Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2017

Supporting Information

Copper-catalyzed oxidative dehydrogenative coupling of carboxylic acids with H-phosphonates: an efficient and practical approach to acyl phosphate esters

Hong Fu,^a Tao Yang,^a Jia-Qi Shang,^a Jia-Li Zhou,^a Meng Sun,^b Ya-Min Li*a

^a Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R.

China. E-mail: liym@kmust.edu.cn.

^b Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China.

1. General information	S2
2. Screening of the reaction conditions	S3
3. General procedure for oxidative dehydrogenative coupling	S4
4. Characterization of products	S4
5. Charts of products	S10

1. General Information

¹H NMR, ¹³C NMR and ³¹P NMR spectra were recorded on Bruker AVANCE DRX 500 (500 MHz for ¹H; 126 MHz for ¹³C; 202 MHz for ³¹P) and Bruker AVANCE III HD 600 (600 MHz for ¹H; 151 MHz for ¹³C; 243 MHz for ³¹P) instruments internally referenced to tetramethylsilane (TMS) signal. Chemical shifts (δ) and coupling constants (*J*) were expressed in ppm and Hz, respectively. CDCl₃ was used as the NMR solvent in all cases. Mass spectra were mearsured using Thermo LTQ Orbitrap XL spectrometer. IR spectra were recorded on a Bruker Tensor 27 FT-IR spectrometer and only major peaks are reported in cm⁻¹. The starting materials were purchased from Aldrich, Acros Organics, TCI or J&K Chemicals and used without further purification. Column chromatography was carried out on silica gel (particle size 200-300 mesh ASTM).

2. Screening of the reaction conditions

34^f

35

36

Cu₂O

 Cu_2O

OCH + H-POEt <u>catalyst/oxidant</u> OEt <u>solvent</u>	Ort +	O H=P_OEt OEt	catalyst/oxidant solvent	
--	-------	---------------------	-----------------------------	--

Table S1. Reaction conditions screening^a

	1a	2a	3a	
Entry	Catalyst	Oxidant (equiv)	Solvent	Yield ^b (%)
1	CuBr ₂	TBHP (3.0)	CH ₃ CN	47
2	CuCl ₂	TBHP (3.0)	CH ₃ CN	47
3	$Cu(OAc)_2$	TBHP (3.0)	CH ₃ CN	19
4	Cu ₂ O	TBHP (3.0)	CH ₃ CN	56
5	CuCl	TBHP (3.0)	CH ₃ CN	40
6	CuBr	TBHP (3.0)	CH ₃ CN	43
7	CuI	TBHP (3.0)	CH ₃ CN	50
8	Cu ₂ O	$K_2S_2O_8(3.0)$	CH ₃ CN	trace
9	Cu ₂ O	BQ (3.0)	CH ₃ CN	39
10	Cu ₂ O	DTBP (3.0)	CH ₃ CN	16
11	Cu ₂ O	DCP (3.0)	CH ₃ CN	67
12	Cu ₂ O	DCP (4.0)	CH ₃ CN	82
13	Cu ₂ O	DCP (5.0)	CH ₃ CN	71
14	Cu ₂ O	DCP (3.0)	THF	0
15	Cu ₂ O	DCP (3.0)	toluene	trace
16	Cu ₂ O	DCP (3.0)	DMF	19
17	Cu ₂ O	DCP (3.0)	dioxane	0
18	AgNO ₃	DCP (4.0)	CH ₃ CN	0
19	Ag ₂ CO ₃	DCP (4.0)	CH ₃ CN	0
20	Ag ₂ O	DCP (4.0)	CH ₃ CN	0
21	FeCl ₂	DCP (4.0)	CH ₃ CN	0
22	FeBr ₂	DCP (4.0)	CH ₃ CN	0
23	$Fe(OAc)_2$	DCP (4.0)	CH ₃ CN	0
24	FeCl ₃	DCP (4.0)	CH ₃ CN	0
25	CoCl ₂	DCP (4.0)	CH ₃ CN	0
26	$Co(acac)_2$	DCP (4.0)	CH ₃ CN	0
27	$Co(acac)_3$	DCP (4.0)	CH ₃ CN	0
28	NiCl ₂	DCP (4.0)	CH ₃ CN	0
29	NiI ₂	DCP (4.0)	CH ₃ CN	0
30	NiCl ₂ (PPh ₃) ₂	DCP (4.0)	CH ₃ CN	0
31 ^c	Cu ₂ O	DCP (4.0)	CH ₃ CN	50
32^d	Cu ₂ O	DCP (4.0)	CH ₃ CN	54
33 ^e	Cu ₂ O	DCP (4.0)	CH ₃ CN	81

^{*a*} Reaction conditions: **1a** (0.5 mmol), **2a** (1.5 mmol), 10 mol% catalyst, and oxidant in solvent (5.0 mL) at 70 °C for 12 h under air atmosphere. ^{*b*} Isolated yield. ^{*c*} 60 °C. ^{*d*} 80 °C. ^{*e*} Under Ar atmosphere. ^{*f*} Under O₂ atmosphere.

CH₃CN

CH₃CN

 $\mathrm{CH}_3\mathrm{CN}$

72

0

0

DCP (4.0)

DCP (4.0)

3. General procedure for oxidative dehydrogenative coupling

In a Schlenk tube, carboxylic acid 1 (0.5 mmol), H-phosphonate 2 (1.5 mmol), Cu₂O (0.05 mmol), DCP (2.0 mmol) and CH₃CN (5.0 mL) were added. The mixture was allowed to stir at 70 °C for 12 h under air atmosphere. Upon completion as shown by TLC, the reaction mixture was cooled to room temperature and diluted with CH₃CN (5.0 mL), then filtering through a bed of Celite. The filtered reaction mixture was concentrated by rotary evaporation and purified by flash chromatography on silica gel with petroleum ether/EtOAc as the eluent to give the product **3**.

4. Characterization of products

Purified by column chromatography (petroleum ether : ethyl acetate = 2 : 1). Colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 8.06 (d, *J* = 7.3 Hz, 2H), 7.65 (t, *J* = 7.5 Hz, 1H), 7.49 (t, *J* = 7.8 Hz, 2H), 4.49–4.27 (m, 4H), 1.43 (td, *J* = 7.1, 0.7 Hz, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 160.8 (d, *J* = 8.3 Hz), 134.4, 130.4, 128.6, 128.0 (d, *J* = 8.2 Hz), 65.1 (d, *J* = 5.8 Hz), 15.9 (d, *J* = 6.8 Hz). ³¹P NMR (243 MHz, CDCl₃) δ -7.84. IR (film) *v* 2306, 1747, 1641, 1425, 1265, 1030, 746 cm⁻¹. HRMS (ESI) calcd. for C₁₁H₁₅O₅P (M + Na)⁺, 281.0549; found 281.0552.

Purified by column chromatography (petroleum ether : ethyl acetate = 2 : 1). Colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 7.99 (d, *J* = 7.4 Hz, 1H), 7.49 (t, *J* = 6.9 Hz, 1H), 7.30 (d, *J* = 7.0 Hz, 2H), 4.51–4.25 (m, 4H), 2.65 (s, 3H), 1.42 (t, *J* = 6.6 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 160.8 (d, *J* = 8.2 Hz), 142.6, 133.7, 132.1, 131.7, 126.61 (d, *J* = 7.8 Hz), 125.9, 65.1 (d, *J* = 5.8 Hz), 21.9, 16.01 (d, *J* = 6.8 Hz). ³¹P NMR (243 MHz, CDCl₃) δ -7.77. IR (film) *v* 2686, 2306, 1747, 1642, 1428, 1266, 1031, 741 cm⁻¹. HRMS (ESI) calcd. for C₁₂H₁₇O₅P (M + Na)⁺, 295.0706; found 295.0711.

Purified by column chromatography (petroleum ether : ethyl acetate = 2 : 1). Colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.99 (td, *J* = 7.7, 1.7 Hz, 1H), 7.70–7.57 (m, 1H), 7.30–7.22 (m, 1H), 7.20–7.17 (m, 1H), 4.46–4.28 (m, 4H), 1.42 (td, *J* = 7.0, 0.8 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 162.6 (d, *J* = 263.2 Hz), 158.3 (dd, *J* = 8.1, 3.8 Hz), 136.3 (d, *J* = 9.3 Hz), 133.0, 124.3 (d, *J* = 3.9 Hz), 117.3 (d, *J* = 22.1 Hz), 116.7 (t, *J* = 8.5 Hz), 65.5 (d, *J* = 5.9 Hz), 16.0 (d, *J* = 6.9 Hz). ³¹P NMR (202 MHz, CDCl₃) δ -8.50. IR (film) *v* 1752, 1615, 1456, 1286, 1241, 1030, 876, 820, 747 cm⁻¹. HRMS (ESI) calcd. for C₁₁H₁₄FO₅P (M + Na)⁺, 299.0455; found 299.0456.

Purified by column chromatography (petroleum ether : ethyl acetate = 2 : 1). Colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 8.04 (d, *J* = 7.9 Hz, 1H), 7.66 (t, *J* = 7.8 Hz, 1H), 7.36 (t, *J* = 7.7 Hz, 1H), 7.16 (d, *J* = 8.1 Hz, 1H), 4.44–4.26 (m, 4H), 2.37 (s, 3H), 1.40 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 169.4, 158.2 (d, *J* = 8.1 Hz), 151.7, 135.5, 132.5, 126.2, 124.3, 121.2 (d, *J* = 8.6 Hz), 65.3 (d, *J* = 5.8 Hz), 20.9, 16.0 (d, *J* = 6.8 Hz). ³¹P NMR (202 MHz, CDCl₃) δ -8.27. IR (film) *v* 1668, 1612, 1483, 1298, 1205, 1038, 758, 530 cm⁻¹. HRMS (ESI) calcd. for C₁₃H₁₇O₇P (M + Na)⁺, 317.0785; found 317.0784.

Purified by column chromatography (petroleum ether : ethyl acetate = 2 : 1). Colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 7.87–7.85 (m, 2H), 7.45 (d, *J* = 7.6 Hz, 1H), 7.37 (t, *J* = 7.6 Hz, 1H), 4.46–4.31 (m, 4H), 2.42 (s, 3H), 1.42 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 161.1 (d, *J* = 8.4 Hz), 138.6, 135.3, 131.1, 128.6, 128.0 (d, *J* = 8.4 Hz), 127.8, 65.2 (d, *J* = 5.6 Hz), 21.1, 16.1 (d, *J* = 6.7 Hz). ³¹P NMR (243 MHz, CDCl₃) δ -7.71. IR (film) *v* 2351, 2027, 1640, 1462, 1400, 1268, 1186, 1035, 751 cm⁻¹. HRMS (ESI) calcd. for C₁₂H₁₇O₅P (M + Na)⁺, 295.0706; found 295.0710.

Purified by column chromatography (petroleum ether : ethyl acetate = 2 : 1). Colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 8.28 (s, 1H), 8.03 (d, *J* = 7.8 Hz, 1H), 7.86 (d, *J* = 7.8 Hz, 1H), 7.60 (d, *J* = 7.3 Hz, 2H), 7.56 (t, *J* = 7.8 Hz, 1H), 7.47 (t, *J* = 7.7 Hz, 2H), 7.40 (t, *J* = 7.4 Hz, 1H), 4.47–4.32 (m, 4H), 1.43 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 161.0 (d, *J* = 8.3 Hz), 142.0 (s), 139.5 (s), 133.1 (s), 129.3 (s), 129.2 (s), 129.2 (s), 129.0 (s), 128.7 (d, *J* = 8.1 Hz), 128.0 (s), 127.1 (s), 65.3 (d, *J* = 5.7 Hz), 16.1 (d, *J* = 6.8 Hz). ³¹P NMR (243 MHz, CDCl₃) δ -7.70. IR (film): *v* 1673, 1462, 1310, 1245, 1033, 814, 742, 694 cm⁻¹. HRMS (ESI) calcd. for C₁₇H₁₉O₅P (M + Na)⁺, 335.1043; found 335.1038.

Purified by column chromatography (petroleum ether : ethyl acetate = 2 : 1). Colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.94 (d, *J* = 8.2 Hz, 2H), 7.28 (d, *J* = 8.0 Hz, 2H), 4.45–4.27 (m, 4H), 2.44 (s, 3H), 1.42 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 161.0 (d, *J* = 8.3 Hz), 145.6, 130.6, 129.4, 125.3 (d, *J* = 8.3 Hz), 65.2 (d, *J* =

5.8 Hz), 21.7, 16.0 (d, J = 6.8 Hz). ³¹P NMR (202 MHz, CDCl₃) δ -7.67. IR (film) v 1746, 1645, 1616, 1456, 1397, 1259, 1171, 1035, 868, 748 cm⁻¹. HRMS (ESI) calcd. for C₁₂H₁₇O₅P (M + Na)⁺, 295.0706; found 295.0710.

Purified by column chromatography (petroleum ether : ethyl acetate = 2 : 1). Colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 8.01 (d, *J* = 8.9 Hz, 2H), 6.95 (d, *J* = 8.9 Hz, 2H), 4.44–4.29 (m, 4H), 3.89 (s, 3H), 1.42 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 164.6, 160.6 (d, *J* = 7.4 Hz), 132.9, 120.2 (d, *J* = 8.9 Hz), 114.0, 65.1 (d, *J* = 5.7 Hz), 55.5, 16.0 (d, *J* = 6.8 Hz). ³¹P NMR (243 MHz, CDCl₃) δ -7.62. IR (film) *v* 2306, 2642, 1514, 1459, 1423, 1265, 1167, 1030, 741 cm⁻¹. HRMS (ESI) calcd. for C₁₂H₁₇O₆P (M + Na)⁺, 311.0655; found 311.0658.

Purified by column chromatography (petroleum ether : ethyl acetate = 1 : 1). Colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.94–7.88 (m, 2H), 7.67–7.60 (m, 2H), 4.46–4.27 (m, 4H), 1.42 (td, *J* = 7.1, 1.0 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 160.3 (d, *J* = 8.2 Hz), 132.1, 131.9, 129.8, 127.0 (d, *J* = 8.5 Hz), 65.3 (d, *J* = 5.8 Hz), 16.0 (d, *J* = 6.8 Hz). ³¹P NMR (202 MHz, CDCl₃) δ -7.82. IR (film) *v* 1747, 1653, 1589, 1400, 1258,1031, 1006, 752 cm⁻¹. HRMS (ESI) calcd. for C₁₁H₁₄BrO₅P (M + Na)⁺, 358.9654; found 358.9652.

Purified by column chromatography (petroleum ether : ethyl acetate = 2 : 1). Colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.68 (d, *J* = 8.2 Hz, 1H), 7.44 (s, 1H), 6.87 (d, *J* = 8.2 Hz, 1H), 6.09 (s, 2H), 4.38–4.33 (m, 4H), 1.42 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 160.2 (d, *J* = 8.2 Hz), 153.0, 148.0, 127.1, 121.8 (d, *J* = 8.4 Hz), 110.0, 108.2, 102.1, 65.2 (d, *J* = 5.8 Hz), 16.0 (d, *J* = 6.8 Hz). ³¹P NMR (202 MHz, CDCl₃) δ -7.75. IR (film) *v* 2306, 1740, 1445, 1265, 1154, 1030, 918, 741 cm⁻¹. HRMS (ESI) calcd. for C₁₂H₁₅O₅P (M + Na)⁺, 325.0448; found 325.0450.

Purified by column chromatography (petroleum ether : ethyl acetate = 3 : 1). Colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 6.88 (s, 2H), 4.41–4.25 (m, 4H), 2.39 (s, 6H), 2.29 (s, 3H), 1.39 (td, *J* = 7.1, 0.9 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 163.8 (d, *J* = 9.1 Hz), 140.8, 136.3, 128.8, 128.3, 65.2 (d, *J* = 5.8 Hz), 21.1, 20.2, 16.0 (d, *J* = 6.9 MHz, CDCl₃) δ 163.8 (d, *J* = 9.1 Hz), 140.8, 136.3, 128.8, 128.3, 65.2 (d, *J* = 5.8 Hz), 21.1, 20.2, 16.0 (d, *J* = 6.9 MHz), 140.8, 136.3, 128.8, 128.3, 65.2 (d, *J* = 5.8 Hz), 21.1, 20.2, 16.0 (d, *J* = 6.9 MHz), 140.8, 136.3, 128.8, 128.3, 65.2 (d, *J* = 5.8 Hz), 21.1, 20.2, 16.0 (d, *J* = 6.9 MHz), 140.8, 136.3, 128.8, 128.3, 65.2 (d, *J* = 5.8 Hz), 21.1, 20.2, 16.0 (d, *J* = 6.9 MHz), 140.8, 136.3, 128.8, 128.3, 65.2 (d, *J* = 5.8 Hz), 21.1, 20.2, 16.0 (d, *J* = 6.9 MHz), 140.8, 136.3, 128.8, 128.3, 65.2 (d, *J* = 5.8 Hz), 21.1, 20.2, 16.0 (d, *J* = 6.9 MHz), 140.8, 136.3, 128.8, 128.3, 65.2 (d, *J* = 5.8 Hz), 21.1, 20.2, 16.0 (d, *J* = 6.9 Mz), 140.8, 136.3, 128.8, 128.3, 65.2 (d, *J* = 5.8 Hz), 21.1, 20.2, 16.0 (d, *J* = 6.9 Mz), 21.1, 20.2, 16.0 (d, J = 6.9 Mz)

Hz). ³¹P NMR (202 MHz, CDCl₃) δ -8.30. IR (film) *v* 2026, 1639, 1458, 1394, 1234, 1163, 1036 cm⁻¹. HRMS (ESI) calcd. for C₁₄H₂₁O₅P (M + Na)⁺, 323.1019; found 321.1018.

Purified by column chromatography (petroleum ether : ethyl acetate = 1 : 1). Colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 9.06 (d, *J* = 8.7 Hz, 1H), 8.33 (d, *J* = 7.3 Hz, 1H), 8.10 (d, *J* = 8.1 Hz, 1H), 7.90 (d, *J* = 8.1 Hz, 1H), 7.66 (t, *J* = 7.7 Hz, 1H), 7.57 (t, *J* = 7.4 Hz, 1H), 7.52 (t, *J* = 7.7 Hz, 1H), 4.5–4.27 (m, 4H), 1.44 (t, *J* = 7.0 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 160.9 (d, *J* = 8.1 Hz), 135.6, 133.8, 132.5, 131.7, 128.7, 128.7, 126.6, 125.4, 124.3, 123.9 (d, *J* = 8.1 Hz), 65.2 (d, *J* = 5.7 Hz), 16.1 (d, *J* = 6.8 Hz). ³¹P NMR (202 MHz, CDCl₃) δ -7.73. IR (film) *v* 1740, 1669, 1513, 1264, 1235, 1036, 963, 775, 739 cm⁻¹. HRMS (ESI) calcd. for C₁₅H₁₇O₅P (M + Na)⁺, 331.0706; found 331.0707.

Purified by column chromatography (petroleum ether : ethyl acetate = 2 : 1). Colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 8.11 (d, *J* = 0.6 Hz, 1H), 7.49 (s, 1H), 6.83–6.73 (m, 1H), 4.47–4.23 (m, 4H), 1.41 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 156.6 (d, *J* = 7.6 Hz), 149.7, 144.5, 117.9 (d, *J* = 9.8 Hz), 109.9, 65.2 (d, *J* = 5.8 Hz), 16.0 (d, *J* = 6.8 Hz). ³¹P NMR (243 MHz, CDCl₃) δ -8.34. IR (film) *v* 2306, 1425, 1265, 1163, 1038, 949, 741 cm⁻¹. HRMS (ESI) calcd. for C₉H₁₃O₆P (M + Na)⁺, 271.0342; found 271.0349.

Purified by column chromatography (petroleum ether : ethyl acetate = 1 : 1). Colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.90 (d, *J* = 3.4 Hz, 1H), 7.72 (d, *J* = 4.8 Hz, 1H), 7.17 (t, *J* = 4.3 Hz, 1H), 4.49–4.28 (m, 4H), 1.42 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 156.0 (d, *J* = 7.5 Hz), 136.1, 135.2, 131.5 (d, *J* = 9.9 Hz), 128.3, 65.4 (d, *J* = 5.9 Hz), 16.0 (d, *J* = 6.8 Hz). ³¹P NMR (202 MHz, CDCl₃) δ -8.52. IR (film) *v* 2026, 1740, 1642, 1408, 1164, 1039, 731 cm⁻¹. HRMS (ESI) calcd. for C₉H₁₃O₅PS (M + Na)⁺, 287.0114; found 287.0116.

Purified by column chromatography (petroleum ether : ethyl acetate = 2 : 1). Colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 8.24 (dd, *J* = 3.0, 1.2 Hz, 1H), 7.55 (dd, *J* = 5.1, 1.1 Hz, 1H), 7.37 (dd, *J* = 5.1, 3.0 Hz, 1H), 4.41–4.30 (m, 1H), 1.41 (td, *J* = 7.1, 1.0 Hz, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 156.3 (d, *J* = 8.0 Hz), 135.8, 131.5 (d, *J* = 9.1

Hz), 128.2, 126.9, 65.2 (d, J = 5.7 Hz), 16.0 (d, J = 6.8 Hz). ³¹P NMR (243 MHz, CDCl₃) δ -8.06. IR (film) v 1746, 1641, 1520, 1398, 1242, 1034, 924, 747 cm⁻¹. HRMS (ESI) calcd. for C₉H₁₃O₅PS (M + Na)⁺, 287.0114; found 287.0118.

Purified by column chromatography (petroleum ether : ethyl acetate = 2 : 1). Colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.79 (d, *J* = 15.9 Hz, 1H), 7.55 (d, *J* = 7.7 Hz, 2H), 7.47–7.39 (m, 3H), 6.42 (dd, *J* = 15.9, 1.9 Hz, 1H), 4.45–4.23 (m, 4H), 1.41 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 160.7 (d, *J* = 8.2 Hz), 149.0, 133.5, 131.3, 129.0, 128.5, 116.0 (d, *J* = 9.1 Hz), 65.1 (d, *J* = 5.8 Hz), 16.0 (d, *J* = 6.8 Hz). ³¹P NMR (202 MHz, CDCl₃) δ -8.00. IR (film) *v* 1737, 1635, 1266, 1139, 1035, 946, 874, 741, 535 cm⁻¹. HRMS (ESI) calcd. for c C₁₃H₁₇O₅P (M + Na)⁺, 307.0706; found 307.0708.

Purified by column chromatography (petroleum ether : ethyl acetate = 2 : 1). Colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 7.36 (dd, *J* = 15.2, 10.2 Hz, 1H), 6.34–6.17 (m, 2H), 5.80–5.70 (m, 1H), 4.39–4.19 (m, 4H), 1.90 (d, *J* = 5.8 Hz, 3H), 1.38 (td, *J* = 7.1, 0.9 Hz, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 161.0 (d, *J* = 8.2 Hz), 149.4, 142.7, 129.4, 116.7 (d, *J* = 9.0 Hz), 65.0 (d, *J* = 5.7 Hz), 18.8, 16.0 (d, *J* = 6.9 Hz). ³¹P NMR (243 MHz, CDCl₃) δ -7.97. IR (film) *v* 1739, 1640, 1282, 1234, 1036, 945, 820 cm⁻¹. HRMS (ESI) calcd. for C₁₀H₁₇O₅P (M + Na)⁺, 271.0706; found 271.0710.

Purified by column chromatography (petroleum ether : ethyl acetate = 1 : 1). Colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.57 (d, *J* = 7.2 Hz, 2H), 7.46 (t, *J* = 7.5 Hz, 1H), 7.38 (t, *J* = 7.5 Hz, 2H), 4.40–4.12 (m, 4H), 1.41 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 132.5 (d, *J* = 2.4 Hz), 130.6, 128.4, 119.3 (d, *J* = 5.6 Hz), 99.1, 98.7, 79.4, 63.1 (d, *J* = 5.5 Hz), 16.0 (d, *J* = 7.0 Hz). ³¹P NMR (202 MHz, CDCl₃) δ -6.01. IR (film) *v* 2187, 1643, 1265, 1163, 1024, 857, 759 cm⁻¹. HRMS (ESI) calcd. for C₁₃H₁₅O₅P (M + Na)⁺, 305.0549; found 305.0552.

Purified by column chromatography (petroleum ether : ethyl acetate = 2 : 1). Colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 8.07 (dd, *J* = 8.4, 1.2 Hz, 2H), 7.69–7.63 (m, 1H), 7.53–7.46 (m, 2H), 4.00 (s, 3H), 3.99 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 160.5 (d, *J* = 8.1 Hz), 134.3, 130.2, 128.4, 127.4 (d, *J* = 8.3 Hz), 55.0 (d, *J* = 5.9 Hz). ³¹P NMR (243 MHz, CDCl₃) δ -5.10. IR (film) *v* 1750, 1454, 1261, 1044, 866, 707, 536 cm⁻¹. HRMS (ESI) calcd. for C₉H₁₁O₅P (M + Na)⁺, 253.0236; found 253.0237.

Purified by column chromatography (petroleum ether : ethyl acetate = 2 : 1). Colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 8.06 (dd, *J* = 8.2, 1.0 Hz, 2H), 7.64 (t, *J* = 7.5 Hz, 1H), 7.49 (t, *J* = 7.8 Hz, 2H), 5.04–4.87 (m, 2H), 1.42 (dd, *J* = 12.9, 6.2 Hz, 12H). ¹³C NMR (151 MHz, CDCl₃) δ 161.0 (d, *J* = 8.5 Hz), 134.3, 130.5, 128.7, 128.4 (d, *J* = 8.4 Hz), 74.3 (d, *J* = 5.9 Hz), 23.7 (d, *J* = 4.6 Hz), 23.4 (d, *J* = 5.4 Hz). ³¹P NMR (243 MHz, CDCl₃) δ -9.78. IR (film) *v* 1748, 1748, 1643, 1458, 1385, 1256, 1013, 710 cm⁻¹. HRMS (ESI) calcd. for C₁₃H₁₉O₅P (M + Na)⁺, 309.0862; found 309.0869.

5. Charts of products

--7.84

--7.71

79.7----

---7.82

S23

S32

76.7----

---6.01

S37

---5.10

