8.29 (s, 2H), 8.10-7.90 (m, 0.3H), 7.70-7.61 (m, 1H), 7.59-7.57 (m, 0.3H), 7.56-7.43 (m, 1H); HRMS (TOF) m/z [M + Na]⁺ Calcd for C₁₄H₁₀N₄O 273.0747 found 273.0748.

2-Furanyl-[5-(2-furanyl)-1*H*-imidazol-2-yl]methanone (α) and

2-Furanyl-[4-(2-furanyl)-1*H*-imidazol-2-yl]methanone (β)

Purified by column chromatography (dichloromethane/hexane/ethyl acetate 50:60:3); yellow solid (96 mg, 84% yield); ¹H NMR (400 MHz, DMSO) δ 8.23 (dd, *J* = 1.6, 0.6 Hz, 1H), 8.09 (dd, *J* = 3.6, 0.6 Hz, 1H), 7.98 (dd, *J* = 2.0, 0.8 Hz, 1H), 7.86 (s, 1H), 7.15 (d, *J* = 3.5 Hz, 1H), 6.87 (dd, *J* = 3.6, 1.7 Hz, 1H), 6.76 (dd, *J* = 3.5, 1.8 Hz, 1H); HRMS (TOF) m/z [M + Na]⁺ Calcd for C₁₂H₈N₂O₃ 251.0427 found 251.0440. It is noteworthy that active hydrogen disappeared.

Benzyl-2,4-diphenyl-1*H*-imidazole (4a)

Purified by column chromatography (hexane/ethyl acetate 30:1); yellow solid (214 mg, 69% yield); ¹H NMR (400 MHz, DMSO) δ 7.86-7.81 (m, 3H), 7.65–7.60 (m, 2H), 7.49–7.42 (m, 3H), 7.40–7.30 (m, 4H), 7.29–7.19 (m, 2H), 7.10 (d, *J* = 7.2 Hz, 2H), 5.35 (s, 2H); ¹³C NMR (101 MHz, DMSO) δ 147.71, 140.43, 137.97, 134.70, 130.97, 129.26, 129.21, 129.06, 129.00, 128.87, 128.05, 126.97, 126.92, 124.79, 119.25, 50.37; HRMS (TOF) m/z [M + H]⁺ Calcd for C₂₂H₁₈N₂ 311.1543 found 311.1545.

1-Benzyl-4-(2-methylphenyl)-2-phenyl-1*H*-imidazole (4b)

Purified by column chromatography (hexane/ethyl acetate 30:1); yellow solid (237 mg, 73% yield); ¹H NMR (500 MHz, DMSO) δ 7.93 (d, *J* = 7.8 Hz, 1H), 7.67–7.64 (m, 3H), 7.50–7.44 (m, 3H), 7.36 (t, *J* = 7.4 Hz, 2H), 7.32-7.24 (m, 3H), 7.19 (t, *J* = 7.3 Hz, 1H), 7.12 (d, *J* = 7.4 Hz, 2H), 5.43 (s, 2H), 2.52 (s, 3H); ¹³C NMR (126 MHz, DMSO) δ 146.26, 139.24, 137.57, 134.07, 133.30, 130.65, 130.49, 128.66, 128.56, 128.46, 128.27, 127.64, 127.43, 126.35, 126.26, 125.63, 121.16, 49.76, 21.66; HRMS (TOF) m/z [M + H]⁺ Calcd for C₂₃H₂₀N₂ 325.1699 found 325.1705.

1-Benzyl-4-(3-methylphenyl)-2-phenyl-1*H*-imidazole (4c)

Purified by column chromatography (hexane/ethyl acetate 30:1); yellow solid (230 mg, 71% yield); ¹H NMR (500 MHz, DMSO) δ 7.78 (s, 1H), 7.67 (s, 1H), 7.64–7.60 (m, 3H), 7.48-7.42 (m, 3H), 7.33 (t, *J* = 7.4 Hz, 2H), 7.26 (dd, *J* = 16.6, 7.6 Hz, 2H), 7.10 (d, *J* = 7.3 Hz, 2H), 7.03 (d, *J* = 7.5 Hz, 1H), 5.34 (s, 2H), 2.33 (s, 3H); ¹³C NMR (126 MHz, DMSO) δ 147.09, 139.99, 137.41, 134.08, 130.47, 128.68, 128.60, 128.47, 128.32, 127.49, 127.03, 126.47, 124.86, 121.45, 118.57, 49.84, 21.03; HRMS (TOF) m/z [M + H]⁺ Calcd for C₂₃H₂₀N₂ 325.1699 found 325.1712.

1-Benzyl-4-(4-methylphenyl)-2-phenyl-1*H*-imidazole (4d)

Purified by column chromatography (hexane/ethyl acetate 30:1); yellow solid (223 mg, 69% yield); ¹H NMR (500 MHz, DMSO) δ 7.75–7.70 (m, 3H), 7.62 (d, *J* = 7.5 Hz, 2H), 7.49-7.40 (m, 3H), 7.33 (t, *J* = 7.4 Hz, 2H), 7.27 (t, *J* = 7.3 Hz, 1H), 7.18 (d, *J* = 7.8 Hz, 2H), 7.10 (d, *J* = 7.5 Hz, 2H), 5.33 (s, 2H), 2.30 (s, 3H); ¹³C NMR (126 MHz, DMSO) δ 146.99, 140.01, 137.43, 135.40, 131.44, 130.51, 128.99, 128.68, 128.57, 128.46, 128.30, 127.48, 126.46, 124.22, 118.09, 49.81, 20.70; HRMS (TOF) m/z [M + H]⁺ Calcd for C₂₃H₂₀N₂ 325.1699 found 325.1704.

1-Benzyl-4-(4-methoxyphenyl)-2-phenyl-1*H*-imidazole (4e)

Purified by column chromatography (hexane/ethyl acetate 30:1); yellow solid (221 mg, 65% yield); ¹H NMR (400 MHz, DMSO) δ 7.75 (dt, *J* = 8.8, 2.0 Hz, 2H), 7.70 (s, 1H), 7.61 (dd, *J* = 7.8, 1.7 Hz, 2H), 7.48–7.39 (m, 3H), 7.33 (t, *J* = 7.3 Hz, 2H), 7.26 (tt, *J* = 7.2, 2.8 Hz, 1H), 7.09 (d, *J* = 7.1 Hz, 2H), 6.95 (dt, *J* = 8.8, 2.4 Hz, 2H), 5.33 (s, 2H), 3.76 (s, 3H); ¹³C NMR (101 MHz, DMSO) δ 158.05, 146.92, 139.93, 137.55, 130.55, 128.74, 128.60, 128.53, 128.33, 127.52, 126.96, 126.46, 125.56, 117.50, 113.91, 55.01, 49.80; HRMS (TOF) m/z [M + H]⁺ Calcd for C₂₃H₂₀N₂O 341.1648 found 341.1661.

1-Benzyl-4-(4-fluorophenyl)-2-phenyl-1*H*-imidazole (4f)

Purified by column chromatography (hexane/ethyl acetate 25:1); yellow solid (207 mg, 63% yield); ¹H NMR (500 MHz, DMSO) δ 7.85 (dd, *J* = 8.6, 5.7 Hz, 2H), 7.80 (s, 1H), 7.62 (dd, *J* = 7.7, 1.4 Hz, 2H), 7.48–7.41 (m, 3H), 7.33 (t, *J* = 7.4 Hz, 2H), 7.27 (t, *J* = 7.3 Hz, 1H), 7.19 (t, *J* = 8.9 Hz, 2H), 7.10 (d, *J* = 7.3 Hz, 2H), 5.34 (s, 2H); ¹³C NMR (126 MHz, DMSO) δ 161.95, 160.02, 147.22, 139.05 , 137.34, 130.76, 130.73, 130.37, 128.69, 128.49, 128.33, 127.50, 126.45, 126.11, 126.04, 118.43, 115.31, 115.14, 49.85; HRMS (TOF) m/z [M + H]⁺ Calcd for C₂₂H₁₇N₂F 329.1449 found 329.1460.

1-Benzyl-4-(4-chlorophenyl)-2-phenyl-1*H*-imidazole (4g)

Purified by column chromatography (hexane/ethyl acetate 25:1); yellow solid (234 mg, 68% yield); ¹H NMR (500 MHz, DMSO) δ 7.87 (s, 1H), 7.84 (d, *J* = 8.5 Hz, 2H), 7.61 (dd, *J* = 7.5, 1.6

Hz, 2H), 7.48-7.40 (m, 5H), 7.33 (t, *J* = 7.5 Hz, 2H), 7.27 (t, *J* = 7.3 Hz, 1H), 7.10 (d, *J* = 7.4 Hz, 2H), 5.34 (s, 2H); ¹³C NMR (126 MHz, DMSO) δ 147.37, 138.74, 137.26, 133.10, 130.64, 130.28, 128.74, 128.71, 128.50, 128.44, 128.35, 127.53, 126.49, 125.91, 119.14, 49.90; HRMS (TOF) m/z [M + H]⁺ Calcd for C₂₂H₁₇N₂Cl 345.1153 found 345.1153.

1-Benzyl-4-(3-chlorophenyl)-2-phenyl-1*H*-imidazole (4h)

Purified by column chromatography (hexane/ethyl acetate 25:1); yellow solid (244 mg, 71% yield); ¹H NMR (500 MHz, DMSO) δ 7.94 (s, 1H), 7.89 (t, *J* = 1.6 Hz, 1H), 7.78 (d, *J* = 7.8 Hz, 1H), 7.62 (dd, *J* = 7.6, 1.8 Hz, 2H), 7.48-7.43 (m, 3H), 7.39 (t, *J* = 7.9 Hz, 1H), 7.33 (t, *J* = 7.4 Hz, 2H), 7.29–7.24 (m, 2H), 7.10 (d, *J* = 7.3 Hz, 2H), 5.34 (s, 2H); ¹³C NMR (126 MHz, DMSO) δ 147.64, 138.61, 137.36, 136.54, 133.59, 130.51, 130.39, 128.96, 128.88, 128.68, 128.56, 127.73, 126.69, 126.19, 123.98, 122.90, 119.86, 50.13; HRMS (TOF) m/z [M + H]⁺ Calcd for C₂₂H₁₇N₂Cl 345.1153 found 345.1154.

1-Benzyl-4-(2-chlorophenyl)-2-phenyl-1*H*-imidazole (4i)

Purified by column chromatography (hexane/ethyl acetate 25:1); white solid (230 mg, 67% yield); ¹H NMR (400 MHz, DMSO) δ 8.24 (dd, *J* = 7.9, 1.7 Hz, 1H), 8.04 (s, 1H), 7.66–7.62 (m, 2H), 7.50–7.43 (m, 4H), 7.40 (td, *J* = 7.8, 1.2 Hz, 1H), 7.35–7.30 (m, 2H), 7.28–7.23 (m, 2H), 7.07 (d, *J* = 7.1 Hz, 2H), 5.43 (s, 2H); ¹³C NMR (101 MHz, DMSO) δ 146.57, 137.43, 135.90, 132.19, 130.20, 130.14, 129.60, 129.16, 128.87, 128.76, 128.58, 128.43, 127.72, 127.56, 127.14, 126.47, 122.64, 49.88; HRMS (TOF) m/z [M + H]⁺ Calcd for C₂₂H₁₇N₂Cl 345.1153 found 345.1155.

1-Benzyl-4-(4-bromophenyl)-2-phenyl-1*H*-imidazole (4j)

Purified by column chromatography (hexane/ethyl acetate 25:1); yellow solid (275 mg, 71% yield); ¹H NMR (400 MHz, DMSO) δ 7.90 (s, 1H), 7.78 (dt, J=8.4, 2.0 Hz, 2H), 7.65–7.58 (m, 2H), 7.56 (m, dt, J=8.4, 2.0 Hz, 2H), 7.49–7.40 (m, 3H), 7.34 (tt, J=7.6, 1.2 Hz, 2H), 7.27 (tt, J=7.2, 2.8 Hz,1H), 7.12–7.06 (m, 2H), 5.35 (s, 2H); ¹³C NMR (101 MHz, DMSO) δ 147.42, 138.79, 137.31, 133.47, 131.40, 130.28, 128.81, 128.77, 128.57, 128.39, 127.59, 126.52, 126.28, 119.28, 119.15, 49.93; HRMS (TOF) m/z [M + H]⁺ Calcd for C₂₂H₁₇N₂Br 389.0648 found

1-Benzyl-4-(4-iodophenyl)-2-phenyl-1H-imidazole (4k)

Purified by column chromatography (hexane/ethyl acetate 25:1); yellow solid (270 mg, 62% yield); ¹H NMR (500 MHz, DMSO) δ 7.87 (s, 1H), 7.72 (d, *J* = 8.4 Hz, 2H), 7.66–7.60 (m, 4H), 7.48–7.42 (m, 3H), 7.33 (t, *J* = 7.4 Hz, 2H), 7.27 (t, *J* = 7.3 Hz, 1H), 7.09 (d, *J* = 7.4 Hz, 2H), 5.34 (s, 2H); ¹³C NMR (126 MHz, DMSO) δ 147.36, 138.87, 137.24, 137.17, 133.78, 130.26, 128.74, 128.70, 128.49, 128.35, 127.53, 126.50, 126.41, 119.18, 91.58, 49.91; HRMS (TOF) m/z [M + H]⁺ Calcd for C₂₂H₁₇N₂I 437.0509 found 437.0507.

4-[1,1'-Biphenyl]-4-yl-2-phenyl-1-(phenylmethyl)-1H-imidazole (4l)

Purified by column chromatography (hexane/ethyl acetate 30:1); white solid (235 mg, 61% yield); ¹H NMR (400 MHz, DMSO) δ 7.92 (s, 1H), 7.91 (s, 2H), 7.70 (dd, *J* = 7.8, 2.8 Hz, 4H), 7.66–7.61 (m, 2H), 7.50-7.43 (m, 5H), 7.38–7.32 (m, 3H), 7.28 (dt, *J* = 8.5, 2.8 Hz, 1H), 7.11 (d, *J* = 7.2 Hz, 2H), 5.37 (s, 2H); ¹³C NMR (101 MHz, DMSO) δ 147.87, 140.40, 140.09, 138.51, 138.01, 133.93, 130.98, 129.46, 129.33, 129.31, 129.13, 128.94, 128.13, 127.77, 127.30, 127.06, 126.88, 125.38, 119.62, 50.47; HRMS (TOF) m/z [M + H]⁺ Calcd for C₂₈H₂₂N₂ 387.1856 found 387.1864.

1-Benzyl-4-(4-(methoxycarbonyl)phenyl)-2-phenyl-1*H*-imidazole (4m)

Purified by column chromatography (hexane/ethyl acetate 20:1); yellow solid (250 mg, 68% yield); ¹H NMR (400 MHz, DMSO) δ 8.03 (s, 1H), 7.96 (s, 4H), 7.65–7.60 (m, 2H), 7.50–7.44 (m, 3H), 7.34 (tt, *J* = 7.6, 1.2 Hz, 2H), 7.27 (tt, *J* = 7.2, 2.8 Hz, 1H), 7.10 (d, *J* = 7.1 Hz, 2H), 5.37 (s, 2H), 3.85 (s, 3H); ¹³C NMR (101 MHz, DMSO) δ 166.60, 148.28, 139.32, 139.25, 137.73, 130.67, 130.14, 129.42, 129.29, 129.10, 128.93, 128.13, 127.65, 127.05, 124.70, 121.21, 52.44, 50.51; HRMS (TOF) m/z [M + H]⁺ Calcd for C₂₄H₂₀N₂O₂ 369.1598 found 369.1603.

1-Benzyl-4-(4-(trifluoromethyl)phenyl)-2-phenyl-1*H*-imidazole (4n)

Purified by column chromatography (hexane/ethyl acetate 20:1); yellow solid (246 mg, 65% yield); ¹H NMR (400 MHz, DMSO) δ 8.04 (t, *J* = 4.0 Hz, 3H), 7.72 (d, *J* = 8.3 Hz, 2H), 7.66–7.59 (m, 2H), 7.51–7.43 (m, 3H), 7.34 (t, *J* = 7.3 Hz, 2H), 7.27 (t, *J* = 7.2 Hz, 1H), 7.10 (d, *J* = 7.2 Hz, 2H), 5.37 (s, 2H); ¹³C NMR (101 MHz, DMSO) δ 147.78, 138.43, 138.17, 137.22, 130.18, 128.92, 128.78, 128.59, 128.45, 127.62, 126.66, 126.55, 126.34, 125.84, 125.47 (q, *J* = 3.8 Hz), 124.63, 123.14, 120.52, 50.01; HRMS (TOF) m/z [M + H]⁺ Calcd for C₂₃H₁₇N₂F₃ 379.1417 found 379.1445.

1-benzyl-4-(4-nitrophenyl)-2-phenyl-1H-imidazole (40)

Purified by column chromatography (hexane/ethyl acetate 20:1); yellow solid (209 mg, 59% yield); ¹H NMR (500 MHz, DMSO) δ 8.24 (d, *J* = 8.9 Hz, 2H), 8.15 (s, 1H), 8.07 (d, *J* = 8.9 Hz, 2H), 7.65 – 7.61 (m, 2H), 7.50 – 7.45 (m, 3H), 7.34 (t, *J* = 7.4 Hz, 2H), 7.28 (t, *J* = 7.3 Hz, 1H), 7.11 (d, *J* = 7.3 Hz, 2H), 5.38 (s, 2H). ¹³C NMR (126 MHz, DMSO) δ 148.24, 145.42, 140.81, 137.85, 136.99, 129.95, 129.02, 128.75, 128.56, 128.45, 127.63, 126.57, 124.75, 124.07, 121.95, 50.09; HRMS (TOF) m/z [M + H]⁺ Calcd for C₂₂H₁₇N₃O₂ 356.1394 found 356.1400.

1-Benzyl-4-thienyl-2-phenyl-1*H*-imidazole (4p)

Purified by column chromatography (hexane/ethyl acetate 30:1); yellow solid (215 mg, 68% yield); ¹H NMR (500 MHz, DMSO) δ 7.68 (s, 1H), 7.59 (dd, *J* = 7.6, 1.8 Hz, 2H), 7.48–7.42 (m, 3H), 7.39–7.30 (m, 4H), 7.27 (t, *J* = 7.3 Hz, 1H), 7.09 (d, *J* = 7.3 Hz, 2H), 7.05 (dd, *J* = 5.0, 3.6 Hz, 1H), 5.33 (s, 2H); ¹³C NMR (126 MHz, DMSO) δ 147.11, 138.24, 137.41, 135.66, 130.23, 128.93, 128.86, 128.68, 128.54, 127.75, 127.71, 126.66, 123.58, 121.64, 117.83, 49.98; HRMS (TOF) m/z [M + H]⁺ Calcd for C₂₀H₁₆N₂S 317.1107 found 317.1111.

Purified by column chromatography (hexane/ethyl acetate 6:1); yellow solid. ¹H NMR (500 MHz, DMSO) δ 9.59 (s, 0.4H), 8.11 (d, *J* = 7.8 Hz, 2.8H), 7.76 (t, *J* = 7.4 Hz, 0.4H), 7.64 (dt, *J* = 15.5, 7.6 Hz, 1.8H), 7.55 (t, *J* = 7.7 Hz, 2H), 6.73 (d, *J* = 6.8 Hz, 2H), 5.72 (s, 1H).HRMS (TOF) m/z [M - H]⁻ Calcd for C₈H₈O₃ 151.0401 found 151.0399.

The Picture of the Single-Crystal for 4k

¹H NMR and ¹³C NMR Spectra of those Compounds

