Cu(I)-Catalyzed Michael Addition of Ketiminoesters to

β -Trifluoromethyl β , β -Disubstituted Enones: A Rapid Access to

1-Pyrrolines Bearing a Quaternary All-Carbon Stereocenter

Bing Liu, Zhan-Ming Zhang, Bing Xu, Shan Xu, Hai-Hong Wu, Yuanyuan Liu* and Junliang Zhang*

Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China.

Fax:(+86)-021-6223-3213; E-mail: yyliu@chem.ecnu.edu.cn; jlzhang@chem.ecnu.edu.cn.

Supporting Information

Table Contents

1.	General Information	2
2.	General Procedure for the Synthesis of products 3-10	2
3.	X-ray crystallographic analysis of 3ga, 5, 9b	23
4.	References	23
5.	¹ H, ¹⁹ F, ³¹ P, ¹³ C NMR and HPLC Spectra	24

1. General Information

All reactions were carried out under an atmosphere of nitrogen in flame-dried glassware with magnetic stirring. ¹H NMR spectra, ¹⁹F NMR spectra, ¹³C NMR spectra were recorded on a Bruker 300, 400 and 500 MHz spectrometer in CDCl₃. All signals are reported in ppm with the internal TMS signal at 0 ppm as a standard. Data for ¹H NMR spectra are reported as follows: chemical shift (ppm, referenced to TMS; s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, coupling constant(s) in Hz, integration), coupling constant (Hz), and intergration. Data for ¹³C NMR are reported in terms of chemical shift (ppm) relative to residual solvent peak (CDCl₃: 77.0 ppm). Reactions were monitored by thin layer chromatography (TLC) using silica gel plates. Flash column chromatography was performed over silica gel (300-400 mesh). Dichloromethane, toluene were freshly distilled from CaH₂; THF, Et₂O and MTBE were freshly distilled from sodium metal prior to use. The ligands **M1-M5** were synthesized according to the procedure of reference.¹ The substrate **1a-1q**² were synthesized according to the procedure of references. **2a-2c** were commercially available. And the spectral data of the substrates were consisted with the literature.

2. General Procedure for the Synthesis of products 3-10

Typical procedure for asymmetric copper-catalyzed Michael addition initiated cycloaddition of enones with glycine ketoimino ester.

The solution of CuOAc (5 mol%) and (*S*,*S*)-^{*i*}Pr-PHOXAP (6.0 mol%) in MTBE (2 mL) was stirred at room temperature for 2 h. After the reaction temperature was dropped to -30 °C, glycine ketoimino ester **2** (0.4 mmol), Cs_2CO_3 (0.1 mmol) and alkene **1** (0.2 mmol) were added sequentially. After the alkene **1** was consumed completely, remove the solvent under reduced pressure. The crude product was analyzed with ¹H NMR and ¹⁹F NMR to determine the chemicalselective and diastereomeric ratio. Then the crude product was purified by flash column chromatography on silica gel to afford the desired product. The enantionmeric excesses of the products were determined by chiral stationary phase HPLC.

2.1 Synthesis of methyl (2*S*,3*S*)-5-(4-chlorophenyl)-3-methyl-3-(trifluoromethyl)-3,4dihydro-2*H*-pyrrole-2-carboxylate (**3aa**).

The reaction of alkene **1a** (49.6 mg, 0.2 mmol) and glycine ketoimino ester **2a** (101.2 mg, 0.4 mmol), after a flash column chromatography (hexanes: AcOEt = 5:1) afforded the product **3aa** as a colorless ropy liquid (57.4 mg, 90% yield) with >20:1 dr and 97% *ee.* ¹H NMR (300 MHz, CDCl₃) δ 7.80-7.76 (m, 2H), 7.43-7.39 (m, 2H), 5.12 (t, *J* = 1.6 Hz, 1H), 3.80 (s, 3H), 3.43-3.37 (m, 1H), 3.01-2.94 (m, 1H), 1.33 (s, 3H). ¹⁹F NMR (282 MHz, CDCl₃) δ -77.07. ¹³C NMR (126 MHz, CDCl₃) δ 172.35, 169.85, 137.74, 129.26, 129.12, 128.88, 128.00 (q, *J*_{C-F} = 281.0 Hz), 77.44 (d, *J* = 1.8 Hz), 52.29, 50.12 (q, *J* = 26.2 Hz), 44.80 (d, *J* = 1.8 Hz), 17.15 (d, *J* = 2.7 Hz). MS (EI): m/z (%) = 319 (M⁺, 11.07), 260 (100): HRMS calculated for [C₁₄H₁₃NO₂F₃Cl]⁺: 319.0587 found: 319.0583. Enantiomeric excess was determined by HPLC with a Chiralpak IC column (hexanes: 2-propanol = 95:5, 0.8 mL/min, 254 nm); major enantiomer tr = 8.7 min, minor enantiomer tr = 15.6 min. [α]_D²⁵ = +54.3 (*c* = 0.50, CHCl₃).

2.2 Synthesis of methyl (2*S*,3*S*)-5-(4-bromophenyl)-3-methyl-3-(trifluoromethyl)-3,4-dihydro-2*H*-pyrrole-2-carboxylate (**3ba**).

The reaction of alkene **1a** (58.4 mg, 0.2 mmol) and glycine ketoimino ester **2a** (101.2 mg, 0.4 mmol), after a flash column chromatography (hexanes: AcOEt = 5:1) afforded the product **3ba** as a colorless ropy liquid (63.9 mg, 88% yield) with >20:1 dr and 97% *ee.* ¹H NMR (400 MHz, CDCl₃) δ 7.71-7.68 (m, 2H), 7.57-7.54 (m, 2H), 5.10 (t, *J* = 1.5 Hz, 1H), 3.79 (s, 3H), 3.42-3.37 (m, 1H), 2.99-2.94 (m, 1H), 1.32 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -77.08. ¹³C NMR (101 MHz, CDCl₃) δ 172.42, 169.74, **3**/98

131.82, 131.70, 129.41, 127.99 (q, J_{C-F} = 282.0 Hz), 126.19, 77.47, 52.22 (d, J = 1.7 Hz), 50.12 (q, J = 26.2 Hz), 44.72 (d, J = 2.2 Hz), 17.11 (d, J = 2.9 Hz). MS (EI): m/z (%) = 363 (M⁺, 12.4), 304 (100); HRMS calculated for [C₁₄H₁₃NO₂F₃Br]⁺: 363.0082 found: 363.0078. Enantiomeric excess was determined by HPLC with a Chiralpak IC column (hexanes: 2-propanol = 95:5, 0.8 mL/min, 254 nm); major enantiomer tr = 9.0 min, minor enantiomer tr = 17.1 min. [α] $_D^{25}$ = +56.8 (c = 0.50, CHCl₃).

2.3 Synthesis of methyl (2*S*,3*S*)-5-(4-fluorophenyl)-3-methyl-3-(trifluoromethyl)3,4-dihydro-2*H*-pyrrole-2-carboxylate (3ca)

3ca

The reaction of alkene **1a** (46.4 mg, 0.2 mmol) and glycine ketoimino ester **2a** (101.2 mg, 0.4 mmol), after a flash column chromatography (hexanes: AcOEt = 5:1) afforded the product **3ca** as a colorless ropy liquid (49.1 mg, 81% yield) with >20:1 dr and 97% *ee.* ¹H NMR (400 MHz, CDCl₃) δ 7.86-7.82 (m, 2H), 7.12-7.08 (m, 2H), 5.11 (t, *J* = 1.5 Hz, 1H), 3.79 (s, 3H), 3.42-3.38 (m, 1.2 Hz, 1H), 3.00-2.95 (m, 1.8 Hz, 1H), 1.32 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -77.10, -107.97. ¹³C NMR (101 MHz, CDCl₃) δ 172.16, 169.91, 164.77 (d, *J* = 252.4 Hz), 130.12 (d, *J* = 8.8 Hz), 129.17 (d, *J* = 32.0 Hz), 128.03 (q, *J*_{C-F} = 282.0 Hz), 115.67 (d, *J* = 21.9 Hz), 77.40, 52.18 (d, *J* = 2.0 Hz), 50.14 (q, *J* = 26.2 Hz), 44.83 (d, *J* = 1.8 Hz), 17.12 (d, *J* = 2.9 Hz). ESI-MS calculated for C₁₄H₁₃F₄NNaO₂: m/z (%): 326.0775 (M+Na⁺), found: 326.0773. Enantiomeric excess was determined by HPLC with a Chiralpak IC column (hexanes: 2-propanol = 95:5, 0.8 mL/min, 254 nm); major enantiomer tr = 9.4 min, minor enantiomer tr = 14.7 min. [α]_D²⁵ = +56.1 (*c* = 0.50, CHCl₃).

2.4 Synthesis of methyl (2*S*,3*S*)-3-methyl-3-(trifluoromethyl)-5-(4-(trifluoromethyl) phenyl)-3,4-dihydro-2*H*-pyrrole-2-carboxylate (**3da**).

The reaction of alkene **1a** (56.4 mg, 0.2 mmol) and glycine ketoimino ester **2a** (101.2 mg, 0.4 mmol), after a flash column chromatography (hexanes: AcOEt = 5:1) afforded the product **3da** as a ropy liquid (63.9 mg, 85% yield) with >20:1 dr and 98% *ee*. ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, *J* = 8.1 Hz, 2H), 7.69 (d, *J* = 8.2 Hz, 2H), 5.16 (t, *J* = 1.5 Hz, 1H), 3.81 (s, 3H), 3.47-3.42 (m, 1H), 3.04-2.99 (m, 1H), 1.34 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -63.04, -77.23. ¹³C NMR (101 MHz, CDCl₃) δ 172.33, 169.59, 136.00, 133.10 (q, *J* = 32.6 Hz), 128.30, 127.98 (q, *J*_{C-F} = 281.9 Hz), 125.56 (q, *J* = 3.7 Hz), 123.72 (q, *J*_{C-F} = 273.4 Hz), 77.61, 52.27 (d, *J* = 2.4 Hz), 50.19 (q, *J* = 26.4 Hz), 44.86 (d, *J* = 2.0 Hz), 17.09 (d, *J* = 2.8 Hz). ESI-MS calculated for C₁₅H₁₃F₆NNaO₂: m/z (%): 376.0743 (M+Na⁺), found: 376.0740. Enantiomeric excess was determined by HPLC with a Chiralpak IC column (hexanes: 2-propanol = 85:15, 0.8 mL/min, 254 nm); major enantiomer tr = 5.3 min, minor enantiomer tr = 6.6 min. [α]_D²⁵ = +57.4 (*c* = 0.50, CHCl₃).

2.5 Synthesis of methyl (2*S*,3*S*)-5-(4-cyanophenyl)-3-methyl-3-(trifluoromethyl)-3,4-dihydro-2*H*-pyrrole-2-carboxylate (3ea).

The reaction of alkene **1a** (47.8 mg, 0.2 mmol) and glycine ketoimino ester **2a** (101.2 mg, 0.4 mmol), after a flash column chromatography (hexanes: AcOEt = 2:1) afforded the product **3ea** as a colorless ropy liquid (51.5 mg, 83% yield) with >20:1 dr and 97% *ee.* ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, *J* = 8.2 Hz, 2H), 7.73-7.71 (m, 2H), 5.16 (s, 1H), 3.81 (s, 3H), 3.44-3.40 (m, 1H), 3.02-3.97 (m, 1H), 1.34 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -77.25. ¹³C NMR (126 MHz, CDCl₃) δ 172.02, 169.43, 136.59, 132.35, 128.48, 127.87 (q, *J*_{C-F} = 281.1 Hz), 118.11, 114.88, 77.62, 52.37, 50.20 (q, *J* = 26.3 Hz), 44.71, 17.08. ESI-MS calculated for C₁₅H₁₃F₃N₂NaO₂: m/z (%): 333.0821 **5**/98

(M+Na⁺), found: 333.0817. Enantiomeric excess was determined by HPLC with a Chiralpak IC column (hexanes: 2-propanol = 70:30, 0.8 mL/min, 254 nm); major enantiomer tr = 11.1 min, minor enantiomer tr = 17.4 min. $[\alpha]_D^{25} = +54.4$ (c = 0.50, CHCl₃).

2.6 Synthesis of methyl (2*S*,3*S*)-5-(4-(methoxycarbonyl)phenyl)-3-methyl-3-(trifluoro methyl)-3,4-dihydro-2*H*-pyrrole-2-carboxylate (**3fa**).

The reaction of alkene **1a** (54.4 mg, 0.2 mmol) and glycine ketoimino ester **2a** (101.2 mg, 0.4 mmol), after a flash column chromatography (hexanes: AcOEt = 2:1) afforded the product **3fa** as a white solid (65.9 mg, 96% yield) with >20:1 dr and 98% *ee.* mp: 86-87 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.10-8.08 (m, 2H), 7.91 (d, *J* = 8.2 Hz, 2H), 5.15 (s, 1H), 3.94 (s, 3H), 3.81 (s, 3H), 3.47-3.43 (m, 1H), 3.05-3.00 (m, 1H), 1.34 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -77.09. ¹³C NMR (101 MHz, CDCl₃) δ 172.72, 169.66, 166.33, 136.66, 132.62, 129.78, 128.00 (q, *J*_{C-F} = 281.9 Hz), 127.92, 77.63, 52.29, 52.29, 50.16 (q, *J* = 26.1 Hz), 44.96, 17.15. ESI-MS calculated for C₁₆H₁₆F₃NNaO₄: m/z (%): 366.0924 (M+Na⁺), found: 366.0926. Enantiomeric excess was determined by HPLC with a Chiralpak IC column (hexanes: 2-propanol = 80:20, 0.8 mL/min, 254 nm); major enantiomer tr = 13.8 min, minor enantiomer tr = 16.9 min. [α] p^{25} = +74.2 (*c* = 0.50, CHCl₃).

2.7 Synthesis of methyl (2*S*,3*S*)-3-methyl-5-(4-(methylsulfonyl)phenyl)-3-(trifluoro methyl)-3,4-dihydro-2*H*-pyrrole-2-carboxylate (**3ga**).

The reaction of alkene **1a** (58.4 mg, 0.2 mmol) and glycine ketoimino ester **2a** (101.2 mg, 0.4 mmol), after a flash column chromatography (hexanes: AcOEt = 2:1) afforded 6/98

the product **3ga** as a colorless ropy liquid (68.2 mg, 94% yield) with >20:1 dr and 98% *ee.* ¹H NMR (400 MHz, CDCl₃) δ 8.03-7.97 (m, 4H), 5.15 (s, 1H), 3.79 (s, 3H), 3.46-3.41 (m, 1H), 3.04 (s, 3H), 3.03-3.00 (m, 1H), 1.33 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -77.25. ¹³C NMR (101 MHz, CDCl₃) δ 172.03, 169.35, 142.82, 137.51, 128.81, 127.60, 127.36 (q, *J*_{C-F} = 281.9 Hz), 77.63, 52.28 (d, *J* = 2.4 Hz), 50.20 (q, *J* = 26.3 Hz), 44.79 (d, *J* = 1.8 Hz), 44.29, 17.00 (d, *J* = 2.6 Hz). ESI-MS calculated for C₁₅H₁₆F₃NNaO₄S: m/z (%): 386.0644 (M+Na⁺), found: 386.0645. Enantiomeric excess was determined by HPLC with a Chiralpak IC column (hexanes: 2-propanol = 60:40, 0.8 mL/min, 254 nm); major enantiomer tr = 39.0 min, minor enantiomer tr = 48.3 min. [α]_D²⁵ = +60.0 (*c* = 0.50, CHCl₃).

2.8 Synthesis of methyl (2*S*,3*S*)-5-([1,1'-biphenyl]-4-yl)-3-methyl-3-(trifluoromethyl)3,4-dihydro-2*H*-pyrrole-2-carboxylate (**3ha**).

The reaction of alkene **1a** (58.0 mg, 0.2 mmol) and glycine ketoimino ester **2a** (101.2 mg, 0.4 mmol), after a flash column chromatography (hexanes: AcOEt = 5:1) afforded the product **3ha** as a white solid (55.6 mg, 77% yield) with >20:1 dr and 97% *ee*. mp: 113-114 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, *J* = 8.4 Hz, 2H), 7.68-7.61 (m, 4H), 7.49-7.45 (m, 2H), 7.41-7.37 (m, 1H), 5.16 (s, 1H), 3.82 (s, 3H), 3.50-3.45 (m, 1H), 3.07-3.02 (m, 1H), 1.35 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -76.97. ¹³C NMR (101 MHz, CDCl₃) δ 173.06, 170.01, 144.28, 140.09, 131.74, 128.90, 128.47, 128.14 (q, *J*_{C-F} = 281.5 Hz), 127.97, 127.25, 127.16, 77.54, 52.10, 50.09 (q, *J* = 26.2 Hz), 44.87, 17.22. ESI-MS calculated for C₂₀H₁₉F₃NO₂: m/z (%): 362.1362 (M+H⁺), found: 362.1369. Enantiomeric excess was determined by HPLC with a Chiralpak IC column (hexanes: 2-propanol = 85:15, 0.8 mL/min, 254 nm); major enantiomer tr = 9.4 min, minor enantiomer tr = 18.1 min. [α]_D²⁵ = +72.2 (*c* = 0.50, CHCl₃).

2.9 Synthesis of methyl (2*S*,3*S*)-3-methyl-5-(4-(methylthio)phenyl)-3-(trifluoro methyl)-3,4-dihydro-2*H*-pyrrole-2-carboxylate (**3ia**).

The reaction of alkene **1a** (52.0 mg, 0.2 mmol) and glycine ketoimino ester **2a** (101.2 mg, 0.4 mmol), after a flash column chromatography (hexanes: AcOEt = 3:1) afforded the product **3ia** as a white solid (56.3 mg, 85% yield) with >20:1 dr and 98% *ee*. mp: 109-110 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, *J* = 8.5 Hz, 2H), 7.26-7.24 (m, 2 H), 5.11 (s, 1H), 3.79 (s, 3 H), 3.42-3.37 (m, 1H), 2.99-2.95 (m, 1 H), 2.51 (s, 3H), 1.32 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -76.96. ¹³C NMR (101 MHz, CDCl₃) δ 172.71, 170.04, 143.49, 129.25, 128.23, 128.08 (q, *J*_{C-F} = 282.0 Hz), 125.47, 77.32, 52.19, 50.01 (q, *J* = 26.2 Hz), 44.74, 17.16, 15.03. ESI-MS calculated for C₁₅H₁₇F₃NO₂S: m/z (%): 332.0927 (M+H⁺), found: 332.0929. Enantiomeric excess was determined by HPLC with a Chiralpak IC column (hexanes: 2-propanol = 85:15, 0.8 mL/min, 275 nm); major enantiomer tr = 11.1 min, minor enantiomer tr = 36.7 min. [α] p^{25} = +71.7 (*c* = 0.50, CHCl₃).

2.10 Synthesis of methyl (2*S*,3*S*)-3-methyl-5-phenyl-3-(trifluoromethyl)-3,4-dihydro-2*H*-pyrrole-2-carboxylate (**3ja**).

The reaction of alkene **1a** (42.8 mg, 0.2 mmol) and glycine ketoimino ester **2a** (101.2 mg, 0.4 mmol), after a flash column chromatography (hexanes: AcOEt = 5:1) afforded the product **3ja** as a colorless ropy liquid (45.0 mg, 79% yield) with >20:1 dr and 95% *ee.* ¹H NMR (300 MHz, CDCl₃) δ 7.86-7.83 (m, 2H), 7.51-7.40 (m, 3H), 5.13 (s, 1H), 3.80 (s, 3H), 3.47-3.41 (m, 1H), 3.04-2.98 (m, 1H), 1.33 (s, 3H). ¹⁹F NMR (282 MHz, CDCl₃) δ -77.00. ¹³C NMR (126 MHz, CDCl₃) δ 173.40, 169.98, 132.80, 131.51, 128.57, 127.93, 127.37 (q, *J*_{C-F} = 281.6 Hz), 77.43, 52.21, 49.97 (q, *J* = 26.2 Hz), **8/98**

44.86 (d, J = 1.8 Hz), 17.16 (d, J = 2.7 Hz). ESI-MS calculated for C₁₄H₁₄F₃NNaO₂: m/z (%): 308.0869 (M+Na⁺), found: 308.0872. Enantiomeric excess was determined by HPLC with a Chiralpak IC column (hexanes: 2-propanol = 95:5, 0.8 mL/min, 254 nm); major enantiomer tr = 14.2 min, minor enantiomer tr = 19.0 min. [α]_D²⁵ = +56.0 (c= 0.50, CHCl₃).

2.11 Synthesis of methyl (2*S*,3*S*)-5-(2-chlorophenyl)-3-methyl-3-(trifluoromethyl)-3,4-dihydro-2*H*-pyrrole-2-carboxylate (3ka).

The reaction of alkene **1a** (49.6 mg, 0.2 mmol) and glycine ketoimino ester **2a** (101.2 mg, 0.4 mmol), after a flash column chromatography (hexanes: AcOEt = 5:1) afforded the product **3ka** as a colorless ropy liquid (54.2 mg, 85% yield) with >20:1 dr and 97% *ee*. ¹H NMR (400 MHz, CDCl₃) δ 7.72-7.69 (m, 1H), 7.43-7.40 (m, 1H), 7.39-7.35 (m, 1H), 7.33-7.29 (m, 1H), 5.09 (s, 1H), 3.81 (s, 3H), 3.55-3.50 (m, 1H), 3.19-3.14 (m, 1H), 1.34 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -76.92. ¹³C NMR (101 MHz, CDCl₃) δ 174.66, 169.54, 133.31, 132.68, 131.45, 130.84, 130.33, 127.97 (q, *J*_{C-F} = 279.0 Hz), 126.99, 77.21, 52.29, 50.75 (q, *J* = 26.2 Hz), 47.74 (d, *J* = 1.9 Hz), 16.81 (d, *J* = 2.9 Hz). ESI-MS calculated for C₁₄H₁₃ClF₃NNaO₂: m/z (%): 342.0479 (M+Na⁺), found: 342.0493. Enantiomeric excess was determined by HPLC with a Chiralpak IC column (hexanes: 2-propanol = 95:5, 0.8 mL/min, 254 nm); major enantiomer tr = 10.4 min, minor enantiomer tr = 11.5 min. [α] $_D^{25}$ = +64.1 (*c* = 0.50, CHCl₃).

2.12 Synthesis of methyl (2*S*,3*S*)-5-(3,4-dichlorophenyl)-3-methyl-3-(trifluoro methyl)-3,4-dihydro-2*H*-pyrrole-2-carboxylate (**3la**).

The reaction of alkene **1a** (56.4 mg, 0.2 mmol) and glycine ketoimino ester **2a** (101.2 mg, 0.4 mmol), after a flash column chromatography (hexanes: AcOEt = 5:1) afforded the product **3la** as a colorless ropy liquid (67.1 mg, 95% yield) with >20:1 dr and 98% *ee*. ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, *J* = 2.0 Hz, 1H), 7.66-7.63 (m, 1H), 7.49 (d, *J* = 8.3 Hz, 1H), 5.12 (s, 1H), 3.80 (s, 3H), 3.40-3.35 (m, 1H), 2.98-2.93 (m, 1H), 1.32 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -77.19. ¹³C NMR (101 MHz, CDCl₃) δ 171.42, 169.56, 135.80, 133.10, 132.66, 130.59, 129.79, 127.91 (q, *J*_{C-F} = 279.0 Hz), 126.99, 77.49, 52.28 (d, *J* = 2.0 Hz), 50.21 (q, *J* = 26.2 Hz), 44.67 (d, *J* = 2.0 Hz), 17.07 (d, *J* = 2.6 Hz). ESI-MS calculated for C₁₄H₁₂Cl₂F₃NNaO₂: m/z (%): 376.0089 (M+Na⁺), found: 376.0092. Enantiomeric excess was determined by HPLC with a Chiralpak IC column (hexanes: 2-propanol = 95:5, 0.8 mL/min, 254 nm); major enantiomer tr = 7.8 min, minor enantiomer tr = 13.3 min. [α]_D²⁵ = +74.0 (*c* = 0.50, CHCl₃).

2.13 Synthesis of methyl (2*S*,3*S*)-3-methyl-5-(naphthalen-2-yl)-3-(trifluoromethyl)3,4-dihydro-2*H*-pyrrole-2-carboxylate (**3ma**).

The reaction of alkene **1a** (52.8 mg, 0.2 mmol) and glycine ketoimino ester **2a** (101.2 mg, 0.4 mmol), after a flash column chromatography (hexanes: AcOEt = 5:1) afforded the product **3ma** as a white solid (65.0 mg, 97% yield) with >20:1 dr and 96% *ee*. Mp: 118-119 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.18-8.17 (m, 1H), 8.10-8.08 (m, 1H), 7.90-7.85 (m, 3H), 7.58-7.50 (m, 2H), 5.20 (s, 1H), 3.82 (s, 3H), 3.61-3.13 (m, 2H), 1.38 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -76.87. ¹³C NMR (126 MHz, CDCl₃) δ 173.38, 170.04, 134.79, 132.72, 130.32, 128.93, 128.78, 128.41, 128.12 (q, *J*_{C-F} = 281.3 Hz), 127.79, 127.66, 126.66, 124.28, 77.51, 52.26, 50.09 (q, *J* = 26.1 Hz), 44.92 (d, *J* = 1.9 Hz), 17.23 (d, *J* = 2.7 Hz). ESI-MS calculated for C₁₈H₁₇F₃NO₂: m/z (%): 336.1206 (M+H⁺), found: 336.1208. Enantiomeric excess was determined by HPLC with a Chiralpak IC column (hexanes: 2-propanol = 95:5, 0.8 mL/min, 254 nm); major

enantiomer tr = 8.1 min, minor enantiomer tr = 20.8 min. $[\alpha]_D^{25}$ = +99.6 (c = 0.50, CHCl₃).

2.14 Synthesis of methyl (2*S*,3*S*)-5-(furan-2-yl)-3-methyl-3-(trifluoromethyl)-3,4dihydro-2*H*-pyrrole-2-carboxylate (**3na**).

The reaction of alkene **1a** (40.8 mg, 0.2 mmol) and glycine ketoimino ester **2a** (101.2 mg, 0.4 mmol), after a flash column chromatography (hexanes: AcOEt = 5:1) afforded the product **3na** as a colorless ropy liquid (36.3 mg, 66% yield) with >20:1 dr and 95% *ee*. ¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, *J* = 1.5 Hz, 1H), 6.94 (d, *J* = 3.5 Hz, 1H), 6.52-6.50 (m, 1H), 5.10 (s, 1H), 3.78 (s, 3H), 3.38-3.34 (m, 1H), 2.95-2.90 (m, 1H), 1.31 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -77.06. ¹³C NMR (101 MHz, CDCl₃) δ 169.71, 163.95, 148.44, 145.43, 127.94 (q, *J*_{C-F} = 280.9 Hz), 114.58, 111.96, 77.57, 52.23 (d, *J* = 2.5 Hz), 49.83 (q, *J* = 26.3 Hz), 44.54 (d, *J* = 2.0 Hz), 16.99 (d, *J* = 2.8 Hz). ESI-MS calculated for C₁₂H₁₂F₃NNaO₃: m/z (%): 298.0661 (M+Na⁺), found: 298.0664. Enantiomeric excess was determined by HPLC with a Chiralpak IC column (hexanes: 2-propanol = 80:20, 0.8 mL/min, 254 nm); major enantiomer tr = 12.6 min, minor enantiomer tr = 20.9 min. [α]_D²⁵ = +51.3 (*c* = 0.50, CHCl₃).

2.15 Synthesis of methyl (2*S*,3*S*)-3-methyl-5-(thiophen-2-yl)-3-(trifluoromethyl)3,4-dihydro-2*H*-pyrrole-2-carboxylate (**30a**).

The reaction of alkene **1a** (44.0mg, 0.2 mmol) and glycine ketoimino ester **2a** (101.2 mg, 0.4 mmol), after a flash column chromatography (hexanes: AcOEt = 5:1) afforded the product **3oa** as a colorless ropy liquid (53.0 mg, 91% yield) with >20:1 dr and 98% *ee.* ¹H NMR (400 MHz, CDCl₃) δ 7.50-7.48 (m, 1H), 7.38-7.36 (m, 1H), 7.10-7.07 (m,

1H), 5.08 (s, 1H), 3.78 (s, 3H), 3.44-3.39 (m, 1H), 3.01-2.96 (m, 1H), 1.32 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -77.11. ¹³C NMR (101 MHz, CDCl₃) δ 169.77, 167.81, 137.39, 130.67, 130.54, 127.97 (q, *J*_{C-F} = 282.0 Hz), 127.60, 77.32, 52.18 (d, *J* = 2.4 Hz), 50.33 (q, *J* = 26.2 Hz), 45.22 (d, *J* = 2.0 Hz), 17.07 (d, *J* = 2.8 Hz). ESI-MS calculated for C₁₂H₁₂F₃NNaO₂S: m/z (%): 314.0433 (M+Na⁺), found: 314.0436. Enantiomeric excess was determined by HPLC with a Chiralpak IC column (hexanes: 2-propanol = 85:15, 0.8 mL/min, 254 nm); major enantiomer tr = 13.2 min, minor enantiomer tr = 17.7 min. [α]_D²⁵ = +56.1 (*c* = 0.50, CHCl₃).

2.16 Synthesis of ethyl (2*S*,3*S*)-5-(4-chlorophenyl)-3-methyl-3-(trifluoromethyl)-3,4-dihydro-2*H*-pyrrole-2-carboxylate (3ab).

The reaction of alkene **1a** (49.6mg, 0.2 mmol) and glycine ketoimino ester **2a** (106.8 mg, 0.4 mmol), after a flash column chromatography (hexanes: AcOEt = 5:1) afforded the product **3ab** as a colorless ropy liquid (59.9 mg, 90% yield) with >20:1 dr and 98% *ee*. ¹H NMR (400 MHz, CDCl₃) δ 7.40-7.37 (m, 2H), 7.59-7.30 (m, 2H), 5.08 (s, 1H), 4.29-4.23 (m, 2H), 3.41-3.36 (m, 1H), 2.98-2.93 (m, 1H), 1.33 (s, 3H), 1.31 (t, *J* = 1.80 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -77.01. ¹³C NMR (101 MHz, CDCl₃) δ 172.17, 169.31, 137.63, 131.33, 129.22, 128.80, 128.02 (q, *J*_{C-F} = 281.9 Hz), 77.36, 61.36, 50.13 (q, *J* = 26.2 Hz), 44.78 (d, *J* = 1.8 Hz), 17.07 (q, *J* = 2.6 Hz), 14.13. ESI-MS calculated for C₁₅H₁₅ClF₃NNaO₂: m/z (%): 356.0636 (M+Na⁺), found: 356.0644. Enantiomeric excess was determined by HPLC with a Chiralpak IC column (hexanes: 2-propanol = 95:5, 0.8 mL/min, 254 nm); major enantiomer tr = 8.5 min, minor enantiomer tr = 14.9 min. [α]_D²⁵ = +56.7 (*c* = 0.50, CHCl₃).

2.17 Synthesis of ethyl (2*S*,3*S*)-5-(2-chlorophenyl)-3-methyl-3-(trifluoromethyl)-3,4-dihydro-2*H*-pyrrole-2-carboxylate (**3bb**).

The reaction of alkene **1a** (49.6mg, 0.2 mmol) and glycine ketoimino ester **2b** (106.8 mg, 0.4 mmol), after a flash column chromatography (hexanes: AcOEt = 5:1) afforded the product **3bb** as a colorless ropy liquid (47.3 mg, 71% yield) with >20:1 dr and 93% *ee.* ¹H NMR (400 MHz, CDCl₃) δ 7.71-7.69 (m, 1H), 7.42-7.40 (m, 1H), 7.38-7.34 (m, 1H), 7.32-7.28 (m, 1H), 5.06 (t, *J* = 1.5 Hz, 1H), 4.31-4.25 (m, 2H), 3.54-3.50 (m, 1H), 3.18-3.13 (m, 1H), 1.35 (s, 3H), 1.32 (t, *J* = 7.2 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -76.92. ¹³C NMR (101 MHz, CDCl₃) δ 174.60, 169.03, 133.34, 132.59, 131.38, 130.78, 130.26, 127.95 (q, *J* = 280.9 Hz), 126.94, 76.57, 61.42, 50.69 (q, *J* = 26.1 Hz), 47.67, 16.71 (d, *J* = 2.4 Hz), 14.15. ESI-MS calculated for C₁₅H₁₆ClF₃NO₂: m/z (%): 334.0816 (M+H⁺), found: 334.0823. Enantiomeric excess was determined by HPLC with a Chiralpak IA column (hexanes: 2-propanol = 95:5, 0.8 mL/min, 254 nm); major enantiomer tr = 11.2 min, minor enantiomer tr = 12.8 min. [α]_D²⁵ = +15.9 (*c* = 0.50, CHCl₃).

2.18 Synthesis of ethyl (2*S*,3*S*)-3-methyl-5-(naphthalen-2-yl)-3-(trifluoromethyl)3,4-dihydro-2*H*-pyrrole-2-carboxylate (**3cb**).

The reaction of alkene **1a** (52.8 mg, 0.2 mmol) and glycine ketoimino ester **2a** (106.8 mg, 0.4 mmol), after a flash column chromatography (hexanes: AcOEt = 5:1) afforded the product **3cb** as a white solid (53.2 mg, 76% yield) with 13:1 cr, >20:1 dr and 98% *ee*. mp: 96-97 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.18 (s, 1H), 8.11-8.08 (m, 1H), 7.90-7.85 (m, 3H), 7.58-7.50 (m, 2H), 5.17 (s, 1H), 4.33-4.27 (m, 2H), 3.60-3.55 (m, 1H), 3.17-3.12 (m, 1H), 1.39 (s, 3H), 1.34 (t, *J* = 7.1 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -76.77 (s). ¹³C NMR (126 MHz, CDCl₃) δ 173.26, 169.58, 134.77, 132.72, 130.38, **13/98**

128.89, 128.76, 128.37, 128.16 (q, $J_{C-F} = 282.5 \text{ Hz}$), 127.78, 127.62, 126.63, 124.31, 77.41, 61.37, 50.09 (q, J = 26.1 Hz), 44.94, 17.18, 14.18. ESI-MS calculated for C₁₉H₁₉F₃NO₂: m/z (%): 350.1367 (M+H⁺), found: 350.1362. Enantiomeric excess was determined by HPLC with a Chiralpak IC column (hexanes: 2-propanol = 85:15, 0.8 mL/min, 254 nm); major enantiomer tr = 7.8 min, minor enantiomer tr = 19.7 min. $[\alpha]_D^{25} = +97.0$ (c = 0.50, CHCl₃).

2.19 Synthesis of ethyl (2*S*,3*S*)-5-(4-(methoxycarbonyl)phenyl)-3-methyl-3-(trifluoro methyl)-3,4-dihydro-2*H*-pyrrole-2-carboxylate (**3db**).

The reaction of alkene **1a** (54.4 mg, 0.2 mmol) and glycine ketoimino ester **2a** (106.8 mg, 0.4 mmol), after a flash column chromatography (hexanes: AcOEt = 5:1) afforded the product **3db** as a white solid (62.1 mg, 87% yield) with >20:1 dr and 98% *ee*. mp: 70-71 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.10-8.08 (m, 2H), 7.92-7.90 (m, 2H), 5.13 (d, *J* = 0.8 Hz, 1H), 4.31-4.25 (m, 2H), 3.94-3.93 (m, 3H), 3.47-3.42 (m, 1H), 3.04-2.99 (m, 1H), 1.35 (s, 3H), 1.35-1.30 (m, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -77.00. ¹³C NMR (101 MHz, CDCl₃) δ 172.61, 169.22, 166.36, 136.72, 132.57, 129.77, 128.02 (q, *J*_{C-F} = 281.9 Hz), 127.92, 77.55, 61.47, 52.32, 50.16 (q, *J* = 26.1 Hz), 44.99, 17.14, 14.19. ESI-MS calculated for C₁₇H₁₈F₃NNaO₄: m/z (%): 380.1080 (M+Na⁺), found: 380.1081. Enantiomeric excess was determined by HPLC with a Chiralpak IC column (hexanes: 2-propanol = 85:15, 0.8 mL/min, 254 nm); major enantiomer tr = 16.6 min, minor enantiomer tr = 19.9 min. [α]_D²⁵ = +63.8 (*c* = 0.50, CHCl₃).

2.20 Synthesis of benzyl (2*S*,3*S*)-5-(4-chlorophenyl)-3-methyl-3-(trifluoromethyl)-3,4-dihydro-2*H*-pyrrole-2-carboxylate (**3ac**).

The reaction of alkene **1a** (49.6mg, 0.2 mmol) and glycine ketoimino ester **2a** (131.6 mg, 0.4 mmol), after a flash column chromatography (hexanes: AcOEt = 5:1) afforded the product **3ac** as a white solid (70.3 mg, 89% yield) with >20:1 dr and 98% *ee.* mp: 50-51 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.79-7.77 (m, 2H), 7.42-7.33 (m, 7H), 5.25 (s, 2H), 5.16 (s, 1H), 3.42-2.93 (m, 2H), 1.24 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -76.90. ¹³C NMR (101 MHz, CDCl₃) δ 172.32, 169.23, 137.69, 135.10, 131.29, 129.24, 128.83, 128.53, 128.53, 128.46, 127.98 (q, *J*_{C-F} = 282.1 Hz), 77.32, 67.11, 50.27 (q, *J* = 26.2 Hz), 44.84 (d, *J* = 2.0 Hz), 17.03 (d, *J* = 2.7 Hz). ESI-MS calculated for C₂₀H₁₇F₃NNaO₂: m/z (%): 418.0792 (M+Na⁺), found: 418.0794. Enantiomeric excess was determined by HPLC with a Chiralpak IC column (hexanes: 2-propanol = 95:5, 0.8 mL/min, 254 nm); major enantiomer tr = 8.9 min, minor enantiomer tr = 18.1 min. [α] $_D^{25}$ = +32.4 (*c* = 0.50, CHCl₃).

2.21 Synthesis of benzyl (2*S*,3*S*)-5-(2-chlorophenyl)-3-methyl-3-(trifluoromethyl)3,4-dihydro-2*H*-pyrrole-2-carboxylate (**3bc**).

The reaction of alkene **1a** (49.6mg, 0.2 mmol) and glycine ketoimino ester **2c** (131.6 mg, 0.4 mmol), after a flash column chromatography (hexanes: AcOEt = 5:1) afforded the product **3bc** as a white solid (75.1 mg, 95% yield) with >20:1 dr and 95% *ee*. ¹H NMR (500 MHz, CDCl₃) δ 7.71-7.69 (m, 1H), 7.41-7.28 (m, 8H), 5.24 (q, *J* = 12.2 Hz, 2H), 5.12 (s, 1H), 3.54-3.50 (m, 1H), 3.15-3.11 (m, 1H), 1.24 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -76.90. ¹³C NMR (126 MHz, CDCl₃) δ 174.95, 168.91, 135.14, 133.23, 132.71, 131.57, 130.91, 130.37, 128.65, 128.62, 128.56, 127.97 (q, *J*_{C-F} = 281.6 Hz), 127.04, 76.51, 67.25, 50.86 (q, *J* = 26.1 Hz), 47.77 (d, *J* = 1.4 Hz), 16.73 (d, *J* = 2.4 Hz). ESI-MS calculated for C₂₀H₁₈ClF₃NO₂: m/z (%): 396.0973 (M+H⁺), found: 396.0980. **15**/**98**

Enantiomeric excess was determined by HPLC with a Chiralpak IC column (hexanes: 2-propanol = 90:10, 0.8 mL/min, 254 nm); major enantiomer tr = 8.2 min, minor enantiomer tr = 9.6 min. $[\alpha]_D^{25} = +86.5$ (*c* = 0.50, CHCl₃).

2.22 Synthesis of benzyl (2*S*,3*S*)-3-methyl-5-(naphthalen-2-yl)-3-(trifluoromethyl)3,4-dihydro-2*H*-pyrrole-2-carboxylate (3cc).

The reaction of alkene **1a** (52.8 mg, 0.2 mmol) and glycine ketoimino ester **2a** (131.6 mg, 0.4 mmol), after a flash column chromatography (hexanes: AcOEt = 5:1) afforded the product **3cc** as a white solid (68.2 mg, 83% yield) with >20:1 dr and 96% *ee*. mp: 96-97 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.18 (s, 1H), 8.11 (d, *J* = 8.6 Hz, 1H), 7.91-7.86 (m, 3H), 7.59-7.51 (m, 2H), 7.43-7.34 (m, 5H), 5.28 (s, 2H), 5.25 (s, 1H), 3.60-3.56 m, 1H), 3.16-3.11 (m, 1H), 1.30 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -76.73. ¹³C NMR (101 MHz, CDCl₃) δ 173.36, 169.43, 135.20, 134.79, 132.73, 130.38, 128.89, 128.76, 128.53, 128.53, 128.42, 128.37, 128.12 (q, *J*_{C-F} = 281.5 Hz), 127.78, 127.62, 126.63, 124.31, 77.39, 67.07, 50.25 (q, *J* = 26.2 Hz), 44.99, 17.13 (d, *J* = 2.8 Hz). ESI-MS calculated for C₂₄H₂₀F₃NNaO₂: m/z (%): 434.1338 (M+Na⁺), found: 434.1338. Enantiomeric excess was determined by HPLC with a Chiralpak IC column (hexanes: 2-propanol = 85:15, 0.8 mL/min, 254 nm); major enantiomer tr = 8.2 min, minor enantiomer tr = 25.5 min. [α]_D²⁵ = +52.1 (*c* = 0.50, CHCl₃).

2.23 Synthesis of benzyl (2S,3S)-5-(4-(methoxycarbonyl)phenyl)-3-methyl-3-(trifluoromethyl)-3,4-dihydro-2*H*-pyrrole-2-carboxylate (**3dc**).

The reaction of alkene **1a** (54.4 mg, 0.2 mmol) and glycine ketoimino ester **2a** (131.6 **16/98**

mg, 0.4 mmol), after a flash column chromatography (hexanes: AcOEt = 5:1) afforded the product **3dc** as a white solid (72.9 mg, 87% yield) with >20:1 dr and 97% *ee.* mp: 68-69 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, J = 8.5 Hz, 2H), 7.91 (d, J = 8.5 Hz, 2H), 7.41-7.33 (m, 5H), 5.25 (s, 1H), 5.19 (s, 1H), 3.94 (s, 3H), 3.47-3.42 (m, 1H), 3.02-2.98 (m, 1H), 1.24 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -76.90 (d, J = 3.3 Hz). ¹³C NMR (101 MHz, CDCl₃) δ 172.76, 169.09, 166.32, 136.62, 135.06, 132.57, 129.74, 128.54, 128.47, 128.42 (q, J_{C-F} = 281.9 Hz), 127.91, 126.88, 77.43, 67.16, 52.29, 50.25 (q, J = 26.3 Hz), 44.99 (d, J = 2.0 Hz), 17.03. ESI-MS calculated for C₂₂H₂₀F₃NNaO₄: m/z (%): 442.1237 (M+Na⁺), found: 442.1237. Enantiomeric excess was determined by HPLC with a Chiralpak IC column (hexanes: 2-propanol = 85:15, 0.8 mL/min, 254 nm); major enantiomer tr = 16.5 min, minor enantiomer tr = 21.6 min. [α]_D²⁵ = +40.1 (c = 0.50, CHCl₃).

2.24 Synthesis of methyl (2*S*,3*S*)-5-(4-chlorophenyl)-2-((diphenylmethylene)amino)-3-methyl-5-oxo-3-(trifluoromethyl)pentanoate (5).

The reaction of alkene **1a** (49.6 mg, 0.2 mmol) and glycine ketoimino ester **2a** (101.2 mg, 0.4 mmol), after a flash column chromatography (hexanes: AcOEt = 10:1) afforded the product **5** as a colorless ropy liquid (78.2 mg, 78% yield) with >20:1 dr and 90% *ee*. ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, *J* = 8.6 Hz, 2H), 7.63-7.61 (m, 2H), 7.48-7.46 (m, 3H), 7.42-7.39 (m, 3H), 7.35-7.31 (m, 2H), 7.11-7.09 (m, 2H), 4.64 (s, 1H), 3.78 (d, *J* = 16.0 Hz, 1H), 3.55 (s, 3H), 3.42 (d, *J* = 16.0 Hz, 1H), 1.52 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -72.29. ¹³C NMR (101 MHz, CDCl₃) δ 196.15, 171.94, 170.17, 139.36, 139.18, 136.38, 135.96, 130.69, 129.67, 128.89, 128.86, 128.75 (q, *J*_{C-F} = 283.6 Hz), 128.74, 128.57, 128.05, 127.32, 65.98, 51.87, 48.59 (q, *J* = 22.8 Hz), 37.89, 16.79 (d, *J* = 2.6 Hz). ESI-MS calculated for C₂₇H₂₃ClF₃NNaO₃: m/z (%): 524.1211 (M+Na⁺), found: 524.1204. Enantiomeric excess was determined by HPLC with a **17**/**98**

Chiralpak IC column (hexanes: 2-propanol = 95:5, 0.8 mL/min, 254 nm); minor enantiomer tr = 6.6 min, major enantiomer tr = 8.4 min. $[\alpha]_D^{25} = +10.2$ (c = 0.50, CHCl₃).

2.25 Synthesis of methyl (2*S*,3*S*)-2-benzyl-5-(4-chlorophenyl)-3-methyl-3-(trifluoro methyl)-3,4-dihydro-2*H*-pyrrole-2-carboxylate (**6**).

The reaction of alkene 3aa (63.8 mg, 0.2 mmol) and BrBn (51.3 mg, 0.3 mmol) in DMF (4 mL) under the NaH (12 mg, 0.3 mmol) was stired at room tempreture. Then the reaction was determined by TLC analysis. After the 3aa was consumed completely, the reaction mixture was quenched by the addition of NH₄Cl aq. and diluted with EtOAc. The organic layer was separated, and the aqueous layer was extracted twice with EtOAc. The combined organic layers were dried over Na₂SO₄, filtered, concentrated. Then the crude product was then purified by flash column chromatography on silica gel (hexanes: AcOEt = 10:1) afforded the product 6 as a colorless ropy liquid (62.2 mg, 76% yield) with 90% ee. ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, J = 8.5 Hz, 2H), 7.43-7.41 (m, 2H), 7.39-7.36 (m, 2H), 7.28-7.19 (m, 3H), 3.59 (s, 3H), 3.47-3.42 (m, 2H), 2.97 (d, J = 13.3 Hz, 1H), 2.85 (d, J = 16.7 Hz, 1H), 1.51 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -72.34. ¹³C NMR (126 MHz, CDCl₃) δ 170.93, 170.19, 137.57, 136.34, 131.79, 131.01, 129.69 (q, *J*_{C-F} = 281.4 Hz), 129.18, 128.84, 127.86, 126.62, 83.71, 55.50 (q, J = 24.6 Hz), 52.29, 43.73, 40.47, 17.20 (d, J = 2.8 Hz). ESI-MS calculated for $C_{21}H_{19}ClF_3NNaO_2$: m/z (%): 432.0949 (M+Na⁺), found: 432.0952. Enantiomeric excess was determined by HPLC with a Chiralpak ASH column (hexanes: 2-propanol = 95:5, 0.8 mL/min, 254 nm); major enantiomer tr = 6.1 min, minor enantiomer tr = 6.9 min. $[\alpha]_D^{25} = +124.1$ (*c* = 0.50, CHCl₃).

2.26 Synthesis of methyl (S)-5-(4-chlorophenyl)-3-methyl-3-(trifluoromethyl)-3*H*-pyrrole-2-carboxylate (7).

The solution of compound 3aa (63.8 mg, 0.2 mmol) in toluene (4 mL) was stirred at 75 °C in a sealed tube. Subsequently, DDQ (113.5 mg, 0.5 mmol) added to the above solution. Then the reaction was determined by TLC analysis. After the 3aa was consumed completely, the reaction mixture was quenched by the addition of NaCl aq. and diluted with EtOAc. The organic layer was separated, and the aqueous layer was extracted twice with EtOAc. The combined organic layers were dried over Na₂SO₄, filtered, concentrated. Then the crude product was then purified by flash column chromatography on silica gel (hexanes: AcOEt = 10:1) to afford the desired product 7 as a colorless ropy liquid (52.6 mg, 83% yield) and 90% ee. ¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, J = 8.6 Hz, 2H), 7.40 (d, J = 8.6 Hz, 2H), 6.57 (s, 1H), 3.98 (s, 3H), 1.76 (s, 3H). ^{19}F NMR (376 MHz, CDCl_3) δ -68.45. ^{13}C NMR (126 MHz, CDCl_3) δ 169.07, 160.66, 154.83, 135.59, 130.05, 128.98, 128.05, 124.29 (q, $J_{C-F} = 280.8$ Hz), 122.97 (d, J = 1.8 Hz), 66.39 (q, J = 28.6 Hz), 53.00, 15.41. ESI-MS calculated for C₁₄H₁₁ClF₃NNaO₂: m/z (%): 340.0323 (M+Na⁺), found: 340.0323. Enantiomeric excess was determined by HPLC with a Chiralpak ASH column (hexanes: 2-propanol = 95:5, 0.8 mL/min, 254 nm); major enantiomer tr = 6.6 min, minor enantiomer tr = 8.8min. $[\alpha]_{D}^{25} = -3.5$ (*c* = 0.50, CHCl₃).

2.27 Synthesis of ((2S,3S)-5-(4-chlorophenyl)-3-methyl-3-(trifluoromethyl)-3,4- dihydro-2H-pyrrol-2-yl)methanol (**8**).

The solution of compound **3aa** (63.8 mg, 0.2 mmol) in MeOH (4 mL) was stirred at 25 $^{\circ}$ C in a sealed tube. Subsequently, NaBH₄ (75.6 mg, 2 mmol) added to the above solution. Then the reaction was determined by TLC analysis. After the **3aa** was consumed completely, the reaction mixture was quenched by the addition of NH₄Cl **19/98**

aq. and diluted with EtOAc. The organic layer was separated, and the aqueous layer was extracted twice with EtOAc. The combined organic layers were dried over Na₂SO₄, filtered, concentrated. Then the crude product was then purified by flash column chromatography on silica gel (hexanes: AcOEt = 5:1) afforded the product **8** as a white solid (41.3 mg, 71% yield) with 90% *ee.* mp: 66-67 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.71-7.67 (m, 2H), 7.39-7.36 (m, 2H), 4.42-4.39 (m, 1H), 4.08-4.03 (m, 1H), 3.84-3.78 (m, 1H), 3.37-3.31 (m, 1H), 2.91-2.85 (m, 1H), 1.94 (d, *J* = 37.7 Hz, 1H), 1.35 (s, 3H). ¹⁹F NMR (282 MHz, CDCl₃) δ -77.10. ¹³C NMR (126 MHz, CDCl₃) δ 170.22, 137.36, 131.52, 128.94, 128.80, 128.61 (q, *J*_{C-F} = 281.1 Hz), 75.82, 62.04, 48.84 (q, *J* = 25.1 Hz), 45.41 (d, *J* = 1.9 Hz), 15.78 (d, *J* = 2.8 Hz). ESI-MS calculated for C₁₃H₁₄ClF₃NO: m/z (%): 292.0711 (M+H⁺), found: 292.0714. Enantiomeric excess was determined by HPLC with a Chiralpak ASH column (hexanes: 2-propanol = 95:5, 0.8 mL/min, 254 nm); major enantiomer tr = 18.2 min, minor enantiomer tr = 40.1 min. [α]p²⁵ = +75.5% (*c* = 0.50, CHCl₃).

2.28 Synthesis of ((2S,3S)-5-(4-chlorophenyl)-3-methyl-3-(trifluoromethyl)-3,4- dihydro-2*H*-pyrrol-2-yl)diphenylmethanol (**9a**).

The solution of compound **3aa** (63.8 mg, 0.2 mmol) in THF (4 mL) was stirred at -50 $^{\circ}$ C in a sealed tube. Subsequently, PhLi (0.6 mmol) added to the above solution. Then the reaction was determined by TLC analysis. After the **3aa** was consumed completely, the reaction mixture was quenched by the addition of NH₄Cl aq. and diluted with EtOAc. The organic layer was separated, and the aqueous layer was extracted twice with EtOAc. The combined organic layers were dried over Na₂SO₄, filtered, concentrated. Then the crude product was then purified by flash column chromatography on silica gel (hexanes: AcOEt = 5:1) afforded the product **9a** as a white solid (66.5 mg, 75% yield) with 90% *ee.* mp: 120-121 °C. ¹H NMR (400 MHz,

CDCl₃) δ 7.68-7.63 (m, 6H), 7.35-7.29 (m, 6H), 7.21-7.16 (m, 2H), 5.82 (d, J = 2.1 Hz, 1H), 3.38 (d, J = 17.7 Hz, 1H), 2.98-2.93 (m, 1H), 2.38 (s, 1H), 1.04 (s, 3H). ¹⁹F NMR (282 MHz, CDCl₃) δ -78.42. ¹³C NMR (126 MHz, CDCl₃) δ 171.42, 147.95, 144.38, 137.30, 131.57, 129.15, 129.11 (q, $J_{C-F} = 280.8$ Hz), 128.74, 128.17, 128.17, 126.60, 126.46, 125.54, 125.23, 80.38, 78.70, 50.60 (q, J = 23.9 Hz), 46.33 (d, J = 2.0 Hz), 17.40 (d, J = 2.9 Hz). ESI-MS calculated for C₂₅H₂₂ClF₃NO: m/z (%): 444.1337 (M+H⁺), found: 444.1348. Enantiomeric excess was determined by HPLC with a Chiralpak OJH column (hexanes: 2-propanol = 95:5, 0.8 mL/min, 254 nm); major enantiomer tr = 20.8 min, minor enantiomer tr = 12.1 min. [α] ρ ²⁵ = -10.7 (c = 0.50, CHCl₃).

2.29 Synthesis of ((2*S*,3*S*)-3-methyl-5-(4-(methylthio)phenyl)-3-(trifluoromethyl)-3,4dihydro-2*H*-pyrrol-2-yl)diphenylmethanol (**9b**).

The solution of compound **3aa** (66.2 mg, 0.2 mmol) in THF (4 mL) was stirred at -50 °C in a sealed tube. Subsequently, PhLi (0.6 mmol) added to the above solution. Then the reaction was determined by TLC analysis. After the **3aa** was consumed completely, the reaction mixture was quenched by the addition of NH₄Cl aq. and diluted with EtOAc. The organic layer was separated, and the aqueous layer was extracted twice with EtOAc. The combined organic layers were dried over Na₂SO₄, filtered, concentrated. Then the crude product was then purified by flash column chromatography on silica gel (hexanes: AcOEt = 5:1) afforded the product **9b** as a white solid (77.4 mg, 85% yield) with 96% *ee*. mp: 61-62 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.70-7.64 (m, 6H), 7.34-7.31 (m, 4H), 7.21 (d, *J* = 8.3 Hz, 4H), 5.84 (s, 1H), 3.42-3.39 (m, 1H), 2.97 (d, *J* = 17.7 Hz, 1H), 2.48 (s, 1H), 2.43-2.42 (m, 1H), 1.06 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -78.27 (d, *J* = 3.2 Hz). ¹³C NMR (126 MHz, CDCl₃) δ 171.87, 148.12, 144.46, 142.92, 129.60, 128.76 (q, *J*_{C-F} = 280.7 Hz), 128.15, 128.12,

127.88, 126.52, 126.35, 125.55, 125.44, 125.25, 80.35, 78.57, 50.48 (q, J = 24.0 Hz), 46.30, 17.43, 15.06. MS (EI): m/z (%) = 455 (M⁺, 0.43), 183 (100); HRMS calculated for [C₂₆H₂₄NOF₃S]⁺: 455.1531 found: 455.1527. Enantiomeric excess was determined by HPLC with a Chiralpak IF column (hexanes: 2-propanol = 95:5, 0.8 mL/min, 210 nm); major enantiomer tr = 7.1 min, minor enantiomer tr = 8.1 min. [α]_D²⁵ = -80.7 (c = 0.50, CHCl₃).

2.30 Synthesis of ((2*S*,3*S*)-3-methyl-5-(4-(methylthio)phenyl)-3-(trifluoromethyl)pyrrolidin-2-yl)diphenylmethanol (**10**).

The solution of compound **9b** (45.5 mg, 0.1 mmol) in EtOH/AcOH (10:1, 2 mL) was stirred at rt in a sealed tube. Subsequently, NaBCNH₃ (0.6 mmol) added to the above solution. Then the reaction was determined by TLC analysis. After the 9b was consumed completely, the reaction mixture was quenched by the addition of NaHCO₃ aq. and diluted with EtOAc. The organic layer was separated, and the aqueous layer was extracted twice with EtOAc. The combined organic layers were dried over Na₂SO₄, filtered, concentrated. Then the crude product was then purified by flash column chromatography on silica gel (hexanes: AcOEt = 5:1) afforded the product 10 as a ropy liquid (42.5 mg, 93% total yield) with 94% ee. ¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, J = 7.5 Hz, 4H), 7.24-7.07 (m, 10H), 4.87 (s, 1H), 4.76 (s, 1H), 4.32-4.26 (m, 1H), 2.44-2.39 (m, 1H), 2.42 (s, 3H), 2.09 (s, 1H), 1.68-1.62 (m, 1H), 0.95 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -74.38. ¹³C NMR (126 MHz, CDCl₃) δ 149.19, 143.28, 139.13, 137.60, 129.60 (q, $J_{C-F} = 283.5$ Hz), 128.62, 127.83, 126.86, 126.85, 126.51, 126.44, 125.40, 124.97, 78.34, 63.95, 57.65, 50.50 (q, *J* = 23.6 Hz), 46.26, 17.96, 15.99. ESI-MS calculated for C₂₆H₂₇F₃NOS: m/z (%): 458.1760 (M+H⁺), found: 458.1762. Enantiomeric excess was determined by HPLC with a Chiralpak ASH column (hexanes: 2-propanol = 95:5, 0.8 mL/min, 210 nm); major enantiomer tr = 10.2 min, minor

enantiomer tr = 9.1 min. $[\alpha]_D^{25}$ = -33.4 (*c* = 0.50, CHCl₃).

3. X-ray crystallographic analysis of 3ga, 5, 9b

4. References

(1) (a) Ellman, J. A. *Tetrahedron* 1999, 55, 8883. (b) Ellman, J. A. *Org. Lett.* 2003, 5, 545. (c) Zhang, Z.-M.; Chen, P.; Li, W.; Niu, Y.; Zhao, X.-L.; Zhang, J. *Angew. Chem. Int. Ed.* 2014, 53, 4350.

(2) (a) Kawai, H.; Okusu, S.; Tokunaga, E.; Sato, H.; Shiro, M.; Shibata, N. Angew. *Chem. Int. Ed.* 2012, *51*, 4959. (b) Kawai, H.; Yuan, Z.; Kitayama, T.; Tokunaga, E.;
Shibata, N. Angew. Chem. Int. Ed. 2013, *52*, 5575.

5. ¹H , ¹⁹F, ³¹P, ¹³C NMR and HPLC Spectra

88 86 84 82 80 78 76 74 72 70 68 66 64 62 60 58 56 54 52 50 48 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 08 06 04 02 00 -02 -04 -06 fl(opm)

---76.9586

10 0 -10 -20 -30 -40 -50 -60 -70 -60 -90 -100 -110 -120 -130 -140 -150 -160 -110 -180 -190 -200 -210 f1 (geal

 -5.0
 -5.0
 -5.0
 10.00
 11.00
 12.00
 13.00
 14.00

 Integration Results

 No.
 Peak Name
 Retention Time
 Area
 Height
 Relative Area
 Relative Height
 Amount

 min
 mAU"min
 mAU
 %
 %
 n.a.

NO.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount
		min	mAU*min	mAU	%	%	n.a.
1		10.407	8.534	20.576	49.74	50.62	n.a.
2		11.540	8.623	20.070	50.26	49.38	n.a.
Total:			17.157	40.646	100.00	100.00	

T, 7.8 9.4 9.0 8.6 8.2 -0.2 7.0 7.4 6.6 6.2 4.6 fl (ppm) 1.0 0.6 0.2 5.8 5.4 5.0 4,2 2.6 2.2 1.8

No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount
		min	mAU*min	mAU	%	%	n.a.
1		7.810	68.898	153.939	98.78	98.82	n.a.
2		13.293	0.850	1.832	1.22	1.18	n.a.
Total:			69.748	155.771	100.00	100.00	

INO.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount
		min	mAU*min	mAU	%	%	n.a.
1		8.887	45.406	93.530	50.01	57.03	n.a.
2		18.040	45.393	70.478	49.99	42.97	n.a.
Total:			90.799	164.008	100.00	100.00	

-172.7612 -163.0865 -163.0865 -163.0865 -133.6165 -133.6165 -133.6165 -133.6165 -133.6167 -133.6167 -133.6167 -133.6167 -17.4342 -17.1312 -17.4342 -17.1312

INO.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount
		min	mAU*min	mAU	%	%	n.a.
1		6.583	23.215	60.647	49.37	50.82	n.a.
2		8.377	23.811	58.698	50.63	49.18	n.a.
Total:			47.026	119.345	100.00	100.00	

No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount
		min	mAU*min	mAU	%	%	n.a.
1		6.613	614.367	2284.670	49.99	54.16	n.a.
2		8.717	614.516	1933.898	50.01	45.84	n.a.
Total:			1228.883	4218.568	100.00	100.00	

20							- 1		
-20	10.0 15.0	20.0 2	5.0 30.0 Time (m	35.0 inl	40.0	45.0	50.0		
Integration Results									
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount		
		min	mAU*min	mAU	%	%	n.a.		
1		18.317	167.194	229.861	50.28	82.47	n.a.		
2		39.763	165.345	48.854	49.72	17.53	n.a.		
Total:			332.539	278.715	100.00	100.00			

∠Ph `Ph

9a^{HÓ}

No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount
		min	mAU*min	mAU	%	%	n.a.
1		7.090	7.945	18.681	1.72	1.87	n.a.
2		8.067	455.046	980.911	98.28	98.13	n.a.
Total:			462.991	999.592	100.00	100.00	

То	otal:			31.538	82.608	100.00	100.00	
_								
C	nroma	atogram						
	1550-	🚦 lb-5 20160616 #445 [ma	anipulated]	LB-4-75-3 P1 SH	OU ASH 9505		UV_VIS_1 WVL:210	nm
	1400-	- - -						
	1200-	-						
nAU]	1000-	- - -			MeS	*	Me V···CF ₃	
rbance [r	800-	- - - -				N H	Ph	
Abso	600 -	- - -	12 - 10.1	63		10	HO	
	400 -	- - -						
	200-							
	-15-		1 - 9.133					
	-15-	7.50 8.75	10.00	11.25 Time [m	12.50 in]	13.75	15.00	16.00
In	tegra	tion Results						
No). F	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount

meg	ation results							
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount	
		min	mAU*min	mAU	%	%	n.a.	
1		9.133	10.559	17.077	3.16	2.72	n.a.	
2		10.163	323.655	609.706	96.84	97.28	n.a.	
Total:			334.214	626.784	100.00	100.00		