Synthesis of 2,3-Dihydro-1H-phosphindole-1-oxides Via the

t-BuLi-Mediated Rearrangement of Vinylbromide and Phosphine Oxide

Bin Li, Mingkai Zhang, Xulun Huang and Zhenhua Gu*

Department of Chemistry and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China

zhgu@ustc.edu.cn

General Information

Nuclear magnetic resonances were recorded on Bruker-400 MHz instruments. Reference values for residual solvents were taken as δ = 7.26 ppm (CDCl₃) for ¹H NMR; δ = 77.00 ppm (CDCl₃) for ¹³C NMR. All reactions were performed under an inert atmosphere of dry nitrogen in flame-dried glassware, unless otherwise stated. 1,4-Dioxane and tetrahydrofuran were distilled over sodium in the presence of benzophenone under an atmosphere of nitrogen. Toluene, dichloroethane were distilled over calcium hydride under an atmosphere of nitrogen.

Typical procedure for the synthesis of vinyl bromides 8a (Typical procedure A)

A mixture of vinylarene **S1** (0.228 g, 0.50 mmol, 1.0 equiv), NBS (97.9 mg, 0.55 mmol, 1.1 equiv), AIBN (8.2 mg, 0.05 mmol, 0.1 equiv) in 1,2-dichloroethane (10 ml) under N₂ was stirred at 50 °C for 5 hours. After being cooled to room temperature, H₂O (10 ml) was added and the mixture was extracted with DCM three times. The combined organic layer was washed with brine, dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel (PE/EtOAc 1:1) to give the desired product 8a (0.236 g, 88%). ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, *J* = 8.0 Hz, 1H), 7.87-7.81 (m, 2H), 7.74-7.65 (m, 2H), 7.61-7.56 (m, 1H), 7.54-7.52 (m, 1H), 7.51-7.48 (m, 2H), 7.47-7.44 (m, 2H), 7.43-7.38 (m, 2H), 7.37-7.35 (m, 1H), 7.30-7.22 (m, 2H), 7.10-6.99 (m, 2H), 6.74 (t, *J* = 7.4 Hz, 1H), 6.19 (d, *J* = 8.0 Hz, 1H), 3.25-3.11 (m, 1H), 3.04-2.93 (m, 1H), 2.92-2.83 (m, 1H), 2.82-2.75 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 143.8 (d, *J* = 7.1 Hz), 136.0, 134.5 (d, *J* = 2.2 Hz), 134.4 (d, *J* = 103.5 Hz), 133.7, 132.7, 132.2 (d, *J* = 9.7 Hz), 132.0, 131.9, 131.8 (d, *J* = 9.5 Hz), 131.4 (d, *J* = 2.7 Hz), 131.2 (d, *J* = 2.7 Hz), 128.9, 128.8, 128.4, 128.19, 128.17, 128.16,128.0 (d, *J* = 2.8 Hz),127.9, 127.5, 127.44, 127.37, 126.6 (d, *J* = 102.8 Hz),127.0, 126.9, 126.5, 125.7, 34.8, 29.0. ³¹P NMR (162 MHz, CDCl₃) δ +28.1 (s). HRMS (ESI) calcd for C₃₂H₂₅BrOP [M+H]⁺ 535.0826, found 535.0823.

The iodide **8a'** was prepared following the **Typical Procedure A** expect NIS (0.124 g, 0.55 mmol, 1.1 equiv) was used instead of NBS stirred at 50 °C for 12 h. **8a'** (0.180 g, 62%).

¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, *J* = 8.0 Hz, 1H), 7.86 (d, *J* = 8.4 Hz, 2H), 7.74 (d, *J* = 8.0 Hz, 1H), 7.72 (d, *J* = 7.6 Hz, 1H), 7.59 (t, *J* = 7.4 Hz, 1H), 7.53-7.47 (m, 4H), 7.46-7.42 (m, 2H), 7.42-7.37 (m, 2H), 7.37-7.33 (m, 1H), 7.28-7.20 (m, 1H), 7.08-7.00 (m, 2H), 6.70 (t, *J* = 7.6 Hz, 1H), 6.19 (d, *J* = 7.6 Hz, 1H), 3.28-3.15 (m, 1H), 3.14-2.93 (m, 2H), 2.85-2.74 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 147.2 (d, *J* = 6.9 Hz), 140.4 (d, *J* = 4.6 Hz), 135.6, 134.6 (d, *J* = 2.2 Hz), 134.4, 133.4 (d, *J* = 103.1 Hz), 133.2 (d, *J* = 103.3 Hz), 132.4 (d, *J* = 9.7 Hz), 132.0, 131.8, 131.7 (d, *J* = 9.5 Hz), 131.5 (d, *J* = 2.8 Hz), 131.2 (d, *J* = 2.7 Hz), 128.8 (d, *J* = 12.8 Hz), 128.22, 128.20, 128.1, 128.0, 127.9, 127.8, 127.4, 127.3, 127.1, 127.0, 126.9, 126.6, 126.0, 125.9, 105.3, 39.4, 29.5. ³¹P NMR (162 MHz, CDCl₃) δ +30.8 (s). HRMS (ESI) calcd for C₃₂H₂₅IOP [M+H]⁺ 583.0688, found 583.0690.

Compound 8b was prepared following the Typical Procedure A.

The reaction of vinylarene **S2** (0.242 g, 0.50 mmol) afforded **8b** (0.183 g, 65%). ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, *J* = 8.4 Hz, 1H), 7.84 (d, *J* = 8.4 Hz, 2H), 7.66-7.56 (m, 3H), 7.55-7.50 (m, 1H), 7.49-7.45 (m, 1H), 7.44-7.36 (m, 2H), 7.24-7.16 (m, 2H), 7.10-7.00 (m, 4H), 6.76 (t, *J* = 7.2 Hz, 1H), 6.19 (d, *J* = 7.6 Hz, 1H), 3.25-3.11 (m, 1H), 3.08-2.95 (m, 1H), 2.92-2.77 (m, 2H), 2.38 (s, 3H), 2.30 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 143.5 (d, *J* = 7.1 Hz), 141.7 (d, *J* = 2.7 Hz), 141.4 (d, *J* = 2.8 Hz), 135.9, 134.50, 134.48, 134.4, 133.6, 132.2 (d, *J* = 10.0 Hz), 131.9, 131.8, 131.7 (d, *J* = 9.9 Hz), 130.2 (d, *J* = 104.7 Hz), 130.0 (d, *J* = 105.5 Hz), 128.95, 128.92, 128.84, 128.80, 128.7 (d, *J* = 3.3 Hz), 128.6, 128.1, 128.0, 127.9, 127.4, 127.3, 127.2, 127.0, 126.6, 126.4, 126.0, 125.6, 34.8, 28.9, 21.5, 21.4. ³¹P NMR (162 MHz, CDCl₃) δ +28.4 (s). HRMS (ESI) calcd for C₃₄H₂₉BrOP [M+H]⁺ 563.1140, found 563.1133.

Compound **S3** was prepared following the reported literature. ^[1, 2]

The mixture of magnesium turnings (0.80 g, 33.3 mmol, 3.3 equiv), a piece of iodine and small amount of 1-bromo-4-butylbenzene in THF (20 ml) was vigorously stirred under N₂. The flask was heated until the reaction was initiated (the solution become colorless). A solution of 1-bromo-4-butylbenzene (5.80 ml, 30.0 mmol, 3.0 equiv) in THF (30 ml) was added dropwise and stirred for 1 h. The flask was cooled to 0 °C by an ice-bath and diethyl phosphite (1.30 ml, 10.0 mmol, 1.0 equiv) in THF (10 ml) was added over 30 min. After stirring for additional 2 h at room temperature,

the reaction was quenched by the addition of 2 M HCl (20 ml) at 0 °C, and stirred for 15 min. The mixture was filtrated through a celite pad, and the filtrate was extracted with EtOAc three times. The combined organic layer was washed with brine and dried over Na₂SO₄. After evaporation, the residue was purified by flash column chromatography on silica gel (PE/EtOAc 1:1) to afford desired product (1.660 g, 53%). ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, *J* = 478.8 Hz, 1H), 7.63 (d, *J* = 8.0 Hz, 1H), 7.60 (d, *J* = 8.0 Hz, 2H), 7.57 (d, *J* = 8.0 Hz, 1H), 7.29 (dd, *J* = 8.0, 2.0 Hz, 2H), 7.12 (d, *J* = 6.0 Hz, 2H), 2.65 (t, *J* = 7.6 Hz, 2H), 2.58 (t, *J* = 7.6 Hz, 2H), 1.651.50 (m, 4H), 1.40-1.26 (m, 4H), 0.97-0.86 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 147.9 (d, *J* = 2.7 Hz), 146.6, 131.2 (d, *J* = 10.7 Hz), 130.7 (d, *J* = 11.8 Hz), 128.9 (d, *J* = 13.2 Hz), 128.2 (d, *J* = 13.5 Hz), 127.8, 35.6 (d, *J* = 4.6 Hz), 33.2 (d, *J* = 3.1 Hz), 22.3 (d, *J* = 4.0 Hz), 13.8 (d, *J* = 0.7 Hz). ³¹P NMR (162 MHz, CDCl₃) δ +21.8 (s). HRMS (ESI) calcd for C₂₀H₂₈OP [M+H]⁺ 315.1878, found 315.1872.

A mixture of 1-bromonaphthalen-2-yl trifluoromethanesulfonate (1.970 g, 5.50 mmol, 1.05 equiv), bis(4-butylphenyl)phosphine oxide (1.660 g, 5.30 mmol, 1.0 equiv), Pd₂(dba)₃ (0.119 g, 0.13 mmol, 2.5 mol%), 1,3-bis(diphenylphosphino)propane (0.107 g, 0.26 mmol, 5 mol%), and *N*,*N*-diisopropylethylamine (1.40 mL, 7.95 mmol, 1.5 equiv) in toluene (30 mL) under N₂ was stirred at 110 °C overnight. After being cooled to room temperature, the mixture was filtered and concentrated and the residue was purified by flash column chromatography on silica gel (PE/EtOAc 1:1) to give the desired product (1.560 g, 60%).¹H NMR (400 MHz, CDCl₃) δ 8.44-8.36 (m, 1H), 7.86-7.76 (m, 2H), 7.67 (d, *J* = 8.0 Hz, 2H), 7.64 (d, *J* = 8.0 Hz, 2H), 7.61-7.56 (m, 2H), 7.45 (dd, *J* = 11.0, 8.6 Hz, 1H), 7.31-7.28 (m, 2H), 7.28-7.23 (m, 2H), 2.65 (t, *J* = 7.6 Hz, 4H), 1.65-1.55 (m, 4H), 1.40-1.29 (m, 4H), 0.92 (t, *J* = 7.4 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 147.0 (d, *J* = 2.7 Hz), 135.6 (d, *J* = 2.1 Hz), 132.6 (d, *J* = 8.8 Hz), 132.0 (d, *J* = 10.2 Hz), 131.2 (d, *J* = 103.6 Hz), 123.0 (d, *J* = 10.7 Hz), 129.6 (d, *J* = 4.0 Hz), 129.5, 128.57, 128.54, 128.4, 128.1, 128.0, 127.8, 127.3 (d, *J* = 11.3 Hz), 35.5, 33.1, 22.2, 13.8. ³¹P NMR (162 MHz, CDCl₃) δ +31.9 (s). HRMS (ESI) calcd for C₃₀H₃₂BrOPNa [M+Na]⁺ 541.1272, found 541.1258.

The bromide (0.519 g, 1.0 mmol, 1.0 equiv), hydrazone (0.629 g, 2.0 mmol, 2.0 equiv), Pd(OAc)₂ (11.2 mg, 0.05 mmol, 5 mol%), PPh₃ (39.3 mg, 0.15 mmol, 15 mol%), *t*-BuOLi (0.240 g, 3.0 mmol, 3.0 equiv) and 1,4-dioxane (30 mL) were added to a round-bottom flask under nitrogen atmosphere. And the reaction was stirred at 100 °C for 3 h. After being cooled to room temperature, the mixture was filtered through celite and the filtrate was concentrated in vacuo and purified by flash column chromatography on silica gel (PE/EtOAc 1:1) to afford **S3** (0.359 g, 63%).¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, *J* = 8.0 Hz, 1H), 7.80 (d, *J* = 8.4 Hz, 1H), 7.76 (d, *J* = 8.4 Hz, 1H), 7.65 (dd, *J* = 11.2, 8.4 Hz, 2H), 7.53 (d, *J* = 8.4 Hz, 1H), 7.51-7.45 (m, 2H), 7.44 (d, *J* = 7.6 Hz, 1H), 7.34 (t, *J* = 7.8 Hz, 1H), 7.19 (d, *J* = 6.0 Hz, 2H), 6.98-6.87 (m, 4H), 6.76 (t, *J* = 7.4 Hz, 1H), 6.22 (d, *J* = 7.8

Hz, 1H), 6.11 (t, J = 4.4 Hz, 1H), 2.77-2.76 (m, 1H), 2.65-2.54 (m, 3H), 2.44 (t, J = 7.6 Hz, 2H), 2.40-2.29 (m, 1H), 2.24-2.12 (m, 1H), 1.61-1.54 (m, 2H), 1.49-1.42 (m, 2H), 1.37-1.32 (m, 2H), 1.31-1.25 (m, 2H), 0.924 (t, J = 7.2, 3H), 0.919 (t, J = 7.2, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 146.3 (d, J = 2.6 Hz), 146.0 (d, J = 2.6 Hz), 144.6 (d, J = 8.6 Hz), 135.2, 135.0, 134.6 (d, J = 2.0 Hz), 134.4 (d, J = 5.1 Hz), 133.2, 133.1 (d, J = 11.1 Hz), 132.0 (d, J = 9.4 Hz), 131.0 (d, J = 105.3 Hz), 131.1 (d, J = 10.0 Hz), 130.1 (d, J = 104.2 Hz), 130.4, 129.3, 129.1 (d, J = 12.8 Hz), 128.2 (d, J = 12.1 Hz), 127.8 (d, J = 4.1 Hz), 127.7 (d, J = 3.8 Hz), 127.6, 127.2, 127.1, 127.0, 126.5 (d, J = 6.8 Hz), 126.0, 125.6, 35.6, 35.5, 33.2, 27.2, 23.2, 22.3, 13.94, 13.91. ³¹P NMR (162 MHz, CDCl₃) δ +28.8 (s). HRMS (ESI) calcd for C₄₀H₄₂OP [M+H]⁺ 569.2973, found 569.2964.

Compound 8c was prepared following the Typical Procedure A.

The reaction of vinylarene **S3** (0.284 g, 0.50 mmol) afforded **8c** (0.227 g, 70%). ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, *J* = 8.4 Hz, 1H), 7.84 (t, *J* = 8.4 Hz, 2H), 7.60 (d, *J* = 8.0 Hz, 1H), 7.59-7.54 (m, 2H), 7.53-7.47 (m, 1H), 7.46-7.39 (m, 3H), 7.19 (d, *J* = 6.4 Hz, 2H), 7.08-7.00 (m, 4H), 6.75 (t, *J* = 7.0 Hz, 1H), 6.20 (d, *J* = 7.6 Hz, 1H), 3.21-3.10 (m, 1H), 3.03-2.93 (m, 1H), 2.92-2.75 (m, 2H), 2.63 (t, *J* = 7.8 Hz, 2H), 2.56 (t, *J* = 7.8 Hz, 2H), 1.64-1.51 (m, 4H), 1.41-4.26 (m, 4H), 0.932 (t, *J* = 7.2 Hz, 3H), 0.929 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 146.5 (d, *J* = 2.7 Hz), 146.3 (d, *J* = 2.7 Hz), 143.4 (d, *J* = 7.2 Hz), 135.9, 134.5 (d, *J* = 2.2 Hz), 134.4 (d, *J* = 4.7 Hz), 133.6, 132.2 (d, *J* = 10.0 Hz), 131.8 (d, *J* = 11.3 Hz), 131.7 (d, *J* = 9.8 Hz), 130.4 (d, *J* = 105.7 Hz), 130.2 (d, *J* = 105.4 Hz), 129.1, 129.0 (d, *J* = 12.5 Hz), 128.2, 128.1, 128.05, 128.01, 127.9, 127.3 (d, *J* = 12.3 Hz), 127.2, 127.0, 126.9, 126.7, 126.4, 126.0, 125.7, 35.6, 35.5, 34.8, 33.21, 33.18, 29.0, 22.29, 22.27, 13.9. ³¹P NMR (162 MHz, CDCl₃) δ +28.4 (s). HRMS (ESI) calcd for C₄₀H₄₁BrOP [M+H]⁺ 647.2078, found 647.2080.

Compound 8d was prepared following the Typical Procedure A.

The reaction of vinylarene **S4** (0.258 g, 0.50 mmol) and NIS (0.124 g, 0.55 mmol, 1.1 equiv) afforded **8d** (0.161 g, 50%). ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, *J* = 8.0 Hz, 1H), 7.87-7.80 (m, 2H), 7.68-7.60 (m, 2H), 7.57 (t, *J* = 7.4 Hz, 1H), 7.51-7.43 (m, 2H), 7.43-7.35 (m, 2H), 7.09-6.98 (m, 2H), 6.90 (dd, *J* = 8.8, 2.0 Hz, 2H), 6.79-6.66 (m, 3H), 6.18 (d, *J* = 7.6 Hz, 1H), 3.83 (s, 3H), 3.77 (s, 3H), 3.27-3.15 (m, 1H), 3.14-2.96 (m, 2H), 2.85-2.75 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 162.0, 161.8, 146.76 (d, *J* = 7.2 Hz), 140.5 (d, *J* = 4.3 Hz), 135.6, 134.6, 134.5, 134.4, 134.2 (d, *J* = 11.0 Hz), 133.5 (d, *J* = 10.7 Hz), 131.9, 131.8, 129.0, 128.9, 128.3 (d, *J* = 102.1 Hz), 128.1 (d, *J* = 4.6 Hz), 127.4, 127.2, 127.1, 126.9, 126.62, 126.60, 125.5, 125.3, 124.4, 124.2, 113.7 (d, *J* = 13.1 Hz), 113.5 (d, *J* = 13.0 Hz), 105.3, 55.3, 55.2, 39.4, 29.5. ³¹P NMR (162 MHz, CDCl₃) δ +27.6 (s). HRMS (ESI) calcd for C₃₄H₂₉IO₃P [M+H]⁺ 643.0899, found 643.0895.

Compound 8e was prepared following the Typical Procedure A.

The reaction of vinylarene **S5** (0.256 g, 0.50 mmol) afforded **8e** (0.225 g, 76%). ¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, *J* = 8.2 Hz, 1H), 7.86 (d, *J* = 8.8 Hz, 1H), 7.82 (d, *J* = 8.4 Hz, 1H), 7.61-7.52 (m, 2H), 7.46 (t, *J* = 7.6 Hz, 1H), 7.32 (d, *J* = 12.4 Hz, 2H), 7.16 (d, *J* = 12.0 Hz, 2H), 7.13-7.06 (m, 2H), 7.02 (t, *J* = 7.4 Hz, 1H), 6.97 (s, 1H), 6.79 (t, *J* = 7.4 Hz, 1H), 6.22 (d, *J* = 8.0 Hz, 1H), 3.20-3.08 (m, 1H), 3.04-2.93 (m, 1H), 2.91-2.83 (m, 1H), 2.80-2.70 (m, 1H), 2.27 (s, 6H), 2.20 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 143.1 (d, *J* = 7.2 Hz), 137.6 (d, *J* = 12.7 Hz), 137.4 (d, *J* = 12.6 Hz), 135.8, 134.5 (d, *J* = 2.1 Hz), 134.2 (d, *J* = 4.6 Hz), 133.1 (d, *J* = 102.6 Hz), 133.5, 132.8 (d, *J* = 102.3 Hz), 133.2 (d, *J* = 2.8 Hz), 133.0 (d, *J* = 2.8 Hz), 131.8, 131.7, 129.8 (d, *J* = 9.7 Hz), 129.4 (d, *J* = 9.4 Hz), 129.3, 129.0, 128.9, 128.3, 128.1, 128.0, 127.43, 127.38, 127.3, 127.2, 126.9, 126.8, 126.4, 125.9, 125.7, 34.8, 28.8, 21.2, 21.2. ³¹P NMR (162 MHz, CDCl₃) δ +28.5 (s). HRMS (ESI) calcd for C₃₄H₃₃BrOP [M+H]⁺ 591.1453, found 591.1441.

Compound S6 was prepared following the reported literature.^[2]

The bromide (0.407 g, 1.0 mmol, 1.0 equiv), the hydrazone (0.657 g, 2.0 mmol, 2.0 equiv), Pd(OAc)₂ (11.2 mg, 0.05 mmol, 5 mol%), PPh₃ (39.3 mg, 0.15 mmol, 15 mol%), *t*-BuOLi (0.240 g, 3.0 mmol, 3.0 equiv) and 1,4-dioxane (30 mL) were added to a round-bottom flask under nitrogen atmosphere. And the reaction was stirred at 100 °C for 3 h. After being cooled to room temperature, the mixture was filtered through celite and the filtrate was concentrated in vacuo and purified by flash column chromatography on silica gel (PE/EtOAc 1:1) to afford **S6** (0.258 g, 55%). ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, *J* = 8.4 Hz, 1H), 7.83-7.78 (m, 2H), 7.75 (dd, *J* = 12.0, 7.6 Hz, 2H), 7.59-7.50 (m, 3H), 7.49-7.42 (m, 2H), 7.41-7.34 (m, 3H), 7.21 (t, *J* = 7.0 Hz, 1H), 6.04 (t, *J* = 4.4 Hz, 1H), 2.70-2.60 (m, 1H), 2.50-2.39 (m, 1H), 2.38-2.29 (m, 1H), 2.28-2.19 (m, 1H), 2.17 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 145.4 (d, *J* = 8.5 Hz), 134.9, 134.65, 134.62, 134.60, 134.55, 134.53, 134.4, 133.5, 133.4, 133.29, 133.27, 132.618 (d, *J* = 104.3 Hz), 132.624, 132.1, 132.0, 131.9, 131.1, 131.0, 130.7 (d, *J* = 2.8 Hz), 129.2 (d, *J* = 104.1 Hz), 128.9 (d, *J* = 13.1 Hz), 128.7, 128.2, 128.1, 127.9, 127.8, 127.7, 127.6, 127.4, 127.2, 127.1, 126.6, 124.9, 124.2, 22.9, 22.8, 19.6. ³¹P NMR (162 MHz, CDCl₃) δ +28.6 (s). HRMS (ESI) calcd for C₃₃H₂₈OP [M+H]⁺471.1878, found 471.1869.

Compound 8f was prepared following the Typical Procedure A.

The reaction of vinylarene **S6** (0.235 g, 0.50 mmol) afforded **8f** (0.195 g, 71%). ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, *J* = 8.4 Hz, 1H), 7.85 (d, *J* = 8.8 Hz, 2H), 7.73-7.69 (m, 1H), 7.69-7.65 (m, 1H), 7.58 (t, *J* = 7.2 Hz, 1H), 7.55-7.52 (m, 1H), 7.52-7.50 (m, 1H), 7.50-7.47 (m, 2H), 7.47-7.45 (m, 1H), 7.41-7.39 (m, 1H), 7.39-7.37 (m, 1H), 7.37-7.34 (m, 1H), 7.27-7.24 (m, 1H), 7.24-7.21 (m, 1H), 6.91 (d, *J* = 7.6 Hz, 1H), 6.66 (t, *J* = 8.0 Hz, 1H), 6.08 (d, *J* = 8.0 Hz, 1H), 3.03-2.87 (m, 3H), 2.86-2.77 (m, 1H), 2.26 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 144.2, 144.1, 135.8, 134.6 (d, *J* = 2.3 Hz), 134.53, 134.50, 133.48 (d, *J* = 103.3 Hz), 133.31 (d, *J* = 103.1 Hz), 132.26 (d, *J* = 9.7 Hz), 132.0, 131.9, 131.8, 131.7 (d, *J* = 9.5 Hz), 131.4 (d, *J* = 2.7 Hz), 131.1 (d, *J* = 2.7 Hz), 131.1, 129.1, 128.9 (d, *J* = 12.6 Hz), 128.4, 128.2, 128.1, 128.0, 127.8 (d, *J* = 11.9 Hz), 127.43, 127.40, 127.3, 126.70, 126.69, 126.6, 125.5, 124.0, 34.4, 25.0, 19.6. ³¹P NMR (162 MHz, CDCl₃) δ +28.1 (s). HRMS (ESI) calcd for C₃₃H₂₇BrOP [M+H]⁺ 549.0983, found 549.0972.

Compound **S7** was prepared following the reported literature.^[2]

The bromide (0.407 g, 1.0 mmol, 1.0 equiv), the hydrazone (0.657 g, 2.0 mmol, 2.0 equiv), Pd(OAc)₂ (11.2 mg, 0.05 mmol, 5 mol%), PPh₃ (39.3 mg, 0.15 mmol, 15 mol%), *t*-BuOLi (0.240 g, 3.0 mmol, 3.0 equiv) and 1,4-dioxane (30 mL) were added to a round-bottom flask under nitrogen atmosphere. And the reaction was stirred at 100 °C for 3 h. After being cooled to room temperature, the mixture was filtered through celite and the filtrate was concentrated in vacuo and purified by flash column chromatography on silica gel (PE/EtOAc 1:1) to afford **S7** (0.240 g, 52%). ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, *J* = 8.0 Hz, 1H), 7.83 (dd, *J* = 8.8, 2.0 Hz, 1H), 7.79 (d, *J* = 8.8 Hz, 1H), 7.75 (dd, *J* = 11.6, 7.2 Hz, 2H), 7.59-7.54 (m, 2H), 7.54-7.49 (m, 2H), 7.48-7.42 (m, 1H), 7.41-7.33 (m, 3H), 7.23 (d, *J* = 7.6 Hz, 1H), 7.15 (dt, *J* = 7.6, 2.4 Hz, 2H), 6.80 (dd, *J* = 26.0, 7.6 Hz, 2H), 6.03 (t, *J* = 4.4 Hz, 1H), 5.98 (s, 1H), 2.78-2.56 (m, 2H), 2.41-2.28 (m, 1H), 2.23-2.12 (m, 1H), 1.97 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 145.1 (d, *J* = 8.5 Hz), 135.0, 134.7, 134.6, 134.5 (d, *J* = 5.1 Hz), 133.8 (d, *J* = 103.3 Hz), 133.3, 133.2, 133.1, 132.1, 132.0 (d, *J* = 9.1 Hz), 132.03, 131.3, 131.2, 131.1, 130.9 (d, *J* = 2.8 Hz), 129.2 (d, *J* = 103.6 Hz), 129.0, 128.8, 128.1, 128.0, 127.9 (d, *J* = 5.7 Hz), 127.6, 127.5, 127.1 (d, *J* = 12.5 Hz), 127.0 (d, *J* = 11.3 Hz), 126.6, 26.8, 23.4, 21.0. ³¹P NMR (162 MHz, CDCl₃) δ +28.6 (s). HRMS (ESI) calcd for C₃₃H₂₈OP [M+H]⁺ 471.1878, found 471.1875.

Compound 8g was prepared following the Typical Procedure A.

The reaction of vinylarene **S7** (0.235 g, 0.50 mmol) afforded **8g** (0.198 g, 71%). ¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, *J* = 8.4 Hz, 1H), 7.86 (d, *J* = 8.4 Hz, 2H), 7.67 (dd, *J* = 12.0, 7.2 Hz, 2H), 7.59 (t, *J* = 7.4 Hz, 1H), 7.54-7.50 (m, 1H), 7.50-7.47 (m, 3H), 7.46-7.44 (m, 1H), 7.43-7.34 (m, 3H), 7.30-7.23 (m, 2H), 6.97 (d, *J* = 7.6 Hz, 1H), 6.82 (d, *J* = 7.6 Hz, 1H), 5.93 (s, 1H), 3.22-3.10 (m, 1H), 3.04-2.93 (m, 1H), 2.92-2.78 (m, 2H), 1.86 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 144.0 (d, *J* = 7.0 Hz), 135.6, 135.3, 134.5 (d, *J* = 2.2 Hz), 134.34, 134.30, 134.25, 133.0 (d, *J* = 102.9 Hz), 133.2, 132.2 (d, *J* = 9.7 Hz), 131.9 (d, *J* = 11.5 Hz), 131.7 (d, *J* = 9.4 Hz), 131.4 (d, *J* = 2.7 Hz), 131.2 (d, *J* = 2.7 Hz), 130.8, 128.7 (d, *J* = 12.6 Hz), 127.8 (d, *J* = 101.1 Hz), 128.2, 128.14, 128.08, 128.0, 127.8 (d, *J* = 12.0 Hz), 127.5, 127.4, 127.3, 127.0, 126.5, 126.4, 35.0, 28.6, 20.9. ³¹P NMR (162 MHz, CDCl₃) δ +28.2 (s). HRMS (ESI) calcd for C₃₃H₂₇BrOP [M+H]⁺ 549.0983, found 549.0983.

Compound **S8** was prepared following the reported literature ^[2].

The phosphine oxide (0.814 g, 2.0 mmol, 1.0 equiv), hydrazone (1.370 g, 4.0 mmol, 2.0 equiv), Pd(OAc)₂ (22.4 mg, 0.1 mmol, 5 mol%), PPh₃ (78.6 mg, 0.15 mmol, 15 mol%), *t*-BuOLi (0.480 g, 6.0 mmol, 3.0 equiv) and 1,4-dioxane (60 mL) were added to a round-bottom flask under nitrogen atmosphere. The reaction was stirred at 100 °C for 4 h. After being cooled to room temperature, the mixture was filtered through celite and the filtrate was concentrated in vacuo and purified by flash column chromatography on silica gel (PE/EtOAc 1:1) to afford **S8** (0.592 g, 61%). ¹H NMR (400 MHz, CDCl₃) δ 7.88-7.79 (m, 3H), 7.79-7.75 (m, 1H), 7.75-7.71 (m, 1H), 7.59-7.54 (m, 2H), 7.54-7.48 (m, 2H), 7.45-7.41 (m, 1H), 7.41-7.34 (m, 3H), 7.24-7.19 (m, 1H), 7.14-7.08 (m, 2H), 6.68 (s, 1H), 6.05 (t, *J* = 4.4 Hz, 1H), 5.90 (s, 1H), 2.68-2.58 (m, 1H), 2.50-2.40 (m, 1H), 2.39-2.29 (m, 1H), 2.26-2.19 (m, 1H), 2.14 (s, 3H), 1.94 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 145.5 (d, *J* = 8.6 Hz), 134.8, 134.64, 134.59, 134.4, 134.1, 133.8, 133.40, 133.36, 133.3, 133.1, 132.6, 132.1, 132.0 (d, *J* = 9.2 Hz), 131.2, 131.10, 131.06, 130.7 (d, *J* = 2.8 Hz), 130.2, 129.5, 129.0 (d, *J* = 103.7 Hz), 128.9 (d, *J* = 12.6 Hz), 128.0 (d, *J* = 11.8 Hz), 127.84, 127.75, 127.3 (d, *J* = 12.2 Hz), 127.0 (d, *J* = 12.5 Hz), 126.6, 124.8, 23.1, 22.6, 20.9, 19.4. ³¹P NMR (162 MHz, CDCl₃) δ +28.6 (s). HRMS (ESI) calcd for C₃₄H₃₀OP [M+H]⁺ 485.2034, found 485.2037.

Compound 8h was prepared following the Typical Procedure A.

The reaction of vinylarene **S8** (0.242 g, 0.50 mmol) afforded **8h** (0.141 g, 50%). ¹H NMR (400 MHz, CDCl₃) δ 7.88 (dd, *J* = 15.8, 7.8 Hz, 3H), 7.67 (dd, *J* = 11.6, 7.6 Hz, 2H), 7.58 (t, *J* = 7.4 Hz, 1H), 7.55-7.49 (m, 2H), 7.49-7.43 (m, 3H), 7.42-7.34 (m, 3H), 7.29-7.22 (m, 2H), 6.72 (s, 1H), 5.84 (s, 1H),

3.05-2.78 (m, 4H), 2.24 (s, 3H), 1.84 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 144.4 (d, *J* = 7.1 Hz), 135.6, 134.7, 134.6 (d, *J* = 2.2 Hz), 134.5, 134.43, 134.35, 133.7 (d, *J* = 103.6 Hz), 133.0 (d, *J* = 103.0 Hz), 132.2 (d, *J* = 9.7 Hz), 132.1, 131.9, 131.8 (d, *J* = 9.5 Hz), 131.4 (d, *J* = 2.7 Hz), 131.2 (d, *J* = 2.7 Hz), 129.9, 129.0, 128.8 (d, *J* = 12.7 Hz), 128.2, 128.1, 128.0, 127.8 (d, *J* = 12.0 Hz), 127.38, 127.36, 127.2, 127.1, 126.73, 126.72, 126.6, 124.8, 34.6, 24.8, 20.8, 19.5. ³¹P NMR (162 MHz, CDCl₃) δ +28.3 (s). HRMS (ESI) calcd for C₃₄H₂₉BrOP [M+H]⁺ 563.1140, found 563.1141.

Compound 8i was prepared following the Typical Procedure A.

The reaction of vinylarene **S9** (0.242 g, 0.50 mmol) afforded **8i** (0.132 g, 47%). ¹H NMR (400 MHz, CDCl₃) δ 7.88 (t, *J* = 7.8 Hz, 2H), 7.82 (d, *J* = 8.4 Hz, 1H), 7.65 (d, *J* = 7.2 Hz, 1H), 7.62 (d, *J* = 7.4 Hz, 1H), 7.59-7.54 (m, 3H), 7.53-7.50 (m, 1H), 7.50-7.39 (m, 4H), 7.38-7.34 (m, 2H), 7.34-7.27 (m, 2H), 7.11 (t, *J* = 7.6 Hz, 1H), 6.75 (t, *J* = 7.6 Hz, 1H), 6.27 (d, *J* = 7.6 Hz, 1H), 2.77 (d, *J* = 17.0 Hz, 1H), 2.63 (d, *J* = 17.0 Hz, 1H), 1.51 (s, 3H), 1.45 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 143.5 (d, *J* = 7.2 Hz), 141.7, 134.7 (d, *J* = 2.2 Hz), 134.3, 133.5 (d, *J* = 103.1 Hz), 134.0, 133.9, 133.3 (d, *J* = 103.4 Hz), 132.3, 132.2, 132.1, 132.01, 131.97, 131.93, 131.89, 131.87, 131.4 (d, *J* = 2.7 Hz), 131.3 (d, *J* = 2.7 Hz), 129.7, 129.3, 129.0, 128.9, 128.7, 128.6, 128.3, 128.25, 128.18, 128.14, 128.06 (d, *J* = 2.3 Hz), 127.9 (d, *J* = 2.5 Hz), 127.6, 127.43, 127.40, 126.6, 126.4, 126.3, 126.0, 125.8, 123.8, 49.6, 36.3, 29.9, 28.6. ³¹P NMR (162 MHz, CDCl₃) δ +28.6 (s). HRMS (ESI) calcd for C₃₄H₂₉BrOP [M+H]⁺ 563.1140, found 563.1142.

Compound **S10** was prepared following the reported literature.^[2]

A mixture of 1-bromonaphthalen-2-yl trifluoromethanesulfonate (2.130 g, 6.0 mmol, 1.2 equiv), (4-methoxyphenyl)(phenyl)phosphine oxide (1.160 g, 5. 0 mmol, 1.0 equiv), Pd₂(dba)₃ (0.114 g, 0.13 mmol, 2.5 mol%), 1,3-bis(diphenylphosphino)propane (0.103 g, 0.25 mmol, 5 mol%), and *N*,*N*-diisopropylethylamine (1.20 mL, 7.50 mmol, 1.5 equiv) in toluene (30 mL) under N₂ was stirred at 110 °C overnight. After being cooled to room temperature, the mixture was filtered and concentrated and the residue was purified by flash column chromatography on silica gel (PE/EtOAc 1:1) to give the desired product (1.240 g, 58%). ¹H NMR (400 MHz, CDCl₃) δ 8.47-8.34 (m, 1H), 7.85-7.80 (m, 1H), 7.78 (d, *J* = 8.8 Hz, 1H), 7.74 (d, *J* = 7.6 Hz, 1H), 7.71 (d, *J* = 7.6 Hz, 1H), 7.68 (d, *J* = 8.8 Hz, 1H), 7.65 (d, *J* = 8.4 Hz, 1H) 7.62-7.57 (m, 2H), 7.56-7.51 (m, 1H), 7.48-7.38 (m, 3H), 6.97 (d, *J* = 8.4 Hz, 2H), 3.83 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 162.4 (d, *J* = 2.9 Hz), 135.6 (d, *J* = 1.1 Hz), 134.0, 133.9, 133.1, 132.64 (d, *J* = 8.7 Hz), 131.9 (d, *J* = 9.9 Hz), 131.7 (d, *J* = 2.8 Hz), 131.1 (d, *J* = 104.1 Hz), 129.9 (d, *J* = 10.7 Hz), 129.7 (d, *J* = 4.0 Hz), 128.7, 128.5, 128.4, 128.2, 128.1, 127.9, 127.4 (d, *J* = 11.3 Hz), 123.5, 122.4, 114.1 (d, *J* = 13.4 Hz), 55.3. ³¹P NMR (162 MHz, CDCl₃) δ +31.4 (s). HRMS (ESI) calcd for C₂₃H₂₉BrO₂P [M+H]⁺ 437.0306, found 437.0302.

The bromide (0.707 g, 1.60 mmol, 1.0 equiv), hydrazone (1. 0 g, 3.20 mmol, 2.0 equiv), Pd(OAc)₂ (18.0 mg, 0.08 mmol, 5 mol%), PPh₃ (62.9 mg, 0.24 mmol, 15 mol%), t-BuOLi (0.384 g, 4.8 mmol, 3.0 equiv) and 1,4-dioxane (40 mL) were added to a round-bottom flask under nitrogen atmosphere. And the reaction was stirred at 100 °C for 4 h. After being cooled to room temperature, the mixture was filtered through celite and the filtrate was concentrated in vacuo and purified by flash column chromatography on silica gel (PE/EtOAc 1:1) to afford S10 (0.542 g, 77%, d.r. = 1:1). ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, J = 8.0 Hz, 1H), 7.82 (d, J = 2.4 Hz, 0.5H), 7.81-7.78 (m, 1.5H), 7.77-7.73 (m, 1H), 7.73-7.70 (m, 0.5H), 7.70-7.66 (m, 1H), 7.65-7.63 (m, 0.5H), 7.58-7.54 (m, 1H), 7.54-7.51 (m, 1.5H), 7.51-7.49 (m, 0.5H), 7.49-7.46 (m, 1H), 7.46-7.42 (m, 1H), 7.41m7.32 (m, 2H), 7.21 (t, J = 7.0 Hz, 0.5H), 7.11 (td, J = 7.6, 2.8 Hz, 1H), 7.00-6.92 (m, 2H), 6.91-6.86 (m, 1H), 6.81-6.72 (m, 1H), 6.62 (dd, J = 8.4, 2.0 Hz, 1H), 6.22 (t, J = 7.2 Hz, 1H), 6.11 (t, J = 4.6 Hz, 0.5H), 6.06 (t, J = 4.4 Hz, 0.5H), 3.80 (s, 1.5H), 3.69 (s, 1.5H), 2.77-2.55 (m, 2H), 2.42-2.31 (m, 1H), 2.28-2.20 (m, 1H). 13 C NMR (100 MHz, CDCl₃) δ 161.8 (d, J = 2.9 Hz), 161.6 (d, J = 2.9 Hz), 144.8 (d, J 8.5 Hz), 144.6 (d, J = 8.6 Hz), 135.2 (d, J = 10. Hz), 135.0 (d, J = 12.6 Hz), 134.8, 134.6 (d, J = 2.2 Hz), 134.6 (d, J = 2.2 Hz), 134.5 (d, J = 5.2 Hz), 134.3 (d, J = 5.1Hz), 133.7 (d, J = 10.4 Hz), 133.1 (d, J = 104.6 Hz), 133.1 (d, J = 2.3 Hz), 133.0, 132.9, 132.0 (d, J = 9.9 Hz), 131.9, 131.8, 131.1, 130.9, 130.7 (d, J = 2.7 Hz), 129.8 (d, J = 103.7 Hz), 129.7 (d, J = 103.8 Hz), 129.0 (d, J = 5.1 Hz), 128.9 (d, J = 5.3 Hz), 128.4 (d, J = 12.0 Hz), 128.1 (d, J = 11.8 Hz), 127.8, 127.8, 127.7, 127.6, 127.2, 127.14, 127.08, 126.6 (d, J = 2.7 Hz), 126.5, 126.4, 125.9 (d, J = 2.8 Hz), 125.6 (d, J = 2.2 Hz), 125.3, 124.3, 123.7 (d, J = 99.2 Hz), 113.7 (d, J = 12.8 Hz), 113.3 (d, J = 13.1 Hz), 55.2, 55.1, 27.1, 27.1, 23.2. ³¹P NMR (162 MHz, CDCl₃) δ +28.7 (s), 28.5 (s). HRMS (ESI) calcd for C₃₃H₂₈O₂P [M+H]⁺ 487.1827, found 487.1831.

Compound 8j was prepared following the Typical Procedure A.

The reaction of vinylarene **S10** (0.243 g, 0.50 mmol) afforded **8j** (0.187 g, 66%, dr 1:1). ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, *J* = 8.4 Hz, 1H), 7.87-7.79 (m, 2H), 7.74-7.65 (m, 1H), 7.64-7.55 (m, 2H), 7.53-7.49 (m, 1H), 7.49-7.47 (m, 1H), 7.47-7.46 (m, 1H), 7.46-7.43 (m, 1H), 742-7.38 (m, 1H), 7.38 -7.33 (m, 1H), 7.26-7.21 (m, 1H), 7.09-6.99 (m, 2H), 6.88 (dd, *J* = 8.8, 2.2 Hz, 1H), 6.83-6.66 (m, 2H), 6.18 (d, *J* = 7.6 Hz, 1H), 3.82 (s, 1.5H), 3.77 (s, 1.5H), 3.26-3.10 (m, 1H), 3.05-2.93 (m, 1H), 2.92-2.74 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 162.1 (d, *J* = 2.8 Hz), 161.9 (d, *J* = 2.9 Hz), 143.6 (d, *J* = 3.9 Hz), 143.5 (d, *J* = 3.8 Hz), 136.0 (d, *J* = 1.4 Hz), 134.6 (d, *J* = 2.2 Hz), 134.5, 134.4, 134.3, 134.2, 134.1, 133.7, 133.6, 133.3, 133.1, 132.2 (d, *J* = 9.7 Hz), 131.9 (d, *J* = 2.1 Hz), 131.84 (d, *J* = 2.0 Hz), 131.80, 131.7, 131.3 (d, *J* = 2.6 Hz), 131.1 (d, *J* = 2.7 Hz), 128.9 (d, *J* = 4.0 Hz), 128.8 (d, *J* = 4.1 Hz), 128.1, 128.1, 128.0, 127.9, 127.8, 127.4, 127.4, 127.3, 127.1, 126.8, 126.7, 126.5, 126.1, 125.7, 125.1, 124.9, 124.0, 123.8, 113.7, 133.8, 133.7, 133.8, 133.7, 133.8, 133.7, 133.8, 133.7, 133.8, 133.7, 133.8, 133.7, 133.8, 133.7, 133.8, 133.7, 133.8, 133.7, 133.8, 133.7, 133.8, 133.7, 133.8, 133.7, 133.8, 133.1, 134.2, 134.3, 134.2, 134.3, 134.2, 134.3, 134.2, 134.3, 134.3, 134.2, 134.3, 134.3, 134.3, 134.2, 134.3,

113.6, 113.5, 55.3, 55.2, 34.8, 29.0. ³¹P NMR (162 MHz, CDCl₃) δ +27.9 (s), +27.8 (s). HRMS (ESI) calcd for C₃₃H₂₇BrO₂P [M+H]⁺ 565.0932, found 565.0935.

Typical procedure for the intramolecular addition/rearrangement of vinyllithium with phosphine oxides **8** (**Typical procedure B**)

The phosphine oxides **8a** (53.5 mg, 0.10 mmol, 1.0 equiv) was dissolved in THF (3 ml) and cooled to -78 °C under N₂. A solution of *t*-BuLi (1.3 M in hexane, 0.30 ml, 4.0 equiv) was added to the above flask dropwise, and stirred for 10 min. The reaction was quenched by the addition of HOAc (1 ml) at -78 °C. The mixture was allowed to warm to r.t., and concentrated by evaporation under reduced pressure. The residue was purified by flash column chromatography on silica gel (PE/EtOAc 1:1) to give the desired product **9a** (39.6 mg, 84%). ¹H NMR (400 MHz, CDCl₃) δ 8.08 (dd, *J* = 8.0, 3.0 Hz, 2H), 8.01 (dd, *J* = 8.2, 3.0 Hz, 1H), 7.80-7.64 (m, 3H), 7.52-7.41 (m, 2H), 7.32-7.27 (m, 2H), 7.27-7.24 (m, 3H), 7.23-7.16 (m, 1H), 7.15-7.08 (m, 2H), 7.07-7.05 (m, 1H), 7.04-7.00 (m, 1H), 6.99-6.93 (m, 1H), 6.63 (d, *J* = 7.6 Hz, 1H), 5.46 (d, *J* = 21.2 Hz, 1H), 2.89 (ddd, *J* = 13.6, 4.8, 2.4 Hz, 1H), 2.70-2.50 (m, 2H), 1.90-1.69 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 146.1 (d, *J* = 26.0 Hz), 140.8, 139.6 (d, *J* = 5.2 Hz), 136.6, 135.8 (d, *J* = 2.0 Hz), 132.2 (d, *J* = 10.2 Hz), 131.2 (d, *J* = 94.2 Hz), 130.7 (d, *J* = 12.5 Hz), 130.1 (d, *J* = 10.3 Hz), 129.2 (d, *J* = 99.6 Hz), 129.5 (d, *J* = 4.0 Hz), 129.2, 128.3, 128.24, 128.22, 128.0, 127.9, 127.7, 127.4, 127.0 (d, *J* = 2.5 Hz), 126.7, 126.5, 125.7, 125.6, 125.3, 54.2 (d, *J* = 93.5 Hz), 48.6 (d, *J* = 12.3 Hz), 33.0 (d, *J* = 3.0 Hz), 29.1 (d, *J* = 9.0 Hz). ³¹P NMR (162 MHz, CDCl₃) δ +59.3 (s). HRMS (ESI) calcd for C₃₂H₂₆OP [M+H]⁺ 457.1721, found 457.1722.

The reaction of iodide **8a'** (58.2 mg, 0.10 mmol, 1.0 equiv) under identical reaction conditions gave compound **9a** (30.5 mg, 76%).

The compound **9b** was prepared following the **Typical Procedure B**.

The reaction of phosphine oxides **8b** (56.3 mg, 0.10 mmol) afforded **9b** (39.2 mg, 81%). ¹H NMR (400 MHz, CDCl₃) δ 8.07 (dd, *J* = 7.8, 4.4 Hz, 2H), 7.99 (dd, *J* = 8.4, 3.2 Hz, 1H), 7.76-7.69 (m, 2H), 7.68-7.63 (m, 1H), 7.37-7.30 (m, 2H), 7.20-7.12 (m, 2H), 7.11-7.07 (m, 2H), 7.07-7.02 (m, 2H), 6.97 (t, *J* = 8.0 Hz, 1H), 6.94-6.89 (m, 2H), 6.63 (d, *J* = 7.6 Hz, 1H), 5.43 (d, *J* = 20.8 Hz, 1H), 2.87 (dd, *J* = 13.6,

1.6 Hz, 1H), 2.67-2.60 (m, 2H), 2.25 (s, 3H), 2.23 (s, 3H), 1.86-1.72 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 146.0 (d, *J* = 25.8 Hz), 141.9 (d, *J* = 2.9 Hz), 140.9, 136.8, 136.6, 136.5, 136.4, 135.7 (d, *J* = 2.0 Hz), 132.1 (d, *J* = 10.6 Hz), 130.7 (d, *J* = 12.5 Hz), 129.6 (d, *J* = 99.7 Hz),129.9 (d, *J* = 10.1 Hz), 129.4 (d, *J* = 3.9 Hz), 129.2, 129.0 (d, *J* = 2.1 Hz), 128.8, 128.6, 127.9 (d, *J* = 96.8 Hz), 128.2, 127.5, 127.4, 126.7, 126.4, 125.7, 125.6, 125.3, 53.9 (d, *J* = 63.9 Hz), 48.7 (d, *J* = 12.3 Hz), 32.9 (d, *J* = 3.3 Hz), 29.0 (d, *J* = 9.1 Hz), 21.4, 20.8. ³¹P NMR (162 MHz, CDCl₃) δ +59.2 (s). HRMS (ESI) calcd for C₃₄H₃₀OP [M+H]⁺ 485.2034, found 485.2037.

The compound **9c** was prepared following the **Typical Procedure B**.

The reaction of phosphine oxides **8c** (64.8 mg, 0.10 mmol) afforded **9c** (48.9 mg, 86%). ¹H NMR (400 MHz, CDCl₃) δ 8.07 (dd, *J* = 8.0, 2.8 Hz, 2H), 8.00 (dd, *J* = 8.4, 2.8 Hz, 1H), 7.76-7.69 (m, 2H), 7.69-7.64 (m, 1H), 7.38-7.31 (m, 2H), 7.17 (d, *J* = 8.0 Hz, 1H), 7.14 (d, *J* = 8.4 Hz, 1H), 7.09-7.04 (m, 3H), 7. 03-7.00 (m, 1H), 6.96 (d, *J* = 7.6 Hz, 1H), 6.91 (dd, *J* = 8.0, 2.0 Hz, 2H), 6.61 (d, *J* = 7.6 Hz, 1H), 5.42 (d, *J* = 21.2 Hz, 1H), 2.87 (dd, *J* = 13.6, 2.4 Hz, 1H), 2.67-2.60 (m, 2H), 2.53-2.44 (m, 4H), 1.88-1.76 (m, 1H), 1.57-1.50 (m, 2H), 1.49-1.41 (m, 2H), 1.35-1.25 (m, 2H), 1.25-1.17 (m, 2H), 0.88 (t, *J* = 7.4 Hz, 3H), 0.86 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 146.8 (d, *J* = 2.8 Hz), 146.2, 146.0, 141.3 (d, *J* = 2.6 Hz), 140.8, 136.83, 136.78, 136.76, 135.7 (d, *J* = 1.9 Hz), 132.1 (d, *J* = 10.5 Hz), 130.8, 130.6, 129.5 (d, *J* = 99.9 Hz), 129.9 (d, *J* = 10.2 Hz), 129.3 (d, *J* = 3.9 Hz), 129.2, 128.5, 128.2 (d, *J* = 2.1 Hz), 128.1 (d, *J* = 2.5 Hz), 128.0, 127.6, 126.8 (d, *J* = 99.3 Hz), 126.6, 125.7 (d, *J* = 8.3 Hz), 125.6, 125.3, 53.9 (d, *J* = 74.1 Hz), 48.7 (d, *J* = 12.3 Hz), 35.4, 34.9, 33.1, 33.0, 32.8 (d, *J* = 3.2 Hz), 29.1 (d, *J* = 9.0 Hz), 22.4, 22.0, 13.9, 13.8. ³¹P NMR (162 MHz, CDCl₃) δ +59.3 (s). HRMS (ESI) calcd for C₄₀H₄₂OP [M+H]⁺ 569.2973, found 569.2961.

The compound **9d** was prepared following the **Typical Procedure B**.

The reaction of phosphine oxides **8d** (64.2 mg, 0.10 mmol) afforded **9d** (25.8 mg, 50%). ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, *J* = 8.4 Hz, 2H), 7.99 (dd, *J* = 8.0, 3.2 Hz, 1H), 7.76-7.64 (m, 3H), 7.34 (dd, *J* = 8.8, 2.0 Hz, 2H), 7.21-7.13 (m, 2H), 7.10-7.03 (m, 2H), 7.00-6.92 (m, 1H), 6.79 (d, *J* = 8.8 Hz, 2H), 6.63-6.58 (m, 3H), 5.38 (d, *J* = 21.6 Hz, 1H), 3.71 (s, 3H), 3.70 (s, 3H), 2.82 (dd, *J* = 13.6, 2.0 Hz, 1H), 2.67-2.60 (m, 2H), 1.85-1.68 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 162.1 (d, *J* = 2.8 Hz), 158.3 (d, *J* = 2.4 Hz), 146.0, 145.8, 140.9, 136.8, 135.7 (d, *J* = 2.0 Hz), 133.9 (d, *J* = 11.6 Hz), 131.5 (d, *J* = 5.4 Hz), 130.8, 130.7, 130.6 (d, *J* = 3.9 Hz), 130.2, 130.0, 129.9, 129.2, 128.2, 127.6, 127.6, 127.3, 126.8, 126.5, 125.8, 125.7, 125.6, 125.3, 122.7, 121.8, 113.7 (d, *J* = 2.1 Hz), 131.5 (d, *J* = 12.9 Hz), 55.14, 55.07, 53.5 (d, *J* = 2.1 Hz), 131.5 (d, *J* = 12.9 Hz), 55.14, 55.07, 53.5 (d, *J* = 2.1 Hz), 133.9 (d, *J* = 12.9 Hz), 55.14, 55.07, 53.5 (d, *J* = 2.1 Hz), 133.9 (d, *J* = 12.9 Hz), 55.14, 55.07, 53.5 (d, *J* = 2.1 Hz), 133.9 (d, *J* = 12.9 Hz), 55.14, 55.07, 53.5 (d, *J* = 2.1 Hz), 133.9 (d, *J* = 12.9 Hz), 55.14, 55.07, 53.5 (d, *J* = 2.1 Hz), 133.9 (d, *J* = 12.9 Hz), 55.14, 55.07, 53.5 (d, *J* = 2.1 Hz), 133.9 (d, *J* = 12.9 Hz), 55.14, 55.07, 53.5 (d, *J* = 2.1 Hz), 133.9 (d, *J* = 12.9 Hz), 55.14, 55.07, 53.5 (d, *J* = 2.1 Hz), 133.9 (d, *J* = 12.9 Hz), 55.14, 55.07, 53.5 (d, *J* = 2.1 Hz), 133.5 (d, *J* = 12.9 Hz), 55.14, 55.07, 53.5 (d, *J* = 2.1 Hz), 133.5 (d, *J* = 12.9 Hz), 55.14, 55.07, 53.5 (d, *J* = 2.1 Hz), 133.5 (d, *J* = 12.9 Hz), 55.14, 55.07, 53.5 (d, *J* = 2.1 Hz), 133.5 (d, *J* = 12.9 Hz), 55.14, 55.07, 53.5 (d, *J* = 2.1 Hz), 133.5 (d, *J* = 12.9 Hz), 55.14, 55.07, 53.5 (d, *J* = 2.1 Hz), 133.5 (d, *J* = 12.9 Hz), 55.14, 55.07, 53.5 (d, *J* = 2.1 Hz), 55.14, 55.07, 53.5 (d, J = 2.1 Hz),

64.9 Hz), 48.8 (d, J = 12.5 Hz), 32.9, 29.0 (d, J = 9.1 Hz). ³¹P NMR (162 MHz, CDCl₃) δ +58.8 (s). HRMS (ESI) calcd for C₃₄H₃₀O₃P [M+H]⁺517.1932, found 517.1927.

The compound **9e** was prepared following the **Typical Procedure B**.

The reaction of phosphine oxides **8e** (59.2 mg, 0.10 mmol) afforded **9e** (34.4 mg, 67%). ¹H NMR (400 MHz, CDCl₃) δ 8.08 (t, J = 8.4 Hz, 2H), 8.00 (dd, J = 8.2, 3.0 Hz, 1H), 7.77-7.63 (m, 3H), 7.11-7.04 (m, 2H), 7.03 (s, 2H), 6.99 (t, J = 7.6 Hz, 1H), 6.89 (s, 2H), 6.86 (s, 1H), 6.81 (s, 1H), 6.64 (d, J = 7.6 Hz, 1H), 5.44 (d, J = 21.2 Hz, 1H), 2.84 (dd, J = 13.4, 2.6 Hz, 1H), 2.66-2.56 (m, 2H), 2.17 (s, 6H), 2.04 (s, 6H), 1.74-1.70 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 146.2 (d, J = 25.7 Hz), 140.9, 139.6 (d, J = 5.1 Hz), 137.7 (d, J = 12.6 Hz), 137.2 (d, J = 2.3 Hz), 137.17, 135.7 (d, J = 2.0 Hz), 133.3 (d, J = 3.1 Hz), 130.9 (d, J = 93.7 Hz), 130.7 (d, J = 12.4 Hz), 130.2, 129.9 (d, J = 10.1 Hz), 129.7 (d, J = 10.4 Hz), 128.6 (d, J = 107.5 Hz), 128.8 (d, J = 2.5 Hz), 127.6, 127.58, 127.55, 127.4, 126.8, 126.3, 125.7 (d, J = 8.5 Hz), 125.5, 125.1, 54.2 (d, J = 63.1 Hz), 48.7 (d, J = 12.1 Hz), 33.1, 29.1 (d, J = 9.1 Hz), 21.7, 20.8. ³¹P NMR (162 MHz, CDCl₃) δ +59.4 (s). HRMS (ESI) calcd for C₃₆H₃₄OP [M+H]⁺ 513.2347, found 513.2352.

The compound **9f** was prepared following the **Typical Procedure B**.

The reaction of phosphine oxides **8f** (54.9 mg, 0.10 mmol) afforded **9f** (33.5 mg, 69%). ¹H NMR (400 MHz, CDCl₃) δ 8.09-8.03 (m, 2H), 7.99 (dd, *J* = 8.2, 3.0 Hz, 1H), 7.76-7.71 (m, 1H), 7.71-7.67 (m, 1H), 7.67-7.61 (m, 1H), 7.47-7.44 (m, 1H), 7.44-7.41 (m, 1H), 7.37-7.34 (m, 1H), 7.34-7.30 (m, 2H), 7.30-7.27 (m, 1H), 7.26-7.23 (m, 1H), 7.22-7.18 (m, 1H), 7.15 (td, *J* = 7.6, 2.4 Hz, 2H), 6.95 (d, *J* = 7.2 Hz, 1H), 6.86 (t, *J* = 7.6 Hz, 1H), 6.57 (d, *J* = 7.2 Hz, 1H), 5.47 (d, *J* = 20.4 Hz, 1H), 2.84-2.73 (m, 2H), 2.43-2.32 (m, 1H), 2.16 (s, 3H), 1.87-1.76 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 139.5 (d, *J* = 25.2 Hz), 139.5 (d, *J* = 5.1 Hz), 139.0, 136.4, 135.8, 134.0, 132.2 (d, *J* = 10.3 Hz), 131.7, 131.62, 131.59, 130.9, 130.7, 130.0 (d, *J* = 10.0 Hz), 129.4 (d, *J* = 3.8 Hz), 129.2, 129.1 (d, *J* = 99.4 Hz), 128.2, 127.9 (d, *J* = 11.9 Hz), 127.5, 126.9 (d, *J* = 2.5 Hz), 125.7, 125.5 (d, *J* = 8.3 Hz), 125.4, 125.0, 54.1 (d, *J* = 63.9 Hz), 48.9 (d, *J* = 12.1 Hz), 32.5 (d, *J* = 2.7 Hz), 24.4 (d, *J* = 8.8 Hz), 19.5. ³¹P NMR (162 MHz, CDCl₃) δ +58.2 (s). HRMS (ESI) calcd for C₃₃H₂₈OP [M+H]⁺471.1878, found 471.1878.

The compound **9g** was prepared following the **Typical Procedure B**.

The reaction of phosphine oxides **8g** (54.9 mg, 0.10 mmol) afforded **9g** (34.0 mg, 69%). ¹H NMR (400 MHz, CDCl₃) δ 8.09 (s, 1H), 8.07 (s, 1H), 8.04-7.99 (m, 1H), 7.77-7.69 (m, 2H), 7.69-7.65 (m, 1H), 7.44 (s, 1H), 7.42 (s, 1H), 7.33-7.27 (m, 3H), 7.25-7.21 (m, 2H), 7.21-7.15 (m, 1H), 7.15-7.08 (m, 2H), 6.90 (d, *J* = 7.2 Hz, 1H), 6.87 (d, *J* = 7.6 Hz, 1H), 6.42 (s, 1H), 5.43 (d, *J* = 21.2 Hz, 1H), 2.89-2.80 (m, 1H), 2.61-2.53 (m, 2H), 2.08 (s, 3H), 1.88-1.75 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 146.3 (d, *J* = 25.8 Hz), 139.7 (d, *J* = 5.1 Hz), 137.7, 136.4, 135.8, 135.1, 132.3 (d, *J* = 10.2 Hz), 131.7, 131.58, 131.55, 130.8, 130.73, 130.70, 130.1 (d, *J* = 10.3 Hz), 129.6 (d, *J* = 2.9 Hz), 129.2, 129.1 (d, *J* = 99.6 Hz), 128.3, 128.21, 128.18, 128.1, 127.8 (d, *J* = 12.0 Hz), 127.6, 127.0, 126.9 (d, *J* = 2.5 Hz), 126.60, 125.57 (d, *J* = 8.3 Hz), 125.3, 54.4 (d, *J* = 63.6 Hz), 48.5 (d, *J* = 11.8 Hz), 33.2 (d, *J* = 2.8 Hz), 28.6 (d, *J* = 9.0 Hz), 21.2. ³¹P NMR (162 MHz, CDCl₃) δ +59.0 (s). HRMS (ESI) calcd for C₃₃H₂₈OP [M+H]⁺ 471.1878, found 471.1884.

The compound **9h** was prepared following the **Typical Procedure B**.

The reaction of phosphine oxides **8h** (56.3 mg, 0.10 mmol) afforded **9h** (45.0 mg, 90%). ¹H NMR (400 MHz, CDCl₃) δ 8.05 (t, *J* = 8.0 Hz, 2H), 7.99 (dd, *J* = 8.2, 3.0 Hz, 1H), 7.75-7.67 (m, 2H), 7.66-7.60 (m, 1H), 7.44-7.39 (m, 2H), 7.38-7.30 (m, 3H), 7.28-7.22 (m, 2H), 7.28-7.22 (m, 3H), 6.77 (s, 1H), 6.40 (s, 1H), 5.45 (d, *J* = 20.0 Hz, 1H), 2.81-2.65 (m, 2H), 2.39-2.26 (m, 1H), 2.11 (s, 3H), 2.07 (s, 3H), 1.92-1.82 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 147.1 (d, *J* = 25.2 Hz), 139.6 (d, *J* = 4.9 Hz), 136.3, 135.8 (d, *J* = 2.0 Hz), 135.7, 134.3, 133.9, 132.4 (d, *J* = 10.3 Hz), 131.6 (d, *J* = 2.8 Hz), 131.20 (d, *J* = 94.0 Hz), 130.9 (d, *J* = 12.5 Hz), 129.9 (d, *J* = 10.3 Hz), 129.4 (d, *J* = 3.9 Hz), 129.2, 129.1 (d, *J* = 99.4 Hz), 128.9, 128.20, 128.18, 128.16, 127.9, 127.8, 127.4 (d, *J* = 0.5 Hz), 126.8 (d, *J* = 2.5 Hz), 126.5, 125.5, 125.44, 125.42, 54.2 (d, *J* = 64.1 Hz), 49.0 (d, *J* = 11.9 Hz), 32.6 (d, *J* = 2.5 Hz), 24.1 (d, *J* = 8.6 Hz), 21.1, 19.4. ³¹P NMR (162 MHz, CDCl₃) δ +57.8 (s). HRMS (ESI) calcd for C₃₄H₃₀OP [M+H]⁺ 485.2034, found 485.2026.

The compound 9i was prepared following the Typical Procedure B.

The reaction of phosphine oxides 8i (56.3 mg, 0.10 mmol) afforded 9i (41.5 mg, 83%). ¹H NMR

(400 MHz, CDCl₃) δ 8.18 (d, *J* = 6.8 Hz, 1H), 8.08 (d, *J* = 8.0 Hz, 1H), 8.00 (dd, *J* = 8.2, 2.2 Hz, 1H), 7.80-7.72 (m, 2H), 7.68 (t, *J* = 8.0 Hz, 1H), 7.41 (d, *J* = 7.6 Hz, 2H), 7.257.23- (m, 3H), 7.22-7.19 (m, 2H), 7.18-7.10 (m, 3H), 7.10-7.02 (m, 2H), 6.95 (t, *J* = 7.0 Hz, 1H), 6.67 (d, *J* = 7.6 Hz, 1H), 5.86 (d, *J* = 23.6 Hz, 1H), 2.68 (d, *J* = 13.6 Hz, 1H), 2.02 (dd, *J* = 20.4, 14.0 Hz, 1H), 1.66 (s, 3H), 1.04 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 146.5 (d, *J* = 26.7 Hz), 146.2, 141.3 (d, *J* = 5.8 Hz), 135.7, 135.4, 132.1 (d, *J* = 10.2 Hz), 131.3 (d, *J* = 93.7 Hz), 131.4, 130.9, 130.8, 130.0 (d, *J* = 10.0 Hz), 129.2, 129.1, 129.0 (d, *J* = 3.8 Hz), 128.2, 128.1 (d, *J* = 2.2 Hz), 127.8, 127.7, 127.5, 126.6, 126.5 (d, *J* = 2.7 Hz), 125.6 (d, *J* = 8.3 Hz), 125.4, 125.1 (d, *J* = 0.4 Hz), 123.5, 53.8 (d, *J* = 60.5 Hz), 46.5 (d, *J* = 11.2 Hz), 45.3, 37.0 (d, *J* = 9.2 Hz), 29.9, 26.0. ³¹P NMR (162 MHz, CDCl₃) δ +61.2 (s). HRMS (ESI) calcd for C₃₄H₃₀OP [M+H]⁺ 485.2034, found 485.2029.

The compound S12 was prepared following the Typical Procedure A.

The reaction of vinylarene **S11** (0.513 g, 2.0 mmol), NBS (0.392 g, 2.2 mmol, 1.1 equiv) and AIBN (32.8 mg, 0.2 mmol, 0.1 equiv) afforded **S12** (0.604 g, 90%). ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, *J* = 8.0 Hz, 2H), 7.69 (d, *J* = 8.4 Hz, 1H), 7.57 (t, *J* = 7.6 Hz, 1H), 7.49 (t, *J* = 7.4 Hz, 1H), 7.41 (t, *J* = 8.0 Hz, 1H), 7.37 (d, *J* = 6.8 Hz, 1H), 7.21 (d, *J* = 7.2 Hz, 1H), 7.14 (t, *J* = 7.4 Hz, 1H), 6.93 (t, *J* = 7.4 Hz, 1H), 6.44 (d, *J* = 7.6 Hz, 1H), 3.24-3.14 (m, 2H), 3.14-3.06 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 137.3, 136.8, 135.6, 133.7, 133.7, 131.3, 128.4, 128.0, 127.4, 127.3, 127.2, 126.7, 126.3, 125.9, 125.9, 125.6, 125.5, 125.3, 35.1, 29.6. HRMS (EI) calcd for C₂₀H₁₅Br [M]⁺ 334.0357, found 334.0352.

The compound **S12** (0.604 g, 1.8 mmol, 1.0 equiv) was dissolved in THF (10 ml) and cooled to -78 °C under N₂. A solution of *n*-BuLi (2.4 M in hexane, 0.90 ml, 1.2 equiv) was added dropwise to the above solution and maintained at that temperature for 1 h. Subsequently the dichlorophenylphosphine (0.30 ml, 2.2 mmol, 1.2 equiv) in THF (2 ml) was added at -78 °C, and stirred for 30 min. The solution was warmed to room temperature and stirred overnight. The reaction was quenched by the addition of H₂O (5 ml) and extracted with EtOAc three times. The combined organic layer was washed with brine, dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by flash column chromatography on silics gel (PE/EtOAc 1:1) to give the desired product **S13** (0.272 g, 54%), as a pair of diastereoisomers (dr \approx 1:1) . ¹H NMR (400 MHz, CDCl₃) δ 7.98-7.86 (m, 2H), 7.78 (d, *J* = 8.4 Hz, 0.5H), 7.71-7.63 (m, 1H), 7.62-7.54 (m, 1.5H), 7.52-7.44 (m, 2.5H), 7.44-7.37 (m, 3H), 7.36-7.29 (m, 1H), 7.28-7.23 (m, 1H), 7.22-7.16 (m, 2H), 6.96 (t, *J* = 7.4 Hz, 1H), 6.58 (t, *J* = 7.4 Hz, 1H), 6.45 (s, 0.5H), 3.22-2.99 (m, 2H), 2.99-2.76 (m, 1H), 2.67-2.44 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 148.4 (d, *J* = 10.3 Hz), 147.5 (d, *J* = 10.5 Hz), 136.5 (d, *J* = 2.1 Hz), 136.2 (d, *J* = 2.1 Hz), 134.3, 134.2, 134.1, 133.8 (d, *J* = 10.0 Hz), 133.5, 133.4, 132.1, 132.0 (d,

 $J = 2.6 \text{ Hz}, 131.9 \text{ (d, } J = 2.8 \text{ Hz}, 131.6, 130.2, 130.08, 130.06, 129.96, 129.7, 129.4, 129.3, 128.93, 128.90, 128.6, 128.5, 128.4, 128.2, 128.1, 127.8, 127.7, 127.6, 127.5, 127.2, 127.1, 126.8, 126.54, 126.50, 126.2, 125.8, 125.7, 124.7, 27.7, 22.19. ³¹P NMR (162 MHz, CDCl₃) <math>\delta$ +17.1 (s), +16.5 (s). HRMS (ESI) calcd for C₂₆H₂₂OP [M+H]⁺ 381.1408, found 381.1404.

Compound 11 was prepared from S13 following the reported literature.^[3]

Under N₂ a mixture of compound **S13** (76.1 mg, 0.20 mmol, 1.0 equiv) and AgOAc (66.8 mg, 0.40 mmol, 2.0 equiv) in 2 ml DMF under N₂ was stirred at 100 °C for 4 h. The mixture was cooled to room temperature and diluted with EtOAc. The organic layer was washed with brine for three times, dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel (PE/EtOAc 1:1) to give the desired product **11** (45.1 mg, 60%). ¹H NMR (400 MHz, CDCl₃) δ 8.12 (t, *J* = 8.8 Hz, 2H), 8.05 (dd, *J* = 14.2, 7.0 Hz, 1H), 7.97 (d, *J* = 8.0 Hz, 1H), 7.72 (dd, *J* = 12.4, 7.4 Hz, 2H), 7.68-7.59 (m, 2H), 7.53-7.49 (m, 1H), 7.48-7.42 (m, 1H), 7.41-7.36 (t, *J* = 7.1 Hz, 2H), 7.31 (s, 3H), 3.04-2.68 (m, 3H), 2.28-2.12 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 145.3 (d, *J* = 5.3 Hz), 139.8 (d, *J* = 2.2 Hz), 134.5, 133.6 (d, *J* = 7.1 Hz), 133.4 (d, *J* = 2.6 Hz), 133.1 (d, *J* = 12.3 Hz), 132.9 (d, *J* = 8.4 Hz), 131.5, 131.4, 130.5 (d, *J* = 1.7 Hz), 130.4, 129.6 (d, *J* = 6.2 Hz), 129.0 (d, *J* = 12.9 Hz), 128.8, 128.42, 128.37 (s), 128.30, 127.7, 127.4, 127.2, 126.4 (d, *J* = 101.5 Hz), 126.0 (d, *J* = 12.9 Hz), 125.7 (d, *J* = 14.2 Hz), 28.4 (d, *J* = 5.6 Hz), 23.5 (d, *J* = 8.0 Hz). ³¹P NMR (162 MHz, CDCl₃) δ +9.7 (s). HRMS (ESI) calcd for C₂₆H₂₀OP [M+H]⁺ 379.1252, found 379.1247.

Control experiments

a) "Chirality Transfer" Reaction

The "Chirality Transfer" reaction was conducted following the **Typical Procedure B.**

The reaction of phosphine oxides **R-8a** [(53.5 mg, 0.10 mmol, 1.0 equiv), $\begin{bmatrix} \alpha \end{bmatrix}_D^{20}$ -35.05 (c 0.95, CH₂Cl₂). HPLC conditions: Chiralpak IA, isopropanol/hexane = 18:82, flow: 0.8 mL/min, λ = 254 nm] with *t*-BuLi (1.3 M in hexane, 0.30 ml, 4.0 equiv) afforded **9a** (33.6 mg, 72%, 55% ee). $\begin{bmatrix} \alpha \end{bmatrix}_D^{20}$ + 42.82 (c 1.00, CH₂Cl₂). HPLC conditions: Chiralpak IA, isopropanol/hexane = 18:82, flow: 0.8 mL/min, λ = 294 nm.

b) Crossover Studies

The above reaction was conducted following the Typical Procedure B.

The phosphine oxides **8a** (53.5 mg, 0.10 mmol, 1.0 equiv) and 4-bromotoluene (12.3 μ l, 0.1 mmol, 1.0 equiv) was dissolved in THF (3 ml) and cooled to -78 °C under N₂. A solution of *t*-BuLi (1.3 M in hexane, 0.60 ml, 8.0 equiv) was added dropwise at -78 °C and stirred for 10 min at the same temperature. The reaction was quenched by the addition of 1 ml HOAc. The mixture was allowed to warm to room temperature and extracted with EtOAc. The combined organic layer was washed with brine, and dried over Na₂SO₄. After evaporation, the residue was analysed by crude ¹H NMR using CH₂Br₂ as internal standard.

The above reaction was conducted following the Typical Procedure B.

The phosphine oxides **8a** (26.8 mg, 0.050 mmol, 1.0 equiv) and **8e** (29.6 mg, 0.050 mmol, 1.0 equiv) was dissolved in THF (3 ml) and cooled to -78 °C under N₂. A solution of *t*-BuLi (1.3 M in hexane, 0.30 ml, 0.39 mmol) was added and stirred for 10 min at the same temperature. The reaction was quenched by the addition of HOAc (1 ml). The mixture was allowed to warm to room temperature and extracted with EtOAc. The combined organic layer was washed with brine, and dried over Na₂SO₄. After evaporation, the residue was analysed by crude ¹H NMR using CH₂Br₂ as internal standard.

c) Studies on Unsymmetric Phosphine Oxide

The compound **9** was prepared following the **Typical Procedure B.**

The reaction of phosphine oxides **8j** (56.5 mg, 0.10 mmol) afforded **9j** (32.6 mg, 65%), and the structure was confirmed by single crystal X-ray analysis. ¹H NMR (400 MHz, CDCl₃) δ 8.07 (dd, *J* = 8.4, 1.6 Hz, 1H), 8.00 (dd, *J* = 8.2, 3.0 Hz, 1H), 7.76-7.64 (m, 3H), 7.46-7.39 (m, 2H), 7.29-7.23 (m, 3H), 7.22-7.14 (m, 3H), 7.10-7.03 (m, 2H), 7.00-6.94 (m, 1H), 6.67-6.56 (m, 3H), 5.43 (d, *J* = 20.8 Hz, 1H),

3.71 (s, 3H), 2.87 (dd, J = 13.6, 2.4 Hz, 1H), 2.69-2.54 (m, 2H), 1.87-1.72 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 162.1 (d, J = 2.8 Hz), 146.0 (d, J = 25.8 Hz), 136.7, 135.7 (d, J = 2.0 Hz), 134.0 (d, J = 11.6 Hz), 130.7 (d, J = 12.5 Hz), 130.0 (d, J = 10.2 Hz), 129.7 (d, J = 99.3 Hz), 129.5 (d, J = 4.0 Hz), 128.20, 128.18, 127.6, 127.4, 126.9, 126.8, 126.5, 125.7, 125.64, 125.55, 125.3, 122.1 (d, J = 100.3 Hz), 113.6 (d, J = 13.0 Hz), 55.1, 54.2 (d, J = 64.3 Hz), 48.6 (d, J = 12.2 Hz), 32.9 (d, J = 3.1 Hz), 29.1 (d, J = 9.0 Hz). ³¹P NMR (162 MHz, CDCl₃) δ +58.9 (s). HRMS (ESI) calcd for C₃₃H₂₈O₂P [M+H]⁺487.1827, found 487.1833.

d) The reaction quenched with AcOD

The reaction of phosphine oxides **8a** (53.8 mg, 0.10 mmol) afforded **9a**-*d* (33.1 mg, 72%, 70%D) following the **Typical Procedure B**, which was quenched with AcOD instead of AcOH. ¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, *J* = 8.4 Hz, 2H), 8.01 (dd, *J* = 8.0, 3.2 Hz, 1H), 7.78-7.73 (m, 1H), 7.73-7.65 (m, 2H), 7.47-7.42 (m, 2H), 7.31-7.27 (m, 3H), 7.26-7.23 (m, 2H), 7.22-7.17 (m, 1H), 7.14-7.08 (m, 2H), 7.07-7.04 (m, 1H), 7.03-7.00 (m, 1H), 6.96 (td, *J* = 7.4, 1.2 Hz, 1H), 6.62 (d, *J* = 8.0 Hz, 1H), 5.45 (d, *J* = 21.6 Hz, 0.3H), 2.88 (dd, *J* = 13.6, 2.0 Hz, 1H), 2.67-2.59 (m, 2H), 1.86-1.73 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ (selected peaks) 146.1 (d, *J* = 25.7 Hz), 146.0 (d, *J* = 25.8 Hz), 140.77, 140.75, 139.59 (d, *J* = 5.1 Hz), 139.56 (d, *J* = 5.3 Hz), 136.53, 136.48, 135.7 (d, *J* = 2.0 Hz), 132.1 (d, *J* = 10.3 Hz), 131.13 (d, *J* = 104.8 Hz), 131.5 (d, *J* = 2.8 Hz), 130.7 (d, *J* = 1.7 Hz), 130.1 (d, *J* = 10.3 Hz), 129.17 (d, *J* = 100.0 Hz), 129.6 (d, *J* = 3.9 Hz), 129.20, 128.3, 128.21, 128.19, 128.0, 127.8, 127.7, 127.4, 127.3, 126.9 (d, *J* = 2.4 Hz), 126.7, 126.5, 125.64, 125.62, 125.5, 125.2, 54.2 (d, *J* = 63.7 Hz), 54.1 (d, *J* = 63.7 Hz), 48.5 (d, *J* = 12.4 Hz), 33.0 (d, *J* = 2.9 Hz), 29.0 (d, *J* = 9.0 Hz). ³¹P NMR (162 MHz, CDCl₃) δ +59.2 (s). HRMS (ESI) calcd for C₃₂H₂₅DOP [M+H]⁺ 458.1784, found 458.1790.

e) The reaction of 11 with PhLi

The bromobenzene (42 μ l, 0.4 mmol, 2.0 equiv) was dissolved in 2 ml THF and cooled to -78 °C under N₂. And then the solution was added *n*-BuLi (2.4 M in hexane, 0.17 ml, 2.0 equiv) and maintained at that temperature for 1 h. The phosphine oxides 8a (53.5 mg, 0.1 mmol, 1.0 equiv) in THF (2 ml) was added to the above mixture dropwise at -78 °C. The mixture was quenched by the addition of HOAc (1 ml), and analysed by TLC and ¹H NMR.

References

C. A. Busacca, J. C. Lorenz, N. Grinberg, N. Haddad, M. Hrapchak, B. Latli, H. Lee, P. Sabila, A. Saha, M. Sarvestani, S. Shen, R. Varsolona, X. Wei, C. H. Senanayake, *Org. Lett.* 2005, *7* (19), 4277.
J. Feng, B. Li, Y. He, Z, Gu, *Angew. Chem. Int. Ed.* 2016, *55*, 2186

[3] Y. Unoh, K. Hirano, T. Satoh, M. Miura, Angew. Chem. Int. Ed. 2013, 52, 12975

³¹P NMR

³¹P NMR

³¹P NMR

³¹P NMR

S31

³¹P NMR

¹³C NMR

³¹P NMR

³¹P NMR

³¹P NMR

³¹P NMR

¹³C NMR

27.887 27.804

S47

³¹P NMR

³¹P NMR

³¹P NMR

³¹P NMR

³¹P NMR

³¹P NMR

S65

³¹P NMR

³¹P NMR

Data File F:\DATA\LIBIN\DATA\lb-8a-rac(IA,18%,0.8)-2.D Sample Name: lb-8a-rac(IA,18%,0.8)-2

LC1260 4/7/2017 11:28:34 AM 系统

Data File F:\DATA\LIBIN\DATA\lb-8a-ee(IA,18%,0.8)-2.D Sample Name: lb-8a-ee(IA,18%,0.8)-2

LC1260 4/7/2017 11:27:06 AM 系统

Data File F:\DATA\LIBIN\DATA\ZMK-1-151-IA-RAC.D Sample Name: ZMK-1-151-IA-RAC

Sorted By	:	Signal	
Multiplier	:	1.0000	
Dilution	:	1.0000	
Use Multiplier &	Dilution	Factor with	ISTDs

Signal 1: DAD1 B, Sig=294,4 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	19.467	MM	0.5873	2346.81177	66.59821	51.3865
2	32.749	MM	0.9518	2220.17334	38.87541	48.6135
Total	ls :			4566.98511	105.47363	

LC1260 4/6/2017 5:37:08 PM 系统

Data File F:\DATA\LIBIN\DATA\ZMK-1-147-IA-7.D Sample Name: ZMK-1-147-IA-7

==============	
Acq. Operator	: 系统
Injection Date Acq. Method Analysis Method Last changed Additional Info	Location : 1 : 4/1/2017 8:36:52 PM : HECF.M : C:\Chem32\1\Methods\DEF_LC.M : 2/13/2014 11:27:44 PM by SYSTEM : Peak(s) manually integrated
DAD1 B, Sig	294,4 Ref=off (F:\DATA\LIBIN\DATA\ZMK-1-147-IA-7.D)
mAU	
150	
125	00 H 20 10 10 10 10 10 10 10 10 10 10 10 10 10
100	Sa l
75-	
50	
25-	
o - ha	ultural
	10 20 30 40 50 min

Area Percent Report

Sort	ted By		:	Sig	nal		
Mult	tiplier		:	1.0	00C		
Dilu	ution		:	1.0	000		
Use	Multiplier	&	Dilution	Factor	with	ISTDs	

Signal 1: DAD1 B, Sig=294,4 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	19.466	BB	0.5299	3773.41406	108.44649	22.7233
2	32.150	BB	0.9817	1.28325e4	190.53664	77.2767
Tota	ls :			1.66059e4	298.98312	

*** End of Report ***

LC1260 4/6/2017 8:37:17 PM **系**统