Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2017

Supporting Information for

Synthesis of dibromo- and tetrabromo-bipyrrolines and their corresponding 2,6-diazasemibuvallene derivatives

Zhe Huang, Ming Zhan, Shaoguang Zhang, Qian Luo, Wen-Xiong Zhang* and Zhenfeng Xi*

 [†]Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
 [‡]State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS, Shanghai 200032, China

zfxi@pku.edu.cn

Contents

1) General information	S2
2) General procedure for the preparation of 2-6	S2-S7
3) X-ray crystallographic studies for 4a and 6	S7-S10
4) Referrence	S10
5) Copies ¹ H NMR and ¹³ C NMR spectra of all new compounds	S11-S52

1) General information

¹H (300 MHz) and ¹³C (75 MHz) NMR spectra were measured in CDCl₃ and ¹H (400 MHz) and ¹³C (100 MHz) NMR spectra were measured in CDCl₃ or C₆D₆. Chemical shifts (δ) are reported in ppm downfield from tetramethylsilane. Single crystal X-ray data for **4a** and **6** were collected at a temperatures of 180 K, respectively, using monochromated Mo K α radiation. The structures were solved by direct method and refined by full-matrix least-squares on F2 for all data using Olex227 and SHELXTL software. Crystallographic data for the structures have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication CCDC 1056585 (**4a**) and CCDC 1056586 (**6**).

2) General procedure for the preparation of 2-6

General Procedure for the Preparation of α, α '-Dibromo- Δ^1 -bipyrrolines 2. NBS (4.4 mmol, 783 mg) was added to a solution of Δ^1 -bipyrrolines 1 (2.0 mmol) in 20 ml CCl₄ in a 50 ml Schlenk tube, the mixture was stirred at 80 °C for 12 h. The reaction mixture was then quenched with water and extracted with acetic ether. The extract was washed with brine and dried over MgSO₄. The solvent was evaporated in vacuo to give yellow solid, which was purified by column chromatography (Petrol afford Ether: Ethyl Acetate 50:1) products = to α, α' -dibromo- Δ^1 -bipyrrolines **2a-f**.

2a, colorless solid, yield: 48% (452 mg); ¹H NMR (300MHz, CDCl₃, Me₄Si, 25 °C): δ = 1.46-1.78 (m, 4H, CH₂), 2.01-2.07 (m, 2H, CH₂), 2.73-2.81 (m, 2H, CH₂), 5.56 (s, 2H, CH), 7.27-7.35 (m, 6H, CH), 7.74-7.77 (m, 4H, CH); ¹³C NMR (75 MHz, CDCl₃, Me₄Si, 25 °C): δ = 22.36 (2 CH₂), 33.44 (2 CH₂), 56.03 (2 CH), 81.14 (2 quat. C), 128.45 (4 CH), 128.49 (4 CH), 131.27 (2 CH), 131.47 (2 quat. C), 168.09 (2 quat. C); HRMS calcd. for C₂₂H₂₁Br₂N₂ [M+H]⁺: 471.0066, found 471.0058.

2b, yellow solid, yield: 55% (644 mg); ¹H NMR (300MHz, CDCl₃, Me₄Si, 25 °C): $\delta = 1.18-2.06$ (m, 6H, CH; 30H, CH₂), 2.51-2.57 (m, 2H, CH₂), 4.94 (s, 2H, CH);¹³C NMR (75 MHz, CDCl₃, Me₄Si, 25 °C): $\delta = 22.60$ (2 CH₂), 28.23 (6 CH), 32.48 (2 CH₂), 36.46 (6 CH₂), 37.66 (2 quat. C), 40.04 (6 CH₂), 56.22 (2 CH), 79.36 (2 quat. C), 179.26 (2 quat. C); HRMS calcd. for C₃₀H₄₁Br₂N₂ [M+H]⁺: 587.1631, found 587.1630.

2c, yellow solid, yield: 49% (488 mg); ¹H NMR (300MHz, CDCl₃, Me₄Si, 25 °C): δ = 1.55-1.79 (m, 4H, CH₂), 2.08-2.15 (m, 2H, CH₂), 2.36 (s, 6H, CH₃), 2.82-2.86 (m, 2H, CH₂), 5.62 (s, 2H,

CH), 7.20 (d, J = 8.4 Hz, 4H, CH), 7.73 (d, J = 8.4 Hz, 4H, CH); ¹³C NMR (75 MHz, CDCl₃, Me₄Si, 25 °C): δ = 21.38 (2 CH₃), 22.29 (2 CH₂), 33.41 (2 CH₂), 56.21 (2 CH), 80.99 (2 quat. C), 128.54 (4 CH), 128.85 (2 quat. C), 129.26 (4 CH), 141.84 (2 quat. C), 168.15 (2 quat. C); HRMS calcd. for C₂₄H₂₅Br₂N₂ [M+H]⁺: 499.0379, found 499.0379.

2*d*, yellow solid, yield: 42% (360 mg); ¹H NMR (300MHz, CDCl₃, Me₄Si, 25 °C): $\delta = 1.15$ (s, 18H, CH₃), 1.32-1.39 (m, 4H, CH₂), 2.00-2.07 (m, 2H, CH₂), 2.52-2.56 (m, 2H, CH₂), 4.97 (s, 2H, CH);¹³C NMR (75 MHz, CDCl₃, Me₄Si, 25 °C): $\delta = 22.54$ (2 CH₂), 29.48 (6 CH₃), 32.33 (2 CH), 35.58 (2 quat. C), 56.68 (2 CH), 80.12 (2 quat. C), 179.55 (2 quat. C); HRMS calcd. for C₁₈H₂₉Br₂N₂ [M+H]⁺: 431.0692, found 431.0688.

2*e*, yellow solid, yield: 75%(606 mg); ¹H NMR (300MHz, CDCl₃, Me₄Si, 25 °C): $\delta = 1.22$ (s, 18H, CH₃), 1.54 (s, 6H, CH₃), 4.95 (s, 2H, CH); ¹³C NMR (75 MHz, CDCl₃, Me₄Si, 25 °C): $\delta = 19.24$ (2 CH₃), 29.43 (6 CH₃), 35.78 (2 quat. C), 56.10(2 CH), 83.01 (2 quat. C), 181.13 (2 quat. C); HRMS calcd. for C₁₆H₂₇Br₂N₂ [M+H]⁺: 405.0463, found 405.0470.

2*f*, yellow solid, yield: 73%(712 mg); ¹H NMR (400MHz, CDCl₃, Me₄Si, 25 °C): $\delta = 0.93$ (t, *J* = 7.2 Hz, 6H, CH₃), 1.21 (s, 18H, CH₃), 1.32-1,37 (m, 2H, CH₂), 1.52-1.60 (m, 2H, CH₂), 1.67-1.74 (m, 2H, CH₂), 1.90-1.98 (m, 2H, CH₂); ¹³C NMR (100 MHz, CDCl₃, Me₄Si, 25 °C): $\delta = 14.03$ (2 CH₃), 23.37 (2 CH₂), 26.97 (2 CH₂), 29.48 (6 CH₃), 32.33 (2 CH₂), 35.88 (2 quat. C), 54.51 (2 CH), 86.00 (2 quat. C), 180.41 (2 quat. C); HRMS calcd. for C₂₂H₃₉Br₂N₂ [M+H]⁺: 489.1402, found 489.1497.

General Procedure for the Preparation of 2,6-Diazasemibuvallenes 3. Li (1.1 mmol, 8.4 mg) was added to a solution of α, α' -dibromo- Δ^1 -bipyrrolines 2 (0.5 mmol) in 5 ml THF in a 25 ml round-bottom flask in glove box, the mixture was stirred at room temperature for 2-4 h. The solvent was evaporated in vacuo to give brown solid. This solid was dissolved in THF-d₈ and monitored by NMR to comfirm α, α' -dibromo- Δ^1 -bipyrroline was totally disappeared. The THF and THF-d₈ was evaporated in vacuo to give brown solid again. Then the 2,6-Diazasemibuvallene 3 was extracted by mixture solvent (Hexane:Et₂O = 3:1) diethyl ether from brown solid, and the salt (LiBr) was removed.

3a, yellow solid, yield: 81%(126mg); ¹H NMR (300MHz, THF-d₈, 25 °C): $\delta = 1.29-1.36$ (m, 4H, CH₂), 1.68-1.78 (m, 2H, CH₂), 2.16-2.23 (m, 2H, CH₂), 5.55 (s, 2H, CH), 7.19-7.26 (m, 6H, CH), 7.71-7.74 (m, 4H, CH); ¹³C NMR (75 MHz, THF-d₈, Me₄Si, 25 °C): $\delta = 22.49$ (2 CH₂), 28.94 (2

CH₂), 79.47 (2 quat. C), 100.74 (2 CH), 127.56 (4 CH), 128.88 (4 CH), 129.51 (2 CH), 135.81 (2 quat. C), 153.14 (2 quat. C). Elemental Analysis Calcd (%) for C₂₂H₂₀N₂: C, 84.58; H, 6.45; N, 8.97; Found: C, 83.94; H, 6.28; N, 8.38.

3b (*CAS 1387574-71-1*), yellow solid, yield: 75%(160 mg); ¹H NMR (300MHz, THF-d₈, 25 °C): $\delta = 1.12-2.01$ (m, 6H, CH; 32H, CH₂), 4.73 (s, 2H, CH); ¹³C NMR (75 MHz, THF-d₈, 25 °C): $\delta = 22.29$ (2 CH₂), 28.94 (2 CH₂), 29.41 (6 CH), 36.94 (2 quat. C), 37.71 (6 CH₂), 41.46 (6 CH₂), 79.00 (2 quat. C), 99.26 (2 CH), 163.22 (2 quat. C).

3c, yellow solid, yield: 79%(134mg); ¹H NMR (300MHz, THF-d₈, 25 °C): $\delta = 1.28-1.35$ (m, 2H, CH₂), 1.61-1.72 (m, 4H, CH₂), 2.11-2.36 (m, 2H, CH₂), 2.23 (s, 6H, CH₃), 5.47 (s, 2H, CH), 7.03 (d, J = 8.1 Hz, 4H, CH), 7.60 (d, J = 8.1 Hz, 4H, CH); ¹³C NMR (75 MHz, THF-d₈, 25 °C): $\delta = 21.18$ (2 CH₃), 22.42 (2 CH₂), 28.89 (2 CH₂), 79.17 (2 quat. C), 100.21 (2 CH), 127.59 (4 CH), 129.57 (4 CH), 133.26 (2 quat. C), 139.45 (2 quat. C), 153.00 (2 quat. C). Elemental Analysis Calcd (%) for C₂₄H₂₄N₂: C, 84.67; H, 7.11; N, 8.23; Found: C, 83.84; H, 6.78; N, 7.95.

3d (*CAS 1387574-88-0*), yellow solid, yield: 92%(125 mg); ¹H NMR (300MHz, THF-d₈, 25 °C): $\delta = 1.05$ (s, 18H, CH₃), 1.16-1.27 (m, 4H, CH₂), 1.48-1.56 (m, 2H, CH₂), 1.91-1.96 (m, 2H, CH₂), 4.77 (s, 2H, CH); ¹³C NMR (75 MHz, THF-d₈, 25 °C): $\delta = 22.26$ (2 CH₂), 28.90 (2 CH₂), 28.96 (6 CH₃), 34.75 (2 quat. C), 79.56 (2 quat. C), 99.56 (2 CH), 163.25 (2 quat. C).

Be (CAS 1387574-76-6), yellow solid, yield: 88%(106 mg); ¹H NMR (300MHz, THF-d₈, 25 °C): $\delta = 1.04$ (s, 18H, CH₃), 1.14 (s, 6H, CH₃), 4.70 (s, 2H, CH); ¹³C NMR (75 MHz, THF-d₈, 25 °C): $\delta = 15.62$ (2 CH₃), 28.91 (6 CH₃), 34.78 (2 quat. C), 80.37 (2 quat. C), 98.44 (2 CH), 162.98 (2 quat. C).

3f (*CAS* 1387574-77-7), yellow solid, yield: 94%(155 mg); ¹H NMR (400MHz, THF-d₈, 25 °C): $\delta = 0.85$ (t, J = 7.2 Hz, 6H, CH₃), 1.02 (s, 18H, CH₃), 1.25-1.30 (m, 8H, CH₂), 1.49-1.52 (m, 4H, CH₂), 4.75 (s, 2H, CH); ¹³C NMR (100 MHz, THF-d₈, 25 °C): $\delta = 14.40$ (2 CH₃), 24.05 (2 CH₂), 28.34 (2 CH₂), 28.94 (6 CH₃), 30.01 (2 CH₂), 34.90 (2 quat. C), 83.48 (2 quat. C), 96.56 (2 CH), 162.89 (2 quat. C).

General Procedure for the Preparation of α, α '-Dibromo- Δ^1 -bipyrrolines 4. NBS (20.0 mmol, 3.56 g) was added to a solution of Δ^1 -bipyrrolines 1 (2.0 mmol) in 20 ml CCl₄ in a 50 ml Schlenk tube, the mixture was stirred at 80 °C for 48 h. The reaction mixture was then quenched with water and extracted with acetic ether. The extract was washed with brine and dried over

MgSO₄. The solvent was evaporated in vacuo to give yellow solid, which was purified by column chromatography (Petrol Ether: Ethyl Acetate = 50:1) to afford products $\alpha, \alpha, \alpha', \alpha'$ -tetrabromo- Δ^1 -bipyrrolines **4**.

4a, yellow solid, yield: 81% (1.012 g). ¹H NMR (400MHz, THF-d₈, 25 °C): δ = 1.61-1.69 (m, 2H, CH₂), 1.78-1.81 (m, 2H, CH₂), 2.53-2.57 (m, 2H, CH₂), 2.87-2.91 (m, 2H, CH₂), 7.37-7.46 (m, 6H, C₆H₅), 8.29-8.31 (m, 4H, C₆H₅); ¹³C NMR (100 MHz, THF-d₈, TMS, 25 °C): δ = 23.1 (2 CH₂), 32.1 (2 CH₂), 69.6 (2 quat. C), 80.3 (2 quat. C), 128.9 (4 CH), 131.0 (2 CH), 131.1 (4 CH), 132.3 (2 quat. C), 166.0 (2 C=N). HRMS: *m/z*: calcd for C₂₂H₁₉Br₄N₂ [M+H]⁺: 626.8202, found: 626.8199.

4b, yellow solid, yield: 78% (1.068g). ¹H NMR (400MHz, CDCl₃, TMS, 25 °C): δ = 1.64-1.72 (m, 2H, CH₂), 1.79-1.81 (m, 2H, CH₂), 2.49-2.54 (m, 2H, CH₂), 2.90-2.93 (m, 2H, CH₂), 3.83 (s, 6H, CH₃), 6.90 (d, J = 8 Hz, 4H, C₆H₅), 8.22 (d, J = 8 Hz, 4H, C₆H₅); ¹³C NMR (100 MHz, CDCl₃, TMS, 25 °C): δ = 22.2 (2 CH₂), 31.1 (2 CH₂), 55.5 (2 CH₃O), 69.5 (2 quat. C), 79.2 (2 quat. C), 113.6 (4 CH), 122.6 (2 quat. C), 131.9 (4 CH), 162.3 (2 quat. C), 165.1 (2 C=N). HRMS: m/z: calcd for C₂₄H₂₃Br₄O₂N₂ [M+H]⁺: 686.8416, found: 686.8419.

4c, yellow solid, yield: 63% (823 mg). ¹H NMR (400MHz, CDCl₃, TMS, 25 °C): δ = 1.68-1.71 (m, 2H, CH₂), 1.81-1.83 (m, 2H, CH₂), 2.37 (s, 6H, CH₃), 2.54-2.58 (m, 2H, CH₂), 2.92-2.95 (m, 2H, CH₂), 7.25-7.33 (m, 4H, C₆H₅), 7.97 (s, 2H, C₆H₅), 8.10-8.12 (m, 2H, C₆H₅); ¹³C NMR (100 MHz, CDCl₃, TMS, 25 °C): δ = 21.5 (2 CH₂), 22.1 (2 CH₂), 30.8 (2 CH₃), 69.0 (2 quat. C), 79.3 (2 quat. C), 127.1 (2 CH), 127.9 (2 CH), 130.0 (2 quat. C), 130.5 (2 CH), 132.4 (2 CH), 137.9 (2 quat. C), 166.0 (2 C=N). HRMS: m/z: calcd for C₂₄H₂₃Br₄N₂ [M+H]⁺: 654.8518, found: 654.8522.

4d, yellow solid, yield: 83% (971 mg). ¹H NMR (400MHz, CDCl₃, TMS, 25 °C): δ = 1.40-1.43 (m, 2H, CH₂), 1.44 (s, 18H, CH₃), 1.71-1.74 (m, 2H, CH₂), 2.45-2.52 (m, 2H, CH₂), 2.65-2.69 (m, 2H, CH₂); ¹³C NMR (100 MHz, CDCl₃, TMS, 25 °C): δ = 22.3 (2 CH₂), 29.7 (2 CH₂), 29.9 (6 CH₃), 37.8 (2 quat. C), 70.2 (2 quat. C), 77.8 (2 quat. C) 173.8 (2 C=N). HRMS: *m/z*: calcd for C₁₈H₂₇Br₄N₂ [M+H]⁺: 586.8829, found: 586.8825.

4e, yellow solid, yield: 76% (977 mg). ¹H NMR (400MHz, THF-d₈, 25 °C): $\delta = 0.93$ (t, J = 8Hz, 6H, CH₃), 1.29-1.37 (m, 8H, CH₂), 1.48 (s, 18H, CH₃), 1.90-1.94 (m, 2H, CH₂), 2.24-2.31 (m, 2H, CH₂); ¹³C NMR (100 MHz, THF-d₈, 25 °C): $\delta = 14.3$ (2 CH₃), 24.4 (2 CH₂), 26.9 (2

CH₂), 30.7 (6 CH₃), 35.2 (2 CH₂), 39.1 (2 quat. C), 68.9 (2 quat. C), 84.5 (2 quat. C), 176.4 (2 C=N). HRMS: m/z: calcd for C₂₂H₃₇N₂ [M+H]⁺: 644.9614, found: 644.9617.

General Procedure for the Preparation of 2,6-Diazasemibuvallenes 5. Li (1.1 mmol, 8.4 mg) was added to a solution of α , α, α', α' -dibromo- Δ^1 -bipyrrolines 4 (0.5 mmol) in 5 ml THF in a 25 ml round-bottom flask in glove box, the mixture was stirred at room temperature for 2-4 h. The solvent was evaporated in vacuo to give brown solid. This solid was dissolved in THF-d₈ and monitored by NMR to comfirm $\alpha, \alpha, \alpha', \alpha'$ -dibromo- Δ^1 -bipyrroline was totally disappeared. The THF and THF-d₈ was evaporated in vacuo to give brown solid again. Then the 4,8-dibromo-2,6-diazasemibuvallenes were extracted by mixture solvent (Hexane:Et₂O = 4:1) diethyl ether from brown solid, and the salt (LiBr) was removed.

5a, yellow solid, yield: 83% (195 mg). ¹H NMR (400MHz, THF-d₈, 25 °C): δ = 1.27-1.36 (m, 2H, CH₂), 1.76-1.78 (m, 4H, CH₂), 2.39-2.42 (m, 2H, CH₂), 7.32-7.33 (m, 6H, C₆H₅), 7.78-7.80 (m, 4H, C₆H₅); ¹³C NMR (100 MHz, THF-d₈, 25 °C): δ = 22.0 (2 CH₂), 26.9 (2 CH₂), 79.4 (2 quat. C), 99.0 (2 quat. C), 128.9 (4 CH), 129.0 (4 CH), 130.5 (2 CH), 133.9 (2 quat. C), 151.8 (2 C=N). Elemental Analysis Calcd (%) for C₂₂H₁₈Br₂N₂: C, 56.20; H, 3.86; N, 5.96; Found: C, 56.09; H, 3.71; N, 5.85.

5b, yellow solid, yield: 73% (193 mg). ¹H NMR (400MHz, THF-d₈, 25 °C): δ = 0.86-0.88 (m, 2H, CH₂), 1.27-1.36 (m, 4H, CH₂), 1.73-1.77 (m, 2H, CH₂), 3.76 (s, 6H, OCH₃), 6.85 (d, J = 8 Hz, 4H, C₆H₅), 7.75 (d, J = 8 Hz, 4H, C₆H₅); ¹³C NMR (100 MHz, THF-d₈, 25 °C): δ = 22.2 (2 CH₂), 27.1 (2 CH₂), 55.8 (2 CH₃O), 79.0 (2 quat. C), 114.4 (4 CH), 126.6 (2 quat. C), 130.7 (4 CH), 151.1 (2 quat. C), 162.0 (2 C=N). Elemental Analysis Calcd (%) for C₂₄H₂₂Br₂N₂O₂: C, 54.36; H, 4.18; N, 5.28; Found: C, 54.09; H, 4.03; N, 5.11.

5*c*, yellow solid, yield: 89% (190 mg). ¹H NMR (400MHz, THF-d₈, 25 °C): δ = 1.22 (s, 18H, CH₃), 1.29-1.31 (m, 2H, CH₂), 1.37-1.41 (m, 4H, CH₂), 2.16-2.20 (m, 2H, CH₂); ¹³C NMR (100 MHz, THF-d₈, 25 °C): δ = 21.9 (2 CH₂), 26.7 (2 CH₂), 28.7 (6 CH₃), 35.8 (2 quat. C), 78.5 (2 quat. C), 98.8 (2 quat. C), 159.4 (2 C=N). Elemental Analysis Calcd (%) for C₁₈H₂₆Br₂N₂: C, 50.25; H, 6.09; 14; N, 6.51; Found: C, 50.04; H, 5.98; N, 6.38.

Procedure for the Preparation of Compound 6. 4,8-dibromo-2,6-diazasemibuvallene **5e** (0.3 mmol) was dissolved in THF-d₈ at room temperature in glove box. This solution was monitored by NMR. Almost 30 days later, 4,8-dibromo-2,6-diazasemibuvallene **5e** was totally transfored to compound **6**. At the same time, another part of this THF-d8 solution of **5e** was shined by light, and compound **6** was formed in 3 days. The solvent was evaporated in vacuo to give yellow solid, which was purified by column chromatography (Petrol Ether: Ethyl Acetate = 100:1) to afford pure product **6** (105 mg) in 82% yield. Single crystals of **6** suitable for X-ray structural analysis were grown in hexane at room temperature.

6, yellow solid, yield: 82% (105 mg). ¹H NMR (400MHz, THF-d₈, 25 °C): $\delta = 1.23$ (brs, 1H, CH₂), 1.29 (brs, 1H, CH₂), 1.33 (s, 9H, CH₃), 1.45 (s, 9H, CH₃), 1.55-1.68 (m, 4H, CH₂), 2.38-2.45 (m, 1H, CH₂), 2.79-2.84 (m, 1H, CH₂); ¹³C NMR (100 MHz, THF-d₈, 25 °C): $\delta = 22.8$ (1 CH₂), 25.8 (1 CH₂), 27.8 (3 CH₃), 28.6 (3 CH₃), 34.7 (1 CH₂), 36.5 (1 quat. C), 37.7 (1 quat. C), 41.6 (1 CH₂), 86.0 (1 quat. C), 95.3 (1 quat. C), 107.9 (1 quat. C), 178.9 (1 quat. C), 181.0 (1 C=N), 181.3 (1 C=N). HRMS: *m/z*: calcd for C₁₈H₂₇Br₂N₂ [M+H]⁺: 429.0464, found: 429.0473.

3) X-ray crystallographic studies

The single crystals of 4a, and 6 suitable for X-ray analysis were grown as shown in the experimental section. Data collections for 4a and 6 were performed at 180 K on SuperNova diffractometer, using monochromated Mo K α radiation ($\lambda = 0.71073$ Å). The determination of crystal class and unit cell parameters was carried out by the CrystalClear (Rigaku Inc. 2007) program package for 4a and 6. The raw frame data were processed using CrystalClear (Rigaku Inc. 2007) for 4a and 6 to yield the reflection data file. The structures of 4a and 6 were solved by use of SHELXTL program. Refinement was performed on F^2 anisotropically for all the non-hydrogen atoms by the full-matrix least-squares method. The hydrogen atoms were placed at the calculated positions and were included in the structure calculation without further refinement of the parameters. Crystal data, data collection and processing parameters for compounds 4a and 6 are summarized in Table S1 - Table S4. Crystallographic data (excluding structure factors) have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication nos. CCDC 1056585 (4a), CCDC 1056586 (6). Copies of these data can be obtained free of charge from the Cambridge Crystallographic Data Centre via

www.ccdc.cam.ac.uk/data_request/cif. 2,3

Figure S1. ORTEP drawing of **4a** with 30% probability thermal ellipsoids.

Identification code	4 a
Empirical formula	$C_{22}H_{18}Br_4N_2$
Formula weight	630.02
Temperature/K	180.00(10)
Crystal system	orthorhombic
Space group	Pbca
a/Å	10.7971(8)
b/Å	15.2395(13)
c/Å	26.1285(19)
α/°	90
β/°	90
γ/°	90
Volume/Å ³	4299.2(6)
Ζ	8
$\rho_{calc}g/cm^3$	1.947
μ/mm^{-1}	7.500
F(000)	2432.0

Table S1. Crystal data and structure refinement for 4a.

Crystal size/mm ³	0.2 imes 0.2 imes 0.2
Radiation	Mo K α ($\lambda = 0.7107$)
2Θ range for data collection/°	6.728 to 52.044
Index ranges	$-13 \le h \le 9, -18 \le k \le 11, -24 \le l \le 32$
Reflections collected	10810
Independent reflections	4215 [$R_{int} = 0.0564, R_{sigma} = 0.0792$]
Data/restraints/parameters	4215/0/253
Goodness-of-fit on F ²	1.065
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0529, wR_2 = 0.0992$
Final R indexes [all data]	$R_1 = 0.0826$, $wR_2 = 0.1106$
Largest diff. peak/hole / e Å ⁻³	1.81/-0.62

Figure S2. ORTEP drawing of **6** with 30% probability thermal ellipsoids. Hydrogen atoms have been omitted for clarity.

Table S2. Crystal data and structure refinement for 6.

Identification code	6
Empirical formula	$C_{18}H_{26}Br_2N_2$
Formula weight	430.23
Temperature/K	180.01(10)
Crystal system	monoclinic

Space group	$P2_1/c$
a/Å	6.6642(4)
b/Å	19.8278(16)
c/Å	14.8224(10)
$\alpha/^{\circ}$	90
β/°	101.924(7)
$\gamma/^{\circ}$	90
Volume/Å ³	1916.3(2)
Z	4
$\rho_{calc}g/cm^3$	1.491
μ/mm^{-1}	4.229
F(000)	872.0
Crystal size/mm ³	$0.1 \times 0.03 \times 0.02$
Radiation	MoKα (λ = 0.71073)
2Θ range for data collection/°	5.618 to 52.042
Index ranges	$-8 \le h \le 8, -22 \le k \le 24, -18 \le l \le 18$
Reflections collected	11160
Independent reflections	3773 [$R_{int} = 0.0696, R_{sigma} = 0.0903$]
Data/restraints/parameters	3773/0/205
Goodness-of-fit on F ²	1.028
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0537, wR_2 = 0.1172$
Final R indexes [all data]	$R_1 = 0.0978, wR_2 = 0.1320$
Largest diff. peak/hole / e Å ⁻³	0.97/-0.63

4) References

Sheldrick, G. M. SHELXTL 5.10 for Windows NT: *Structure Determination Software Programs*; Bruker Analytical X-ray Systems, Inc.: (Madison, WI, 1997).

3) Copies of ¹H NMR and ¹³C NMR spectra of all new compounds 2a-¹H NMR

2a-¹³C NMR

2b-¹³C NMR

2d-¹H NMR

2f-¹³C NMR

3a-¹H NMR

3a-¹³C NMR

3b-¹³C NMR

3d-¹³C NMR

S34

4a-¹H NMR

4b-¹³C NMR -165.13 -162.28 -131.91 -122.56 -113.60 79.15 77.48 77.16 76.84 69.45 -55.49 -31.14 -22.21 -0.13 1 110 100 90 f1 (ppm) 30 180 170 160 150 140 130 120 80 70 60 50 40 30 20 10 0 -1

5a-¹³C NMR

5b-¹H NMR

5b-¹³C NMR

	-162.040	-151.070	-130.738 -126.551	-114.386	-97.898	-79.004	67.921 67.746 67.570 55.394	27.065 (25.712 (25.552 (25.332 (25.073 (25.073) (22.165
								Ĩ
			1	ī				
	l		li					
30	170	150	130	1 <mark>10</mark>	90 f1 (ppr	80 m)	70 60 50	0 40 30 20 10 0 -1

S50

