Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2017

Supporting Information

A direct metal-free C2-H functionalization of quinoline *N*-oxides: highly selective amination and alkylation strategy towards 2-substituted quinolines

Wen-Zhu Bi,^a Kai Sun,^a Chen Qu,^b Xiao-Lan Chen,^{*a} Ling-Bo Qu,^{*ac} Shao-Hua Zhu,^a Xu Li,^d Hai-Tao Wu,^a Li-Kun Duan^a and Yu-Fen Zhao^{*ae}

^a College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450052, China. Fax: 86 371 67767051; Tel: 86 371 67767051; E-mail: chenxl@zzu.edu.cn.

^b Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States.

^c Luoyang Institute of Science and Technology, Luoyang, 471023, China.

^dInstitute of Chemistry Co. Ltd. Henan Academy of Sciences, Zhengzhou, 450002, China

^e Department of Chemistry, Xiamen University, Xiamen, 361005, China.

Correspondence to: Xiao-Lan Chen, chenxl@zzu.edu.cn

Table of Contents

1.	General information	S2
2.	General experimental procedures for the synthesis of 2-substituted quinolines	S2
3.	General experimental procedures for the 0.5 gram scale products	
4.	Characterization data for products (3a-3av)	
5.	Characterization data for products (5a-5v)	815-821
6.	¹ H NMR, ¹³ C NMR and ¹⁹ F NMR copies of products (3a-3av)	821-867
7.	¹ H NMR and ¹³ C NMR copies of products (5a-5v)	S68-S89
8.	¹ H NMR copies of the 0.5 gram scale products	

1. General information

All the chemicals were obtained from Tianjin Kermel Chemical Reagent Co., Ltd. and used as received. All reactions were monitored by TLC and Silica gel was purchased from Qing Dao Hai Yang Chemical Industry Co. ¹H, ¹³C, ¹⁹F spectra were recorded on a Bruker Avance 400 MHz spectrometer operating at 400.1, 100.6, and 376.4 MHz, respectively. NMR spectra were recorded in CDCl₃ or DMSO-d6 at room temperature (20 ± 2 °C). High resolution mass spectra (HRMS) of the products were obtained on a Bruker Daltonics micro TOF-QII spectrometer.

2. General experimental procedures for the synthesis of 2-substituted quinolines

Quinoline *N*-oxide **1** (0.058 g, 0.4 mmol), diethyl *H*-phosphonates (0.110 g, 0.8 mmol), CCl_4 (0.5 mL), K_2CO_3 (0.110 g, 0.8 mmol) in DMF (2 mL) and amines **2** (0.4 mmol) or active methylene compounds **4** (0.4 mmol) were stirred at room temperature for 3 h. The mixture was quenched with water (5 mL), extracted with CH_2Cl_2 (3 × 5 mL). The combined organic layers were washed with brine (15 mL) and dried over anhydrous Na₂SO₄. After filtration, the solvent was evaporated in vacuo. The crude product was purified by silica gel chromatography (petroleum ether : ethyl acetate = 5:1) to give the desired products.

3. General experimental procedures for the 0.5 gram scale products

Quinoline *N*-oxide **1** (0.580 g, 4.0 mmol), diethyl *H*-phosphonates (1.102 g, 8.0 mmol), CCl₄ (5 mL), K₂CO₃ (1.102 g, 8.0 mmol) in DMF (20 mL) and amines **2** (4.0 mmol) or active methylene compounds **4** (4.0 mmol) were stirred at room temperature for 3 h. The mixture was quenched with water (25 mL), extracted with CH₂Cl₂ (3 × 25 mL). The combined organic layers were washed with brine (25 mL) and dried over anhydrous Na₂SO₄. After filtration, the solvent was evaporated in vacuo. The crude product was purified by silica gel chromatography (petroleum ether : ethyl acetate = 5:1) to give the desired products. ¹H NMR copies of the 0.5 gram scale products were provided in pages S90-S93.

4. Characterization data for products (3a-3av)

N-propylquinolin-2-amine (3a)

Yellow oil, yield: 83%. ¹H NMR (400 MHz, CDCl₃) δ : 1.02 (t, *J* =7.6 Hz, 3H, 3'-H), 1.69 (m, 2H, 2'-H), 3.43 (m, 2H, 1'-H), 4.85 (br,1H, -N<u>H</u>-), 6.63 (d, *J* = 8.8 Hz, 1H, 3-H), 7.19 (m, 1H, 6-H), 7.51 (m,1H, 7-H), 7.57 (m, 1H, 5-H), 7.67 (d, *J* = 8.4 Hz, 1H, 8-H), 7.81 (d, *J* = 8.8 Hz, 1H, 4-H). ¹³C NMR (100 MHz, CDCl₃) δ : 11.6 (3'-C), 23.0 (2'-C), 43.7 (1'-C), 110.9 (3-C), 121.9 (10-C), 123.3 (6-C), 125.9 (8-C), 127.4 (5-C), 129.6 (7-C), 137.4 (4-C), 148.0 (9-C), 157.1 (2-C). HRMS Calcd for C₁₂H₁₄N₂ [M + H]⁺: m/z 187.1230, Found 187.1234.

N-butylquinolin-2-amine (3b)

Yellow oil, yield: 82%. ¹H NMR (400 MHz, CDCl₃) δ : 0.97 (t, *J* =7.6 Hz, 3H, 4'-H), 1.46 (m, 2H, 3'-H), 1.66 (m, 2H, 2'-H), 3.46 (m, 2H, 1'-H), 5.12 (br, 1H, -N<u>H</u>-), 6.65 (d, *J* = 8.8 Hz, 1H, 3-H), 7.18 (m, 1H, 6-H), 7.20 (m, 1H, 7-H), 7.51 (m, 1H, 5-H), 7.54 (d, *J* = 6.4 Hz, 1H, 8-H), 7.83 (d, *J* = 8.8 Hz, 1H, 4-H). ¹³C NMR (100 MHz, CDCl₃) δ : 13.9 (4'-C), 20.2 (3'-C), 29.7 (2'-C), 41.7 (1'-C), 110.8 (3-C), 122.1 (10-C), 123.1 (6-C), 125.4 (8-C), 127.5 (5-C), 129.8 (7-C), 137.8 (4-C), 147.2 (9-C), 156.9 (2-C). HRMS Calcd for C₁₃H₁₆N₂ [M + H]⁺: m/z 201.1386, Found 201.1392.

N-isopropylquinolin-2-amine (3c)

Yellow oil, yield: 79%. ¹H NMR (400 MHz, CDCl₃) δ : 1.27 (d, *J* =6.4 Hz, 6H, 2'-H), 4.17 (m, 1H, 1'-H), 5.03 (br, 1H, -N<u>H</u>-), 6.62 (d, *J* = 8.8 Hz, 1H, 3-H), 7.18 (m, 1H, 6-H), 7.21 (m, 1H,7-H), 7.56 (d, *J* = 7.6 Hz, 1H, 5-H), 7.66 (d, *J* = 8.4 Hz, 1H, 8-H), 7.81 (d, *J* = 8.8 Hz, 1H, 4-H). ¹³C NMR (100 MHz, CDCl₃) δ : 23.1 (2'-C), 43.1 (1'-C), 110.1 (3-C), 122.1 (10-C), 123.1 (6-C), 125.4 (8-C), 127.5 (5-C), 129.8 (7-C), 137.8 (4-C), 147.3 (9-C), 156.1 (2-C). HRMS Calcd for C₁₂H₁₄N₂ [M + H]⁺: m/z 187.1230, Found 187.1226.

N-(tert-butyl)quinolin-2-amine (3d)

Yellow oil, yield: 84%. ¹H NMR (400 MHz, CDCl₃) δ : 1.52 (s, 9H, 2'-H), 4.72 (br, 1H, -N<u>H</u>-), 6.58 (d, J = 8.8 Hz, 1H, 3-H), 7.17 (m, 1H, 6-H), 7.51 (m,1H, 7-H), 7.53 (d, J = 8.0 Hz, 1H, 5-H), 7.66 (d, J = 8.4 Hz, 1H, 8-H), 7.73 (d, J = 8.8 Hz, 1H, 4-H). ¹³C NMR (100 MHz, CDCl₃) δ : 29.5 (2'-C), 58.4 (1'-C), 112.9 (3-C), 121.8 (10-C), 122.9 (6-C), 126.4 (8-C), 127.3 (5-C), 129.3 (7-C), 136.6 (4-C), 147.9 (9-C), 156.5 (2-C). HRMS Calcd for C₁₃H₁₆N₂ [M + H]⁺: m/z 201.1386, Found 201.1392.

N-(prop-2-yn-1-yl)quinolin-2-amine (3e)

Yellow oil, yield: 79%. ¹H NMR (400 MHz, CDCl₃) δ: 2.24 (s, 1H, 3'-H), 4.35 (d, 2H, *J* = 1.6 Hz, 1'-H), 4.94 (br, 1H, -N<u>H</u>-), 6.66 (d, *J* = 8.8 Hz, 1H, 3-H), 7.23 (m, 1H, 6-H), 7.54 (m,1H, 7-H), 7.59 (d, *J* = 8.0 Hz, 1H, 5-H), 7.73 (d, *J* = 8.4 Hz, 1H, 8-H), 7.83 (d, *J* = 8.8 Hz, 1H, 4-H). ¹³C NMR (100 MHz, CDCl₃) δ: 31.3 (1'-C), 71.1 (3'-C),

81.1 (2'-C), 111.6 (3-C), 122.6 (10-C), 123.7 (6-C), 126.5 (8-C), 127.4 (5-C), 129.6 (7-C), 137.5 (4-C), 147.7 (9-C), 155.8 (2-C). HRMS Calcd for C₁₂H₁₀N₂ [M + H]⁺: m/z 183.0917, Found 183.0922.

3-(quinolin-2-ylamino)propan-1-ol (3f)

Yellow oil, yield: 73%. ¹H NMR (400 MHz, CDCl₃) δ : 1.76 (m, 2H, 12-H), 3.62 (m, 2H, 11-H), 3.73 (m, 2H, 13-H), 5.05 (br, 1H, -O<u>H</u>), 6.58 (d, J = 8.8 Hz, 1H, 3-H), 7.23 (m, 1H, 6-H), 7.50-7.57 (m, 2H, 7, 5-H), 7.64 (d, J = 8.4 Hz, 1H, 8-H), 7.46 (d, J = 8.8 Hz, 1H, 4-H). ¹³C NMR (100 MHz, CDCl₃) δ : 34.1 (12-C), 37.2 (11-C), 57.8 (13-C), 112.5 (3-C), 122.4 (10-C), 123.2 (6-C), 125.3 (8-C), 127.4 (5-C), 129.9 (7-C), 137.6 (4-C), 147.0 (9-C), 157.4 (2-C). HRMS Calcd for C₁₂H₁₄N₂O [M + H]⁺: m/z 203.1179, Found 203.1178.

N-benzylquinolin-2-amine (3g)

Yellow solid, yield: 83%. M. p. 91-93 °C. ¹H NMR (400 MHz, CDCl₃) δ : 4.70 (d, J = 5.2 Hz, 2H, 1'-H), 5.13 (br, 1H, -N<u>H</u>-), 6.60 (d, J = 8.8 Hz, 1H, 3-H), 7.19 (m, 1H, 5'-H), 7.27 (m, 1H, 6-H), 7.33 (t, 2H, 3'-H), 7.39 (d, J = 7.2 Hz, 2H, 4'-H), 7.51 (m, 1H, 7-H), 7.57 (d, J = 8.0 Hz, 1H, 5-H), 7.71 (d, J = 8.4 Hz, 1H, 8-H), 7.79 (d, J = 8.8 Hz, 1H, 4-H). ¹³C NMR (100 MHz, CDCl₃) δ : 45.9 (1'-C), 111.3 (3-C), 122.2 (9-C), 123.6 (6-C), 126.2 (8-C), 127.3 (5-C), 127.4 (5'-C), 127.8 (3'-C), 128.7 (4'-C), 129.6 (7-C), 137.5 (4-C), 139.4 (2'-C), 147.9 (10-C), 156.7 (2-C). HRMS Calcd for C₁₆H₁₄N₂ [M + H]⁺: m/z 235.1230, Found 235.1229.

N-phenylquinolin-2-amine (3h)

Yellow solid, yield: 80%. M. p. 102-104 °C. ¹H NMR (400 MHz, CDCl₃) δ : 6.87 (d, J = 9.2 Hz, 1H, 3-H), 7.03 (m, 1H, 6-H), 7.22 (m, 1H, 7-H), 7.29 (m, 2H, 4'-H, 5-H), 7.49 (m, 2H, 2'-H), 7.53 (m, 2H, 3'-H), 7.78 (m, 2H, 8-H, 4-H). ¹³C NMR (100 MHz, CDCl₃) δ : 111.9 (3-C), 120.7 (9-C), 123.1 (6-C), 123.2 (8-C), 124.2 (5-C), 126.7 (4'-C), 127.6 (2'-C), 129.3 (3'-C), 129.8 (7-C), 137.8 (4-C), 140.3 (1'-C), 147.7 (10-C), 154.7 (2-C). HRMS Calcd for C₁₅H₁₂N₂ [M + H]⁺: m/z 221.1073, Found 221.1078.

N-(p-tolyl)quinolin-2-amine (3i)

Yellow solid, yield: 83%. M. p. 87-89 °C. ¹H NMR (400 MHz, CDCl₃) δ: 2.32 (s, 3H, -CH₃), 6.91 (d, J = 9.2 Hz,

1H, 3-H), 7.13 (d, J = 8.0 Hz, 2H, 2'-H), 7.24 (t, 1H, 6-H), 7.37 (d, J = 8.4 Hz, 2H, 3'-H), 7.53 (m, 1H, 7-H), 7.58 (d, J = 8.0 Hz, 1H, 5-H), 7.74 (d, J = 8.4 Hz, 1H, 8-H), 7.82 (d, J = 9.2 Hz, 1H, 4-H). ¹³C NMR (100 MHz, CDCl₃) & 20.8 (-<u>C</u>H₃), 111.4 (3-C), 121.4 (2'-C), 122.9 (9-C), 124.0 (6-C), 126.3 (8-C), 127.5 (5-C), 129.8 (7-C), 133.1 (3'-C), 137.4 (4'-C), 137.8 (4-C), 147.6 (1'-C), 155.7 (10-C). HRMS Calcd for C₁₆H₁₄N₂ [M + H]⁺: m/z 235.1230, Found 235.1232.

N-(m-tolyl)quinolin-2-amine (3j)

Yellow solid, yield: 80%. M. p. 107-108 °C. ¹H NMR (400 MHz, CDCl₃) δ : 2.29 (s, 3H, -C<u>H</u>₃), 6.85 (d, J = 7.6 Hz, 1H, 4'-H), 6.91 (d, J = 8.8 Hz, 1H, 3-H), 7.17-7.25 (m, 3H, 2'-H, 5'-H, 6'-H), 7.32 (m, 1H, 6-H), 7.52 (m, 1H, 7-H), 7.56 (m, 1H, 5-H), 7.78 (t, 2H, 8-H, 4-H). ¹³C NMR (100 MHz, CDCl₃) δ : 21.6 (-<u>C</u>H₃), 111.8 (3-C), 117.9 (6'-C), 121.5 (4'-C), 123.1 (2'-C), 124.1 (10-C), 124.2 (6-C), 126.7 (8-C), 127.5 (5-C), 129.1 (7-C), 129.8 (5'-C), 137.8 (4-C), 139.1 (3'-C), 140.2 (1'-C), 147.8 (9-C), 154.8 (2-C). HRMS Calcd for C₁₆H₁₄N₂ [M + H]⁺: m/z 235.1230, Found 235.1237.

N-(o-tolyl)quinolin-2-amine (3k)

Yellow solid, yield: 81%. M. p. 97-98 °C. ¹H NMR (400 MHz, CDCl₃) δ : 2.29 (s, 3H, -C<u>H</u>₃), 6.83 (d, J = 8.8 Hz, 1H, 3-H), 7.11 (t, 1H, 6-H), 7.24 (m, 3H, 4'-H, 6'-H, 5'-H), 7.52 (t, 1H, 7-H), 7.54 (m, 1H, 3'-H), 7.59 (t, 1H, 5-H), 7.69 (d, J = 8.4 Hz, 1H, 8-H), 7.85 (d, J = 8.8 Hz, 1H, 4-H). ¹³C NMR (100 MHz, CDCl₃) δ : 18.1 (-<u>C</u>H₃), 110.7 (3-C), 122.9 (2'-C), 123.8 (10-C), 124.1 (6-C), 124.9 (4'-C), 126.3 (6'-C), 126.9 (8-C), 127.5 (5'-C), 129.8 (5-C), 131.0 (7-C), 131.9 (2'-C) , 137.9 (3'-C), 154.7 (4-C), 138.2 (1'-C), 147.9 (9-C), 155.6 (2-C). HRMS Calcd for C₁₆H₁₄N₂ [M + H]⁺: m/z 235.1230, Found 235.1237.

N-(4-methoxyphenyl)quinolin-2-amine (3l)

Yellow solid, yield: 85%. M. p. 108-110 °C. ¹H NMR (400 MHz, CDCl₃) δ : 3.78 (s, 3H, -OC<u>H</u>₃), 6.82 (d, *J* = 8.8 Hz, 1H, 3-H), 6.88 (d, *J* = 8.8 Hz, 2H, 3'-H), 7.22 (t, 1H, 6-H), 7.39 (d, *J* = 8.0 Hz, 2H, 2'-H), 7.52 (t, 1H, 7-H), 7.58 (d, *J* = 8.0 Hz, 1H, 5-H), 7.71 (d, *J* = 8.4 Hz, 1H, 8-H), 7.81 (d, *J* = 8.8 Hz, 1H, 4-H). ¹³C NMR (100 MHz, CDCl₃) δ : 55.6 (-O<u>C</u>H₃), 111.1 (3-C), 114.6 (3'-C), 122.7 (10-C), 123.9 (2'-C), 124.0 (6-C), 126.4 (8-C), 127.5 (5-C), 129.8 (7-C), 133.1 (1'-C), 137.7 (4-C), 147.8 (9-C), 155.6 (4'-C), 156.4 (2-C). HRMS Calcd for C₁₆H₁₄N₂O [M + H]⁺: m/z 251.1179, Found 251.1181.

N-(4-fluorophenyl)quinolin-2-amine (3m)

Yellow solid, yield: 63%. M. p. 106-109 °C. ¹H NMR (400 MHz, CDCl₃) δ : 6.88 (d, J = 8.8 Hz, 1H, 3-H), 7.07 (m, 2H, 2'-H), 7.30 (m, 1H, 6-H), 7.53-7.61 (m, 3H, 3'-H, 7-H), 7.64 (d, J = 8.0 Hz, 1H, 5-H), 7.77 (d, J = 8.4 Hz, 1H, 8-H), 7.92 (d, J = 8.8 Hz, 1H, 4-H). ¹³C NMR (100 MHz, CDCl₃) δ : 111.4 (3-C), 115.9 (d, J = 22.2 Hz, 3'-C), 122.7 (d, J = 8.7 Hz, 2'-C), 123.2 (6-C), 124.1 (10-C), 126.5 (8-C), 127.5 (5-C), 129.9 (7-C), 136.1 (1'-C), 138.0 (4-C), 147.4 (9-C), 154.5 (2-C), 159.0 (d, J = 240 Hz, 4'-C). ¹⁹F NMR (376 MHz, CDCl₃) δ : -121.5. HRMS Calcd for C₁₅H₁₁FN₂ [M + H]⁺: m/z 239.0979, Found 239.0981.

N-(4-chlorophenyl)quinolin-2-amine (3n)

Yellow solid, yield: 71%. M. p. 127-129 °C. ¹H NMR (400 MHz, CDCl₃) δ : 6.89 (d, J = 9.2 Hz, 1H, 3-H), 7.29-7.33 (m, 3H, 6-H, 2'-H), 7.58-7.61 (m, 3H, 3'-H, 7-H), 7.64 (d, J = 8.0 Hz, 1H, 5-H), 7.79 (d, J = 8.4 Hz, 1H, 8-H), 7.92 (d, J = 8.8 Hz, 1H, 4-H). ¹³C NMR (100 MHz, CDCl₃) δ : 112.0 (3-C), 121.3 (4'-C), 123.4 (2'-C), 124.2 (10-C), 126.8 (6-C), 127.5 (8-C), 127.6 (5-C), 129.1 (7-C), 129.9 (3'-C), 137.9 (4-C), 138.9 (1'-C), 147.4 (9-C), 153.8 (2-C). HRMS Calcd for C₁₅H₁₁ClN₂ [M + H]⁺: m/z 255.0684, Found 255.0693.

N-(4-bromophenyl)quinolin-2-amine (30)

Yellow solid, yield: 78%. M. p. 146-148 °C. ¹H NMR (400 MHz, CDCl₃) δ : 6.85 (d, J = 9.2 Hz, 1H, 3-H), 7.30 (t, 1H, 6-H), 7.42 (m, J = 8.8 Hz, 2H, 2'-H), 7.52 (d, J = 9.2 Hz, 2H, 3'-H), 7.57 (m, 1H, 7-H), 7.62 (d, J = 8.0 Hz, 1H, 5-H), 7.78 (d, J = 8.4 Hz, 1H, 8-H), 7.88 (d, J = 8.8 Hz, 1H, 4-H). ¹³C NMR (100 MHz, CDCl₃) δ : 112.1 (3-C), 115.0 (4'-C), 121.5 (2'-C), 123.5 (10-C), 124.2 (6-C), 126.8 (8-C), 127.5 (5-C), 129.9 (7-C), 132.0 (3'-C), 137.9 (4-C), 139.5 (1'-C), 147.4 (9-C), 153.8 (2-C). HRMS Calcd for C₁₅H₁₁BrN₂ [M + H]⁺: m/z 299.0178, Found 299.0179.

N-(3-ethynylphenyl)quinolin-2-amine (3p)

Yellow solid, yield: 71%. M. p. 137-140 °C. ¹H NMR (400 MHz, CDCl₃) δ : 3.12 (s, 1H, 8'-H), 7.01 (d, J = 9.2 Hz, 1H, 3-H), 7.31-7.41 (m, 3H, 2'-H, 4'-H, 5'-H), 7.52 (d, J = 8.0 Hz, 1H, 6-H), 7.64-7.71 (m, 3H, 6'-H, 7-H, 8-H), 7.86 (d, J = 8.0 Hz, 1H, 5-H) , 8.03 (d, J = 9.2 Hz, 1H, 4-H). ¹³C NMR (100 MHz, CDCl₃) δ : 78.0 (8'-C), 83.0 (7'-C), 111.1 (3-C), 122.8 (6'-C), 123.1 (2'-C), 123.4 (10-C), 123.5 (6-C), 124.5 (4'-C), 125.5 (3'-C), 127.8 (8-C), 128.7 (5-C), 129.6 (7-C), 131.5 (5'-C), 138.2 (4-C), 140.5 (1'-C), 142.8 (9-C), 153.4 (2-C). HRMS Calcd for C₁₇H₁₂N₂ [M + H]⁺: m/z 245.1073, Found 245.1082.

N-(pyridin-2-yl)quinolin-2-amine (3q)

Yellow solid, yield: 61%. M. p. 157-160 °C. ¹H NMR (400 MHz, CDCl₃) δ : 6.91 (m, 1H, 5'-H), 7.32 (m, 2H, 3-H, 3'-H), 7.60 (m, 1H, 6-H), 7.68 (m, 2H, 4'-H, 7-H), 7.85 (d, J = 8.4 Hz, 1H, 5-H), 7.95 (d, J = 8.8 Hz, 1H, 8-H), 8.30 (m, 1H, 6'-H), 8.38 (d, J = 8.4 Hz, 1H, 4-H). ¹³C NMR (100 MHz, CDCl₃) δ : 112.9 (3'-C), 113.9 (3-C), 117.2 (5'-C), 123.7 (10-C), 124.5 (6-C), 126.9 (8-C), 127.5 (5-C), 129.7 (7-C), 137.7 (4-C), 138.1 (4'-C), 147.5 (6'-C), 152.9 (2'-C). HRMS Calcd for C₁₄H₁₁N₃ [M + H]⁺: m/z 222.1026, Found 222.1022.

6-methoxy-N-phenylquinolin-2-amine (3r)

Yellow solid, yield: 84%. M. p. 107-110 °C. ¹H NMR (400 MHz, CDCl₃) δ : 3.88 (s, 3H, 6-OC<u>H</u>₃), 6.88 (d, J = 8.8 Hz, 1H, 3-H), 7.03 (m, 1H, 5-H), 7.30-7.38 (m, 4H, 3'-H, 4'-H, 7-H), 7.50 (d, J = 8.4 Hz, 2H, 2'-H), 7.68 (d, J = 8.4 Hz, 1H, 8-H), 7.74 (d, J = 8.8 Hz, 1H, 4-H). ¹³C NMR (100 MHz, CDCl₃) δ : 55.5 (6-O<u>C</u>H₃), 105.8 (3-C), 112.9 (9-C), 121.1 (6-C), 121.8 (8-C), 124.5 (5-C), 126.4 (4'-C), 129.2 (2'-C), 129.6 (3'-C), 138.7 (7-C), 142.0 (4-C) , 154.3 (1'-C), 156.7 (10-C), 160.2 (2-C). HRMS Calcd for C₁₆H₁₄N₂O [M + H]⁺: m/z 251.1179, Found 251.1184.

6-methyl-N-phenylquinolin-2-amine (3s)

Yellow solid, yield: 85%. M. p. 109-111 °C. ¹H NMR (400 MHz, CDCl₃) δ : 2.42 (s, 3H, 6-C<u>H</u>₃), 6.88 (d, J = 8.8 Hz, 1H, 3-H), 7.03 (m, 1H, 6-H), 7.30 (m, 2H, 4'-H, 5-H), 7.35 (m, 2H, 3'-H), 7.50 (m, 2H, 2'-H), 7.68 (d, J = 8.4 Hz, 1H, 7-H) 7.74 (d, J = 8.8 Hz, 1H, 4-H). ¹³C NMR (100 MHz, CDCl₃) δ : 21.3 (6-<u>C</u>H₃), 111.8 (3-C), 120.4 (9-C), 122.9 (6-C), 124.2 (8-C), 126.5 (5-C), 126.7 (4'-C), 127.6 (2'-C), 129.3 (3'-C), 131.9 (7-C), 137.2 (4-C), 140.5 (1'-C), 146.0 (10-C), 154.1 (2-C). HRMS Calcd for C₁₆H₁₄N₂ [M + H]⁺: m/z 235.1230, Found 235.1232.

4-methyl-N-phenylquinolin-2-amine (3t)

Yellow solid, yield: 85%. M. p. 105-108 °C. ¹H NMR (400 MHz, CDCl₃) δ : 2.46 (s, 3H, 4-C<u>H</u>₃), 6.72 (s, 1H, 3-H), 7.02 (m, 1H, 6-H), 7.23-7.31 (m, 3H, 3'-H, 7-H), 7.50-7.54 (m, 3H, 2'-H, 4'-H), 7.73 (dd, J = 8.4 Hz, J = 0.8 Hz, 1H, 5-H), 7.78 (d, J = 8.4 Hz, 1H, 8-H). ¹³C NMR (100 MHz, CDCl₃) δ : 21.3 (4-<u>C</u>H₃), 111.8 (3-C), 120.4 (9-C), 122.9 (6-C), 124.2 (8-C), 126.5 (5-C), 126.7 (4'-C), 127.6 (2'-C), 129.3 (3'-C), 131.9 (7-C), 137.2 (4-C), 140.5 (1'-C), 146.0 (10-C), 154.1 (2-C). HRMS Calcd for C₁₆H₁₄N₂ [M + H]⁺: m/z 235.1230, Found 235.1227.

6-nitro-N-phenylquinolin-2-amine (3u)

Yellow solid, yield: 78%. M. p. > 300 °C. ¹H NMR (400 MHz, DMSO-d6) δ : 7.13 (m, 1H, 4'-H), 7.38 (m, 2H, 3'-H), 7.57 (t, *J* = 8.0 Hz, 1H, 8-H), 7.65 (m, 1H, 3-H), 7.79 (d, *J* = 8.0 Hz, 2H, 2'-H), 7.93 (m, 1H, 7-H), 8.03 (t, *J* = 0.2 Hz, 1H, 4-H), 10.4 (s, 1H, 5-H). ¹³C NMR (100 MHz, DMSO-d6) δ : 120.9 (3-C), 124.4 (2'-C), 126.9 (10-C), 127.9 (7-C), 129.1 (4'-C), 130.8 (5-C), 131.8 (3'-C), 133.7 (8-C), 137.4 (4-C), 139.3 (6-C), 146.0 (1'-C), 146.0 (9-C), 164.5 (2-C). HRMS Calcd for C₁₅H₁₁N₃O₂ [M + H]⁺: m/z 266.0924, Found 266.0930.

6-bromo-N-phenylquinolin-2-amine (3v)

Yellow solid, yield: 83%. M. p. 147-150 °C. ¹H NMR (400 MHz, CDCl₃) δ : 6.94 (d, J = 9.2 Hz, 1H, 3-H), 7.06 (br, 1H, -NH-), 7.10 (m, 1H, 7-H), 7.36 (m, 2H, 3'-H), 7.55 (m, 2H, 2'-H), 7.61 (m, 2H, 4', 7-H) 7.75-7.78 (m, 2H, 8, 4-H). ¹³C NMR (100 MHz, CDCl₃) δ : 112.6 (3-C), 116.1 (9-C), 120.7 (6-C), 123.5 (8-C), 125.3 (5-C), 128.4 (4'-C), 129.3 (2'-C), 129.5 (3'-C), 133.0 (7-C), 136.7 (4-C) , 139.8 (1'-C), 146.4 (10-C), 154.6 (2-C). HRMS Calcd for C₁₅H₁₁BrN₂ [M + H]⁺: m/z 299.0178, Found 299.0185.

4-bromo-N-phenylquinolin-2-amine (3w)

Yellow solid, yield: 80%. M. p. 139-142 °C. ¹H NMR (400 MHz, CDCl₃) δ : 6.95 (br, 1H, -NH-), 7.12 (m, 1H, 6-H), 7.29 (s, 1H, 3-H), 7.34-7.39 (m, 3H, 3', 4'-H), 7.52 (m, 2H, 2'-H), 7.60 (m, 1H, 7-H), 7.74 (d, J = 8.4 Hz, 1H, 5-H) 7.99 (d, J = 8.4 Hz, 1H, 8-H). ¹³C NMR (100 MHz, CDCl₃) δ : 115.1 (3-C), 121.0 (9-C), 123.7 (6-C), 123.8 (8-C), 124.1 (5-C), 126.7 (4'-C), 127.0 (2'-C), 129.4 (3'-C), 130.8 (7-C), 134.8 (4-C) , 139.5 (1'-C), 148.1 (10-C), 154.1 (2-C). HRMS Calcd for C₁₅H₁₁BrN₂ [M + H]⁺: m/z 299.0178, Found 299.0184.

N-phenylisoquinolin-1-amine (3x)

Yellow solid, yield: 73%. M. p. 117-120 °C. ¹H NMR (400 MHz, CDCl₃) δ: 7.05 (t, J = 7.2 Hz,1H, 4'-H), 7.12 (d,

 $J = 5.6 \text{ Hz}, 1\text{H}, 4\text{-H}, 7.35 \text{ (t, } J = 7.6 \text{ Hz}, 2\text{H}, 3'\text{-H}), 7.51 \text{ (t, } J = 8.0 \text{ Hz}, 1\text{H}, 7'\text{-H}), 7.62 \text{ (t, } J = 6.0 \text{ Hz}, 1\text{H}, 6'\text{-H}), 7.65 \text{ (d, } J = 7.6 \text{ Hz}, 2\text{H}, 2'\text{-H}), 7.73 \text{ (d, } J = 8.0 \text{ Hz}, 1\text{H}, 5\text{-H}), 7.91 \text{ (d, } J = 8.4 \text{ Hz}, 1\text{H}, 8\text{-H}), 8.08 \text{ (d, } J = 5.6 \text{ Hz}, 1\text{H}, 3\text{-H}), ^{13}\text{C} \text{NMR} (100 \text{ MHz}, \text{CDCl}_3) & 113.5 \text{ (4-C)}, 118.9 \text{ (9-C)}, 120.3 \text{ (2'-C)}, 121.5 \text{ (4'-C)}, 122.7 \text{ (8-C)}, 126.5 \text{ (7-C)}, 127.5 \text{ (5-C)}, 129.0 \text{ (3'-C)}, 129.9 \text{ (6-C)}, 137.5 \text{ (10-C)}, 140.5 \text{ (1'-C)}, 140.9 \text{ (3-C)}, 152.3 \text{ (1-C)}. \text{ HRMS Calcd for } C_{12}\text{H}_{15}\text{N}_2 \text{ [M + H]}^+: \text{m/z} 221.1073, \text{ Found } 221.1076.$

N-benzylisoquinolin-1-amine (3y)

Yellow solid, yield: 70%. M. p. 97-100 °C. ¹H NMR (400 MHz, CDCl₃) δ : 4.82 (d, J = 4.8 Hz, 2H, 1'-H), 5.45 (br, 1H, -N<u>H</u>-), 6.97 (d, J = 6.0 Hz, 1H, 4-H), 7.31 (m, 1H, 7-H), 7.36 (m, 2H, 4'-H), 7.43 (m, 3H, 7-H, 3'-H), 7.58 (m, 1H, 6-H), 7.69 (d, J = 8.0 Hz, 1H, 5'-H), 7.73 (d, J = 8.4 Hz, 1H, 8-H) , 8.03 (d, J = 6.0 Hz, 1H, 3-H). ¹³C NMR (100 MHz, CDCl₃) δ : 46.1 (1'-C), 111.3 (4-C), 118.1 (9-C), 121.4 (8-C), 125.9 (7-C), 127.2 (5'-C), 127.4 (3'-C), 128.1 (5-C), 128.7 (4'-C), 129.7 (6-C), 137.1 (10-C), 139.4 (2'-C), 141.3 (3-C), 154.9 (1-C). HRMS Calcd for C₁₆H₁₄N₂ [M + H]⁺: m/z 235.1230, Found 235.1235.

quinolin-2-amine (3z)

Light yellow solid, yield: 61%. M. p. 128-130 °C. ¹H NMR (400 MHz, CDCl₃) δ : 5.00 (br, 2H, -N<u>H</u>₂-), 6.70 (d, J = 8.8 Hz, 1H, 3-H), 7.26 (m, 1H, 6-H), 7.55 (m, 1H, 7-H), 7.61 (dd, J = 0.8 Hz, J = 8.0 Hz, 1H, 5-H), 7.66 (d, J = 8.4 Hz, 1H, 8-H), 7.86 (d, J = 8.4 Hz, 1H, 8-H). ¹³C NMR (100 MHz, CDCl₃) δ : 111.8 (3-C), 122.7 (10-C), 123.6 (6-C), 125.9 (8-C), 127.5 (5-C), 130.0 (7-C), 138.1 (4-C), 147.6 (9-C), 157.1 (2-C). HRMS Calcd for C₉H₈N₂ [M + H]⁺: m/z 145.0760, Found 145.0761.

6-methoxyquinolin-2-amine (3aa)

Light yellow oil, yield: 71%. M. p. 120-126 °C.¹H NMR (400 MHz, CDCl₃) δ : 3.88 (s, 3H, 6-OCH₃), 4.75 (br, 2H, -N<u>H</u>₂-), 6.71 (d, *J* = 8.8 Hz, 1H, 3-H), 6.97 (d, *J* = 2.8 Hz, 1H, 5-H), 7.24 (m, 1H, 7-H), 7.59 (d, *J* = 9.2 Hz, 1H, 8-H), 7.80 (d, *J* = 8.8 Hz, 1H, 4-H). ¹³C NMR (100 MHz, CDCl₃) δ : 55.5 (6-OCH₃), 106.4 (3-C), 112.0 (10-C), 121.3 (6-C), 124.0 (8-C), 127.2 (5-C), 137.2 (7-C), 142.8 (4-C), 155.2 (9-C), 155.5 (2-C). HRMS Calcd for C₁₀H₁₀N₂O [M + H]⁺: m/z 175.0866, Found 175.0871.

4-methylquinolin-2-amine (3ab)

Light yellow oil, yield: 69%. M. p. 127-130 °C. ¹H NMR (400 MHz, CDCl₃) δ : 2.53 (s, 3H, 4-CH₃), 4.94 (br, 2H, - N<u>H</u>₂-), 6.53 (s, 1H, 3-H), 7.27 (m, 1H, 6-H), 7.53 (m, 1H, 7-H), 7.66 (d, J = 8.4 Hz, 1H, 8-H), 7.76 (d, J = 8.4 Hz, 1H, 4-H). ¹³C NMR (100 MHz, CDCl₃) δ : 18.7 (4- CH₃), 112.0 (3-C), 122.4 (10-C), 123.6 (6-C), 123.9 (8-C), 126.3 (5-C), 129.5 (7-C), 146.0 (4-C), 147.5 (9-C), 157.0 (2-C). HRMS Calcd for C₁₀H₁₀N₂ [M + H]⁺: m/z 159.0917, Found 159.0919.

N, *N*-dipropylquinolin-2-amine (3ac)

Yellow oil; Yield: 90%; ¹H NMR (400 MHz, CDCl₃) δ : 0.95 (t, 6H, 3'-H); 1.67 (m, 4H, 2'-H); 3.52 (m, 4H, 1'-H); 6.77 (d, J = 9.2 Hz, 1H, 3-H); 7.12 (m, 1H, 6-H); 7.47 (m, 1H, 7-H); 7.53 (dd, J = 1.2 Hz, J = 8.0 Hz, 1H, 5-H); 7.65 (d, J = 8.4 Hz, 1H, 8-H); 7.77 (d, J = 9.2 Hz, 1H, 4-H); ¹³C NMR (100 MHz, CDCl₃) δ : 11.54 (C-3'); 21.26 (C-2'); 50.50 (C-1'); 109.23 (C-3); 121.23 (C-6); 122.37 (C-10); 126.40 (C-5); 127.16 (C-8); 129.21 (C-7); 136.85 (C-4); 148.51 (C-9); 156.41 (C-2). HRMS Calcd for C₁₅H₂₀N₂ [M + H]⁺: m/z 229.1699, Found 229.1703.

2, 2'-(quinolin-2-ylazanediyl)diethanol (3ad)

Yellow oil, yield: 81%. ¹H NMR (400 MHz, CDCl₃) δ : 3.66 (m, 2H, 12-H), 3.79 (m, 2H, 11-H), 5.56 (br, 2H, -O<u>H</u>), 6.87 (d, J = 9.2 Hz, 1H, 3-H), 7.18 (m, 1H, 6-H), 7.46-7.58 (m, 3H, 7, 5, 8-H), 7.74 (d, J = 8.8 Hz, 1H, 4-H). ¹³C NMR (100 MHz, CDCl₃) δ : 53.2 (13-C), 61.8 (12-C), 109.9 (3-C), 122.4 (10-C), 122.8 (6-C), 125.3 (8-C), 127.3 (5-C), 129.9 (7-C), 137.8 (4-C), 146.6 (9-C), 157.6 (2-C). HRMS Calcd for C₁₃H₁₆N₂O₂ [M + H]⁺: m/z 233.1285, Found 233.1281.

N-benzyl-*N*-isopropylquinolin-2-amine (3ae)

Yellow oil; Yield: 75%; ¹H NMR (400 MHz, CDCl₃) δ : 1.23 (d, *J* = 6.8 Hz, 6H, 2'-H); 4.67 (s, 2H, 3'-H); 5.39 (m, 1H, 1'-H); 6.63 (d, *J* = 9.2 Hz, 1H, 3-H); 7.16 (m, 1H, 7'-H); 7.17 (m, 1H, 6-H); 7.17 (m, 1H, 7-H); 7.18 (d, *J* = 8.0 Hz, 1H, 5-H); 7.20 (d, *J* = 8.4 Hz, 1H, 8-H); 7.21 (d, *J* = 8.0 Hz, 1H, 4-H); 7.52 (m, 2H, 5'-H); 7.71 (m, 2H, 6'-H);

¹³C NMR (100 MHz, CDCl₃) δ : 20.4 (C-2'); 46.0 (C-3'); 46.3 (C-1'); 110.4 (C-3); 121.8 (C-6); 122.9 (C-10); 126.4 (5'-C); 126.6 (C-5); 126.7 (C-8); 127.2 (6'-C); 128.6 (7'-C); 129.4 (C-7); 137.2 (4'-C); 140.2 (C-4); 148.2 (C-9); 157.1 (C-2). HRMS Calcd for C₁₉H₂₀N₂ [M + H]⁺: m/z 277.1699, Found 277.1706.

N, N- diisobutylquinolin-2-amine (3af)

Yellow oil; Yield: 82%; ¹H NMR (400 MHz, CDCl₃) δ : 0.92 (d, J = 6.4 Hz, 12H, 3'-H); 2.18 (m, 2H, 2'-H); 3.44 (d, J = 7.6 Hz, 4H, 1'-H); 6.81 (d, J = 9.2 Hz, 1H, 3-H); 7.12 (m, 1H, 6-H); 7.47 (m, 1H, 7-H); 7.52 (d, J = 8.0 Hz, 1H, 5-H); 7.64 (d, J = 8.0 Hz, 1H, 8-H); 7.76 (d, J = 9.2 Hz, 1H, 4-H); ¹³C NMR (100 MHz, CDCl₃) δ : 20.4 (C-3'); 27.3 (C-2'); 57.5 (C-1'); 109.7 (C-3); 121.3 (C-6); 122.3 (C-10); 126.4 (C-5); 127.1 (C-8); 129.2 (C-7); 136.6 (C-4); 148.4 (C-9); 156.8 (C-2). HRMS Calcd for C₁₇H₂₄N₂ [M + H]⁺: m/z 257.2012, Found 257.2016.

N, N-dibutylquinolin-2-amine (3ag)

Yellow oil; Yield: 89%; ¹H NMR (400 MHz, CDCl₃) δ : 0.97 (t, 6H, 4'-H); 1.38 (m, 4H, 3'-H); 1.63 (m, 4H, 2'-H); 3.57 (m, 4H, 1'-H); 6.78 (d, J = 9.2 Hz, 1H, 3-H); 7.12 (m, 1H, 6-H); 7.47 (m, 1H, 7-H); 7.53 (dd, J = 1.2 Hz, J = 8.0 Hz, 1H, 5-H); 7.64 (d, J = 8.4 Hz, 1H, 8-H); 7.78 (d, J = 9.2 Hz, 1H, 4-H); ¹³C NMR (100 MHz, CDCl₃) δ : 14.06 (C-4'); 20.36 (C-3'); 30.23 (C-2'); 48.32 (C-1'); 109.19 (C-3); 121.18 (C-6); 122.33 (C-10); 126.36 (C-5); 127.14 (C-8); 129.19 (C-7); 136.83 (C-4); 148.50 (C-9); 156.34 (C-2). HRMS Calcd for C₁₇H₂₄N₂ [M + H]⁺: m/z 257.2012, Found 257.2015.

N, N- diisopropylquinolin-2-amine (3ah)

Yellow oil; Yield: 73%; ¹H NMR (400 MHz, CDCl₃) δ : 1.38 (d, J = 6.8 Hz, 12H, 2'-H); 4.40 (m, 2H, 1'-H); 6.87 (d, J = 9.2 Hz, 1H, 3-H); 7.13 (m, 1H, 6-H); 7.47 (m, 1H, 7-H); 7.53 (dd, J = 1.2 Hz, J = 8.0 Hz, 1H, 5-H); 7.64 (d, J = 8.4 Hz, 1H, 8-H); 7.75 (d, J = 9.2 Hz, 1H, 4-H); ¹³C NMR (100 MHz, CDCl₃) δ : 21.1 (C-2'); 45.9 (C-1'); 111.9 (C-3); 121.3 (C-6); 122.4 (C-10); 126.5 (C-5); 127.1 (C-8); 129.0 (C-7); 136.9 (C-4); 148.3 (C-9); 156.3 (C-2). HRMS Calcd for C₁₅H₂₀N₂ [M + H]⁺: m/z 229.1699, Found 229.1701.

N, N- dibenzylquinolin-2-amine (3ai)

Yellow oil; Yield: 60%; ¹H NMR (400 MHz, CDCl3) δ : 4.93 (s, 4H, 1'-H); 6.80 (d, J = 8.8 Hz, 1H, 3-H); 7.17-7.29 (m, 11H, 3', 4', 5', 6-H); 7.50-7.58 (m, 2H, 7, 5-H); 7.72 (d, J = 8.4 Hz, 1H, 8-H); 7.79 (d, J = 9.2 Hz, 1H, 4-H); ¹³C NMR (100 MHz, CDCl₃) δ : 50.7 (C-1'); 109.2 (C-3); 121.9 (C-6); 123.0 (C-10); 126.7 (C-5); 127.1 (C-5'); 127.2 (C-2'); 127.4 (C-3'); 128.6 (C-4'); 129.5 (C-8); 137.6 (C-7); 138.5 (C-4); 148.1 (C-9); 157.0 (C-2). HRMS Calcd for C₂₃H₂₀N₂ [M + H]⁺: m/z 325.1699, Found 325.1703.

N, N-dipropyl-4-methylquinolin-2-amine (3aj)

Yellow oil; Yield: 85%; ¹H NMR (400 MHz, CDCl₃) δ : 0.96 (t, 6H, 3'-H); 1.67 (m, 4H, 2'-H); 2.56 (d, J= 0.8 Hz, 1H, 11-H); 3.53 (m, 4H, 1'-H); 6.64 (d, J= 0.8 Hz, 1H, 3-H); 7.15 (m, 1H, 6-H); 7.47 (m, 1H, 7-H); 7.66 (dd, J= 0.4 Hz, J= 8.4 Hz, 1H, 5-H); 7.72 (dd, J= 1.2 Hz, J= 8.0 Hz, 1H, 8-H); ¹³C NMR (100 MHz, CDCl₃) δ : 11.54 (C-3'); 19.32 (C-11); 21.29 (C-2'); 50.36 (C-1'); 109.43 (C-6); 121.01 (C-3); 122.72 (C-10); 123.39 (C-5); 126.75 (C-8); 129.00 (C-7); 144.30 (C-4); 148.39 (C-9); 156.25 (C-2). HRMS Calcd for C₁₆H₂₂N₂ [M + H]⁺: m/z 243.1856, Found 243.1856.

N, N-dibutyl-4-methylquinolin-2-amine (3ak)

Yellow oil; Yield: 91%; ¹H NMR (400 MHz, CDCl₃) δ : 0.97 (t, 6H, 4'-H); 1.38 (m, 4H, 3'-H); 1.63 (m, 4H, 2'-H); 2.56 (s, 3H, 11-H); 3.56 (m, 4H, 1'-H); 6.64 (s, 1H, 3-H), 7.15 (m, 1H, 6-H); 7.48 (m, 1H, 7-H); 7.65 (d, *J* = 8.4 Hz, 1H, 5-H); 7.71 (d, *J* = 8.0 Hz, 1H, 8-H); ¹³C NMR (100 MHz, CDCl₃) δ : 14.09 (C-4'); 19.36 (C-11); 20.37 (C-3'); 30.31 (C-2'); 48.18 (C-1'); 109.40 (C-6); 120.98 (C-3); 122.73 (C-10); 123.40 (C-5); 126.83 (C-8); 128.98 (C-7); 144.23 (C-4); 148.50 (C-9); 156.23 (C-2). HRMS Calcd for C₁₈H₂₆N₂ [M + H]⁺: m/z 271.2169, Found 271.2172.

N, N- diisopropyl-4-methylquinolin-2-amine (3al)

Yellow oil; Yield: 62%; ¹H NMR (400 MHz, CDCl₃) 0.92 (d, J = 6.8 Hz, 12H, 3'-H); 2.17 (m, 2H, 2'-H); 2.56 (d, J = 0.8 Hz, 3H, 11-H); 3.43 (d, J = 7.2 Hz, 4H, 1'-H); 6.67 (s, 1H, 3-H); 7.15 (m, 1H, 6-H); 7.47 (m, 1H, 7-H); 7.65 (d, J = 8.4 Hz, 1H, 8-H); 7.71 (dd, J = 1.2 Hz, J = 8.0 Hz, 1H, 5-H). ¹³C NMR (100 MHz, CDCl₃) δ : 19.4 (C-11); 20.4 (C-3'); 27.3 (C-2'); 57.3 (C-1'); 109.9 (C-6); 121.1 (C-3); 122.7 (C-10); 123.4 (C-5); 126.9 (C-8); 129.0 (C-7); 144.0 (C-4); 148.4 (C-9); 156.6 (C-2). HRMS Calcd for C₁₈H₂₆N₂ [M + H]+: m/z 271.2169, Found 271.2152.

N, N- dibenzyl-4-methylquinolin-2-amine (3am)

Yellow oil; Yield: 63%; ¹H NMR (400 MHz, CDCl3) δ : 2.49 (s, 3H, 11-H); 4.90 (s, 4H, 1'-H); 6.69 (s, 1H, 3-H); 7.18-7.28 (m, 11H, 3', 4', 5', 6-H); 7.51 (m, 1H, 7-H); 7.74 (d, *J* = 8.0 Hz, 2H, 8, 5-H); ¹³C NMR (100 MHz, CDCl₃) δ : 19.4 (C-11); 50.5 (1'-C); 109.3 (C-3); 121.8 (C-6); 123.4 (C-10); 123.6 (C-5); 127.1 (5'-C); 127.2 (C-8); 127.5 (3'-C); 128.7 (4'-C); 129.4 (C-7); 138.8 (2'-C); 145.4 (C-4); 148.2 (C-9); 157.0 (C-2). HRMS Calcd for C₂₄H₂₂N₂ [M + H]⁺: m/z 339.1856, Found 339.1859.

3-Bromo-N, N-diethylquinolin-2-amine (3an)

Yellow oil; Yield: 45%; ¹H NMR (400 MHz, CDCl₃) δ : 1.09 (m, 6H, 2'-H); 3.47 (d, *J* = 6.8 Hz, 1H, 1'-H); 7.55 (m, 1H, 6-H); 7.71 (m, 2H, 5, 7-H); 7.96 (s, 1H, 4-H); 8.62 (d, *J* = 8.8 Hz, 1H, 8-H); ¹³C NMR (100 MHz, CDCl₃) δ : 14.2 (C-2'); 45.3 (C-1'); 119.5 (C-6); 120.1 (C-3); 126.8 (C-10); 127.4 (C-5); 128.1 (C-8); 129.1 (C-7); 130.1 (C-4); 142.0 (C-9); 149.2 (C-2). HRMS Calcd for C₁₃H₁₅BrN₂ [M + H]⁺: m/z 279.0491, Found 279.0493.

3-Bromo-N, N-dibutylquinolin-2-amine (3ao)

Yellow oil; Yield: 50%; ¹H NMR (400 MHz, CDCl₃) δ : 0.91 (t, 6H, 4'-H); 1.33 (m, 4H, 3'-H); 1.62 (m, 4H, 2'-H); 3.44 (m, 4H, 1'-H); 7.31 (m, 1H, 6-H); 7.55-7.59 (m, 2H, 7, 5-H); 7.77 (d, J= 9.2 Hz, 1H, 8-H); 8.21 (s, 1H, 4-H); ¹³C NMR (100 MHz, CDCl₃) δ : 14.03 (C-4'); 20.40 (C-3'); 30.11 (C-2'); 51.00 (C-1'); 112.72 (C-6); 124.11 (C-3); 125.69 (C-10); 126.20 (C-5); 127.32 (C-8); 129.44 (C-7); 141.41 (C-4); 145.74 (C-9); 157.24 (C-2). HRMS Calcd for C₁₇H₂₃BrN₂ [M + H]⁺: m/z 335.1118, Found 335.1119.

N, *N*-dipropylisoquinolin-2-amine (3ap)

Yellow oil; Yield: 75%; ¹H NMR (400 MHz, CDCl₃) δ : 0.87 (t, 6H, 3'-H); 1.64 (m, 4H, 2'-H); 3.39 (m, 4H, 1'-H); 7.16 (d, *J* = 6.0 Hz, 1H, 4-H); 7.45 (m, 1H, 7-H); 7.55 (m, 1H, 6-H); 7.69 (d, *J* = 8.0 Hz, 1H, 5-H); 8.14 (m, 2H, 3-H, 8-H); ¹³C NMR (100 MHz, CDCl₃) δ : 11.74 (C-3'); 21.02 (C-2'); 54.12 (C-1'); 114.80 (C-4); 122.86 (C-9); 125.60 (C-8); 125.73 (C-7); 126.92 (C-5); 129.39 (C-6); 138.40 (C-10); 140.59 (C-3); 161.57 (C-1). HRMS Calcd for C₁₅H₂₀N₂ [M + H]⁺: m/z 229.1699, Found 229.1698.

N, N-dihexylisoquinolin-2-amine (3aq)

Yellow oil; Yield: 50%; ¹H NMR (400 MHz, CDCl₃) δ : 0.84 (m, 6H, 6'-H); 1.26 (m, 12H, 3',4',5'-H); 1.61 (m, 4H, 2'-H); 3.42 (m, 4H, 1'-H); 7.16 (d, *J* = 5.6 Hz, 1H, 4-H); 7.46 (m, 1H, 6-H); 7.56 (m, 1H, 7-H); 7.70 (d, *J* = 8.0 Hz, 1H, 5-H); 8.13 (m, 2H, 3-H, 8, 3-H); ¹³C NMR (100 MHz, CDCl₃) δ : 14.0 (C-6'); 22.6 (C-5'); 27.0 (C-4'); 27.8 (C-3'); 31.7 (C-2'); 52.3 (C-1'); 114.7 (C-4); 122.9 (C-9); 125.6 (C-8); 125.9 (C-7); 126.9 (C-5); 129.4 (C-6); 138.4 (C-10); 140.5 (C-3); 161.6 (C-1). HRMS Calcd for C₂₁H₃₂N₂ [M + H]⁺: m/z 313.2638, Found 313.2643.

N-benzyl-N-isopropylisoquinolin-2-amine (3ar)

Yellow oil; Yield: 63%; ¹H NMR (400 MHz, CDCl₃) δ : 1.31 (d, J = 6.8 Hz, 6H, 2'-H); 4.06 (m, 1H, 1'-H); 4.65 (s, 2H, 3'-H); 7.08 (d, J = 6.4 Hz, 1H, 4-H); 7.16 (m, 3H, 6', 7'-H); 7.40 (m, 2H, 5'-H); 7.48-7.58 (m, 2H, 6, 7-H); 7.68 (d, J = 8.0 Hz, 1H, 5-H); 8.07 (d, J = 5.6 Hz, 1H, 8-H); 8.24 (d, J = 8.0 Hz, 1H, 3-H); ¹³C NMR (100 MHz, CDCl₃) δ : 20.0 (2'-C); 45.9 (3'-C); 55.4 (1'-C); 115.7 (C-4); 123.8 (C-9); 125.6 (C-7); 126.0 (5'-C); 126.1 (C-5); 127.0 (C-8); 127.88 (6'-C); 127.90 (7'-C); 129.5 (C-2); 138.4 (4'-C); 140.5 (C-6); 141.2 (C-3); 160.8 (C-1). HRMS Calcd for C₁₉H₂₀N₂ [M + H]⁺: m/z 277.1699, Found 277.1702.

N, *N*-dipropylpyridin-4-amine (3au)

Yellow oil. Yield 30%. ¹H NMR (400 MHz, CDCl₃) δ: 0.94 (t, 6H, 3'-H); 1.61 (m, 4H, 2'-H); 3.24 (m, 4H, 1'-H); 6.43 (d, *J* = 5.2 Hz, 2H, 3-H); 8.15 (d, *J* = 5.2 Hz, 2H, 2-H); ¹³C NMR (100 MHz, CDCl₃) δ: 11.3 (C-3'); 20.1 (C-2'); 52.1 (C-1'); 106.4 (C-3); 147.2 (C-2); 153.4 (C-4). HR MS Calcd for C₁₁H₁₈N₂ [M + H]⁺: m/z 179.1543, Found 179.1543.

N, N-diethylpyridin-4-amine (3av)

Yellow oil. Yield 37%. ¹H NMR (400 MHz, CDCl₃) δ : 1.92 (m, 6H, 2'-H); 3.37 (m, 4H, 1'-H); 6.47 (d, J = 5.2 Hz, 2H, 3-H); 8.15 (d, J= 5.2 Hz, 2H, 2-H); ¹³C NMR (100 MHz, CDCl₃) δ : 12.6 (C-2'); 44.0 (C-1'); 106.5 (C-3); 149.8 (C-2); 155.8 (C-4). HR MS Calcd for C₉H₁₄N₂ [M + H]⁺: m/z 151.1230, Found 151.1229.

5. Characterization data for products (5a-5v)

Ethyl 3-oxo-2-(quinolin-2-yl)butanoate (5a)

Yellow solid, yield: 60%. M. p. 147-149 °C. ¹H NMR (400 MHz, CDCl₃) δ : 1.39 (t, 3H, 16-H), 2.48 (s, 3H, 11-H), 4.34 (q, 2H, 15-H), 7.36 (m, 1H, 3-H), 7.56 (m, 1H, 6-H), 7.59 (m, 1H, 7-H), 7.62 (m, 1H, 5-H), 7.88 (d, J = 9.6 Hz, 1H, 8-H), 7.95 (d, J = 9.2 Hz, 1H, 4-H). ¹³C NMR (100 MHz, CDCl₃) δ : 14.4 (16-C), 29.7 (11-C), 60.1 (15-C), 98.4 (13-C), 118.7 (3-C), 120.3 (6-C), 123.2 (10-C), 124.9 (8-C), 127.5 (5-C), 131.3 (7-C), 136.4 (9-C), 137.6 (4-C), 154.6 (2-C), 169.5 (14-C), 195.2 (12-C). HRMS Calcd for C₁₅H₁₅NO₃ [M + H]⁺: m/z 258.1125, Found 258.1128.

2-(quinolin-2-yl)cyclohexane-1,3-dione (5b)

Yellow solid, yield: 71%. M. p. 154-155 °C. ¹H NMR (400 MHz, CDCl₃) δ : 2.00 (m, 2H, 14-H), 2.64 (m, 4H, 13-H), 7.46-7.50 (m, 1H, 3-H), 7.67-7.76 (m, 2H, 6, 7-H), 8.15 (d, J = 9.6 Hz, 1H, 8-H), 9.19 (d, J = 9.6 Hz, 1H, 4-H). ¹³C NMR (100 MHz, CDCl₃) δ : 19.8 (16-C), 29.7 (11-C), 38.9 (15-C), 98.4 (13-C), 104.6 (3-C), 119.3 (3-C), 121.8 (6-C), 124.4 (10-C), 125.8 (8-C), 127.7 (5-C), 131.7 (7-C), 135.8 (9-C), 139.6 (4-C), 155.2 (2-C). HRMS Calcd for C₁₅H₁₃NO₂ [M + H]⁺: m/z 240.1019, Found 240.1022.

2,2-dimethyl-5-(quinolin-2-yl)-1,3-dioxane-4,6-dione (5c)

Yellow solid, yield: 75%. M. p. 157-160 °C. ¹H NMR (400 MHz, CDCl₃) δ : 1.77 (s, 6H, 14-H), 7.52 (m, 1H, 3-H), 7.68-7.80 (m, 3H, 6, 7, 5-H), 8.15 (d, J = 9.2 Hz, 1H, 8-H), 8.95 (d, J = 9.2 Hz, 1H, 4-H). ¹³C NMR (100 MHz, CDCl₃) δ : 18.4 (14-C), 26.4 (13-C), 58.4 (11-C), 102.9 (3-C), 118.6 (6-C), 121.2 (10-C), 123.5 (8-C), 126.0 (5-C), 128.0 (7-C), 132.2 (9-C), 135.8 (4-C), 140.0 (2-C), 154.9 (12-C). HRMS Calcd for C₁₅H₁₃NO₄ [M + H]⁺: m/z 272.0917, Found 272.0924.

Ethyl 2-cyano-2-(quinolin-2-yl)acetate (5d)

Yellow solid, yield: 61%. M. p. 177-179 °C. ¹H NMR (400 MHz, CDCl₃) δ : 1.38 (t, 3H, 15-H), 4.30 (q, 2H, 14-H), 7.31-7.42 (m, 3H, 3, 6, 7-H), 7.59-7.64 (m, 2H, 5, 8-H), 7.84 (d, J = 9.6 Hz, 1H, 4-H). ¹³C NMR (100 MHz, CDCl₃) δ : 14.5 (15-C), 60.6 (14-C), 66.5 (12-C), 117.1 (3-C), 118.7 (11-C), 119.3 (6-C), 122.2 (10-C), 124.9 (8-C), 128.2 (5-C), 132.0 (7-C), 136.3 (9-C), 138.5 (4-C), 155.1 (2-C), 169.9 (13-C). HRMS Calcd for C₁₄H₁₂N₂O₂ [M + H]⁺: m/z 241.0972, Found 241.0975.

2-(quinolin-2-yl)malononitrile (5e)

Yellow solid, yield: 76%. M. p. > 300 °C. ¹H NMR (400 MHz, DMSO-d6) δ : 7.17 (d, J = 9.2 Hz, 1H, 3-H), 7.42 (m, 1H, 6-H), 7.59 (m,1H, 7-H), 7.82 (d, J = 7.2 Hz, 1H, 5-H), 7.94 (d, J = 8.0 Hz, 1H, 8-H), 8.13 (d, J = 9.2 Hz, 1H, 4-H). ¹³C NMR (100 MHz, DMSO-d6) δ : 19.0 (12-C), 117.2 (11-C), 118.0 (3-C), 118.0 (10-C), 122.4 (6-C), 125.3 (8-C), 128.8 (5-C), 132.6 (7-C), 138.1 (9-C), 140.1 (4-C), 156.0 (2-C). HRMS Calcd for C₁₂H₇N₃ [M + H]⁺: m/z 194.0713, Found 194.0716.

Ethyl 2-(6-methylquinolin-2-yl)-3-oxobutanoate (5f)

Yellow solid, yield: 53%. M. p. 189-191 °C. ¹H NMR (400 MHz, CDCl₃) δ : 1.39 (t, 3H, 16-H), 2.45-2.47 (m, 6H, 11, 17-H), 4.33 (q, 2H, 15-H), 7.40-7.46 (m, 3H, 3, 5, 7-H), 7.81 (d, J = 9.2 Hz, 1H, 8-H), 7.95 (d, J = 9.6 Hz, 1H, 4-H). ¹³C NMR (100 MHz, CDCl₃) δ : 14.4 (16-C), 21.2 (17-C), 29.7 (11-C), 60.0 (15-C), 98.0 (13-C), 118.5 (3-C), 120.2 (6-C), 123.3 (10-C), 126.9 (8-C), 133.0 (5-C), 134.5 (7-C), 134.8 (9-C), 137.3 (4-C), 154.3 (2-C), 169.5 (14-C), 194.7 (12-C). HRMS Calcd for C₁₆H₁₇NO₃ [M + H]⁺: m/z 272.1281, Found 272.1283.

Ethyl 2-(4-methylquinolin-2-yl)-3-oxobutanoate (5g)

Yellow solid, yield: 61%. M. p. 167-169 °C. ¹H NMR (400 MHz, CDCl₃) δ : 1.40 (t, 3H, 16-H), 2.46 (s, 3H, 11-H), 2.59 (q, 2H, 17-H), 4.34 (q, 2H, 15-H), 7.38 (t, 1H, 6-H), 7.51 (d, J = 8.0 Hz, 1H, 5-H), 7.59 (m,1H, 7-H), 7.76 (m, 1H, 8-H), 7.83 (s, 1H, 3-H). ¹³C NMR (100 MHz, CDCl₃) δ : 14.4 (16-C), 19.7 (17-C), 30.1 (11-C), 60.1 (15-C), 97.7 (13-C), 119.0 (3-C), 119.7 (6-C), 123.5 (10-C), 124.0 (8-C), 124.6 (5-C), 131.0 (7-C), 136.0 (9-C), 146.4 (4-C), 154.2 (2-C), 169.6 (14-C), 195.1 (12-C). HRMS Calcd for C₁₆H₁₇NO₃ [M + H]⁺: m/z 272.1281, Found 272.1285.

Ethyl 2-(6-methoxyquinolin-2-yl)-3-oxobutanoate (5h)

Yellow solid, yield: 51%. M. p. 171-173 °C. ¹H NMR (400 MHz, CDCl₃) δ : 1.39 (m, 3H, 16-H), 2.47 (s, 3H, 11-H), 3.87 (s, 3H, 17-H), 4.33 (q, 2H, 15-H), 6.98 (s, 1H, 5-H), 7.24 (m, 1H, 3-H), 7.45 (m, 1H, 7-H), 7.82 (m, 1H, 8-H), 8.01 (d, J = 7.6 Hz, 1H, 4-H). ¹³C NMR (100 MHz, CDCl₃) δ : 14.4 (16-C), 29.7 (17-C), 55.6 (15-C), 59.9 (11-C), 97.7 (13-C), 107.1 (3-C), 120.4 (6-C), 120.6 (10-C), 122.1 (8-C), 124.3 (5-C), 131.5 (9-C), 136.9 (7-C), 153.7 (4-C), 156.8 (2-C), 169.4 (14-C), 193.7 (12-C). HRMS Calcd for C₁₆H₁₇NO₄ [M + H]⁺: m/z 288.1230, Found 288.1234.

2-(6-methylquinolin-2-yl)cyclohexane-1,3-dione (5i)

Yellow solid, yield: 78%. M. p. 197-199 °C. ¹H NMR (400 MHz, CDCl₃) δ : 1.99 (m, 2H, 14-H), 2.49 (s, 3H, 15-H), 2.62 (m, 4H, 13-H), 7.33-7.56 (m, 3H, 3, 5, 7-H), 8.04 (d, *J* = 9.6 Hz, 1H, 8-H), 9.13 (d, *J* = 9.6 Hz, 1H, 4-H). ¹³C NMR (100 MHz, CDCl₃) δ : 18.4 (14-C), 19.8 (15-C), 21.2 (13-C), 58.1 (11-C), 104.4 (3-C), 119.0 (5-C), 121.6 (10-C), 124.5 (8-C), 126.8 (7-C), 133.5 (6-C), 133.9 (4-C), 135.9 (9-C), 139.2 (2-C), 154.5 (12-C). HRMS Calcd for C₁₆H₁₅NO₂ [M + H]⁺: m/z 254.1176, Found 254.1186.

2,2-dimethyl-5-(6-methylquinolin-2-yl)-1,3-dioxane-4,6-dione (5j)

Yellow solid, yield: 71%. M. p. 175-179 °C. ¹H NMR (400 MHz, CDCl₃) δ : 1.76 (s, 6H, 14-H), 2.52 (s, 3H, 15-H), 7.55-7.60 (m, 3H, 3, 7, 5-H), 8.08 (d, J = 9.6 Hz, 1H, 8-H), 8.90 (d, J = 9.2 Hz, 1H, 4-H). ¹³C NMR (100 MHz, CDCl₃) δ : 18.4 (15-C), 21.3 (13-C), 26.4 (14-C), 58.4 (11-C), 79.1 (3-C), 102.8 (6-C), 118.3 (10-C), 121.0 (8-C), 123.6 (5-C), 127.2 (7-C), 134.0 (9-C), 136.2 (4-C), 139.6 (2-C), 154.2 (12-C). HRMS Calcd for C₁₆H₁₅NO₄ [M +

H]⁺: m/z 286.1074, Found 286.1080.

Ethyl 2-cyano-2-(6-methylquinolin-2-yl)acetate (5k)

Yellow solid, yield: 41%. M. p. 177-179 °C. ¹H NMR (400 MHz, CDCl₃) δ : 1.37 (t, 3H, 15-H), 2.44 (s, 3H, 16-H), 4.29 (q, 2H, 14-H), 7.25-7.29 (m, 2H, 3, 7-H), 7.38-7.43 (m, 2H, 8, 4-H), 7.74 (d, J = 9.2 Hz, 1H, 4-H). ¹³C NMR (100 MHz, CDCl₃) δ : 14.5 (15-C), 21.0 (16-C), 60.5 (14-C), 65.8 (12-C), 116.9 (3-C), 118.9 (11-C), 119.1 (5-C), 122.2 (10-C), 127.7 (8-C), 133.5 (7-C), 134.4 (6-C), 134.9 (4-C), 138.3 (9-C), 154.7 (2-C), 170.0 (13-C). HRMS Calcd for C₁₅H₁₄N₂O₂ [M + H]⁺: m/z 255.1128, Found 255.1131.

2-(6-methylquinolin-2-yl)malononitrile (5l)

Yellow solid, yield: 71%. M. p. > 300 °C. ¹H NMR (400 MHz, DMSO-d6) δ : 2.59 (s, 3H, 13-H), 7.03 (s, 1H, 5-H), 7.44 (m, 1H, 3-H), 7.69 (m, 1H, 7-H), 7.88 (d, J = 7.6 Hz, 1H, 8-H), 7.95 (d, J = 8.4 Hz, 1H, 4-H). ¹³C NMR (100 MHz, DMSO-d6) δ : 19.2 (13-C), 42.5 (12-C), 117.1 (11-C), 117.5 (3-C), 118.3 (6-C), 122.6 (10-C), 125.2 (8-C), 125.4 (5-C), 132.4 (7-C), 137.8 (9-C), 149.2 (4-C), 155.4 (2-C). HRMS Calcd for C₁₃H₉N₃ [M + H]⁺: m/z 208.0869, Found 208.0874.

Ethyl 2-cyano-2-(4-methylquinolin-2-yl)acetate (5m)

Yellow solid, yield: 53%. M. p. 171-173 °C. ¹H NMR (400 MHz, CDCl₃) δ : 1.37(t, 3H, 15-H), 2.56 (s, 3H, 16-H), 4.27 (q, 2H, 14-H), 7.11 (s, 1H, 3-H), 7.34-7.40 (m, 2H, 5, 6-H), 7.60 (m, 1H, 7-H), 7.74 (d, J = 8.4 Hz, 1H, 8-H). ¹³C NMR (100 MHz, CDCl₃) δ : 14.5 (15-C), 19.3 (16-C), 60.4 (14-C), 65.2 (12-C), 117.4 (11-C), 118.5 (3-C), 119.0 (5-C), 122.6 (10-C), 124.6 (6-C), 124.7 (8-C), 131.7 (7-C), 135.9 (4-C), 147.7 (9-C), 154.5 (2-C), 170.0 (13-C). HRMS Calcd for C₁₅H₁₄N₂O₂ [M + H]⁺: m/z 255.1128, Found 255.1131.

2-(4-methylquinolin-2-yl)cyclohexane-1,3-dione (5n)

Yellow solid, yield: 75%. M. p. 195-197 °C. ¹H NMR (400 MHz, CDCl₃) δ: 2.00 (m, 2H, 14-H), 2.62 (m, 4H, 13-H), 2.68 (s, 3H, 15-H), 7.46 (m, 1H, 6-H), 7.60-7.68 (m, 2H, 5, 7-H), 7.85 (d, *J* = 8.4 Hz, 1H, 8-H), 9.03 (s, 1H, 3-H), 9.03 (s

H). ¹³C NMR (100 MHz, CDCl₃) δ: 18.4 (14-C), 19.8 (13-C), 38.9 (15-C), 58.1 (11-C), 104.2 (3-C), 119.6 (5-C), 121.3 (10-C), 124.1 (6-C), 124.5 (8-C), 125.5 (7-C), 131.3 (4-C), 135.3 (9-C), 149.1 (2-C), 154.4 (12-C). HRMS Calcd for C₁₆H₁₅NO₂ [M + H]⁺: m/z 254.1176, Found 254.1180.

2-(4-methylquinolin-2-yl)malononitrile (50)

Yellow solid, yield: 72%. M. p. > 300 °C. ¹H NMR (400 MHz, DMSO-d6) δ : 2.59 (s, 3H, 13-H), 7.03 (s, 1H, 3-H), 7.44 (m, 1H, 6-H), 7.69 (m, 1H, 7-H), 7.88 (d, *J* = 7.6 Hz, 1H, 8-H), 7.95 (d, *J* = 8.4 Hz, 1H, 4-H). ¹³C NMR (100 MHz, DMSO-d6) δ : 19.2 (13-C), 42.5 (12-C), 117.1 (11-C), 117.5 (3-C), 118.3 (5-C), 122.7 (10-C), 125.2 (6-C), 125.4 (8-C), 132.4 (7-C), 137.8 (4-C), 149.2 (9-C), 155.4 (2-C). HRMS Calcd for C₁₃H₉N₃ [M + H]⁺: m/z 208.0869, Found 208.0875.

2,2-dimethyl-5-(4-methylquinolin-2-yl)-1,3-dioxane-4,6-dione (5p)

Yellow solid, yield: 75%. M. p. 175-177 °C. ¹H NMR (400 MHz, CDCl₃) *δ*: 1.76 (s, 6H, 15-H), 2.74 (s, 3H, 15-H), 7.53 (m, 1H, 6-H), 7.65 (d, *J* = 8.0 Hz, 1H, 5-H), 7.72 (m,1H, 7-H), 7.91 (d, *J* = 8.4 Hz, 1H, 8-H), 8.80 (s, 1H, 3-H). ¹³C NMR (100 MHz, CDCl₃) *δ*: 18.4 (15-C), 19.8 (13-C), 26.4 (14-C), 58.4 (11-C), 102.7 (3-C), 119.0 (6-C), 120.7 (10-C), 123.7 (8-C), 124.5 (5-C), 125.8 (7-C), 131.9 (9-C), 135.4 (4-C), 149.6 (2-C), 154.1 (12-C). HRMS Calcd for C₁₆H₁₅NO₄ [M + H]⁺: m/z 286.1074, Found 286.1088

Ethyl 2-cyano-2-(6-methoxyquinolin-2-yl)acetate (5q)

Yellow solid, yield: 65%. M. p. 184-186 °C. ¹H NMR (400 MHz, CDCl₃) δ : 1.36 (t, 3H, 15-H), 3.89 (s, 3H, 16-H), 4.27 (q, 2H, 14-H), 7.00 (d, J = 2.4 Hz, 1H, 5-H), 7.21-7.31 (m, 3H, 3, 7, 8-H), 7.75 (d, J = 9.6 Hz, 1H, 4-H). ¹³C NMR (100 MHz, CDCl₃) δ : 14.5 (15-C), 55.7 (16-C), 60.4 (14-C), 65.1 (12-C), 108.4 (5-C), 118.4 (3-C), 119.1 (11-C), 119.4 (7-C), 122.2 (8-C), 123.1 (10-C), 130.9 (9-C), 138.0 (4-C), 153.8 (6-C), 156.7 (2-C), 170.0 (13-C). HRMS Calcd for C₁₅H₁₄N₂O₃ [M + H]⁺: m/z 271.1077, Found 271.1081.

2-(6-methoxyquinolin-2-yl)cyclohexane-1,3-dione (5r)

Yellow solid, yield: 71%. M. p. 200-202 °C. ¹H NMR (400 MHz, CDCl₃) δ : 1.98 (m, 2H, 14-H), 2.61 (m, 4H, 13-H), 3.89 (s, 3H, 15-H), 7.04 (m, 1H, 5-H), 7.28-7.32 (m, 1H, 3-H), 7.55 (m,1H, 7-H), 8.03 (m, 1H, 8-H), 9.11 (m, 1H, 4-H). ¹³C NMR (100 MHz, CDCl₃) δ : 19.8 (14-C), 38.6 (13-C), 55.7 (15-C), 65.2 (11-C), 106.5 (5-C), 120.7 (7-C), 121.9 (3-C), 123.2 (8-C), 125.5 (10-C), 130.8 (9-C), 138.7 (4-C), 153.3 (6-C), 157.4 (2-C), 197.7 (12-C). HRMS Calcd for C₁₆H₁₅NO₃ [M + H]⁺: m/z 270.1125, Found 270.1129.

2-(6-methoxyquinolin-2-yl)malononitrile (5s)

Yellow solid, yield: 79%. M. p. > 300 °C. ¹H NMR (400 MHz, DMSO-d6) δ : 3.83 (s, 3H, 13-H), 7.15 (d, J = 9.6 Hz, 1H, 3-H), 7.31-7.35 (m, 2H, 5, 7-H), 7.88 (d, J = 9.2 Hz, 1H, 8-H), 8.07 (d, J = 8.8 Hz, 1H, 4-H). ¹³C NMR (100 MHz, DMSO-d6) δ : 19.0 (13-C), 41.8 (12-C), 56.1 (11-C), 109.2 (3-C), 118.3 (6-C), 119.8 (10-C), 122.3 (8-C), 123.6 (5-C), 133.2 (7-C), 139.5 (9-C), 154.8 (4-C), 156.5 (2-C). HRMS Calcd for C₁₃H₉N₃O [M + H]⁺: m/z 224.0818, Found 224.0821.

5-(6-methoxyquinolin-2-yl)-2,2-dimethyl-1,3-dioxane-4,6-dione (5t)

Yellow solid, yield: 73%. M. p. 201-203 °C. ¹H NMR (400 MHz, CDCl₃) δ : 1.76 (s, 6H, 14-H), 3.93 (s, 3H, 15-H), 7.12 (d, J = 2.4 Hz, 1H, 5-H), 7.37 (m, 1H, 7-H), 7.61 (d, J = 9.2 Hz, 1H, 3-H), 8.09 (d, J = 9.6 Hz, 1H, 8-H), 8.92 (d, J = 9.6 Hz, 1H, 4-H). ¹³C NMR (100 MHz, CDCl₃) δ : 18.4 (15-C), 26.3 (14-C), 55.8 (13-C), 58.3 (11-C), 102.8 (3-C), 107.2 (6-C), 120.0 (10-C), 121.4 (8-C), 123.4 (5-C), 124.6 (7-C), 130.8 (9-C), 139.2 (4-C), 153.1 (2-C), 157.6 (12-C). HRMS Calcd for C₁₆H₁₅NO₅ [M + H]⁺: m/z 302.1023, Found 302.1038.

Ethyl 2-cyano-2-(isoquinolin-1-yl)acetate (5u)

Yellow solid, yield: 72%. M. p. 181-183 °C. ¹H NMR (400 MHz, CDCl₃) δ : 1.39 (t, 3H, 15-H), 4.32 (q, 2H, 14-H), 6.90 (d, J = 5.4 Hz, 1H, 4-H), 7.37 (m, 1H, 5-H), 7.54-7.62 (m, 2H, 6, 7-H), 7.72 (m, 1H, 8-H), 9.44 (d, J = 8.4 Hz, 1H, 3-H). ¹³C NMR (100 MHz, CDCl₃) δ : 14.5 (15-C), 60.9 (14-C), 64.2 (12-C), 112.8 (4-C), 121.7 (11-C), 123.6 (9-C), 126.5 (5-C), 127.3 (7-C), 127.4 (8-C), 127.8 (6-C), 133.1 (10-C), 136.4 (3-C), 155.0 (1-C), 171.5 (13-C). HRMS Calcd for C₁₄H₁₂N₂O₂ [M + H]⁺: m/z 241.0972, Found 241.0975.

2-(isoquinolin-1-yl)malononitrile (5v)

Yellow solid, yield: 63%. M. p. > 300 °C. ¹H NMR (400 MHz, DMSO-d6) δ : 7.15 (d, *J* = 6.8 Hz, 1H, 4-H), 7.55 (d, *J* = 6.4 Hz, 1H, 5-H), 7.70 (s,1H, 6-H), 7.88 (s, 2H, 7, 8-H), 8.94 (d, *J* = 8.4 Hz, 1H, 3-H). ¹³C NMR (100 MHz, DMSO-d6) δ : 41.7 (12-C), 112.9 (4-C), 119.3 (11-C), 122.7 (5-C), 126.2 (7-C), 128.4 (8, 9-C), 129.9 (6-C), 134.4 (10-C), 136.7 (3-C), 155.0 (1-C). HRMS Calcd for C₁₂H₇N₃ [M + H]⁺: m/z 194.0713, Found 194.0716.

6. ¹H NMR, ¹³C NMR and ¹⁹F NMR copies of products (3a-3av)

Fig.1 ¹H NMR spectrum of compound 3a

Fig.2 ¹³C NMR spectrum of compound 3a

Fig.3 ¹H NMR spectrum of compound 3b

Fig.4 ¹³C NMR spectrum of compound 3b

Fig.5 ¹H NMR spectrum of compound 3c

Fig.6 ¹³C NMR spectrum of compound 3c

Fig.7 ¹H NMR spectrum of compound 3d

Fig.8 ¹³C NMR spectrum of compound 3d

Fig.9 ¹H NMR spectrum of compound 3e

Fig.10 ¹³C NMR spectrum of compound 3e

Fig.11 ¹H NMR spectrum of compound 3f

Fig.12 ¹³C NMR spectrum of compound 3f

Fig.13 ¹H NMR spectrum of compound 3g

Fig.14 ¹³C NMR spectrum of compound 3g

Fig.15 ¹H NMR spectrum of compound 3h

Fig.16¹³C NMR spectrum of compound 3h

Fig.17 ¹H NMR spectrum of compound 3i

Fig.18 ¹³C NMR spectrum of compound 3i

Fig.19 ¹H NMR spectrum of compound 3j

Fig.20 ¹³C NMR spectrum of compound 3j

Fig.21 ¹H NMR spectrum of compound 3k

Fig.22 ¹³C NMR spectrum of compound 3k

Fig.23 ¹H NMR spectrum of compound 31

Fig.24 ¹³C NMR spectrum of compound 31

Fig.25 ¹H NMR spectrum of compound 3m

Fig.26 ¹³C NMR spectrum of compound 3m

Fig.27 ¹⁹F NMR spectrum of compound 3m

Fig.28 ¹H NMR spectrum of compound 3n

Fig.29 ¹³C NMR spectrum of compound 3n

Fig.30 ¹H NMR spectrum of compound 30

Fig.31 ¹³C NMR spectrum of compound 30

Fig.32 ¹H NMR spectrum of compound 3p

Fig.33 ¹³C NMR spectrum of compound 3p

Fig.34 ¹H NMR spectrum of compound 3q

Fig.35 ¹³C NMR spectrum of compound 3q

Fig.36 ¹H NMR spectrum of compound 3r

Fig.37 ¹³C NMR spectrum of compound 3r

Fig.38 ¹H NMR spectrum of compound 3s

Fig.39¹³C NMR spectrum of compound 3s

Fig.40 ¹H NMR spectrum of compound 3t

Fig.41 ¹³C NMR spectrum of compound 3t

Fig.42 ¹H NMR spectrum of compound 3u

Fig.43 ¹³C NMR spectrum of compound 3u

Fig.44 ¹H NMR spectrum of compound 3v

Fig.45 ¹³C NMR spectrum of compound 3v

Fig.46 ¹H NMR spectrum of compound 3w

Fig.47 ¹³C NMR spectrum of compound 3w

Fig.48 ¹H NMR spectrum of compound 3x

Fig.49 ¹³C NMR spectrum of compound 3x

Fig.50 ¹H NMR spectrum of compound 3y

Fig.51 ¹³C NMR spectrum of compound 3y

Fig.52 ¹H NMR spectrum of compound 3z

Fig.53 ¹³C NMR spectrum of compound 3z

Fig.54 ¹H NMR spectrum of compound 3aa

Fig.55 ¹³C NMR spectrum of compound 3aa

Fig.56 ¹H NMR spectrum of compound 3ab

Fig.57 ¹³C NMR spectrum of compound 3ab

Fig.58 ¹H NMR spectrum of compound 3ac

Fig.59 ¹³C NMR spectrum of compound 3ac

Fig.60 ¹H NMR spectrum of compound 3ad

Fig.61 ¹³C NMR spectrum of compound 3ad

Fig.62 ¹H NMR spectrum of compound 3ae

Fig.63 ¹³C NMR spectrum of compound 3ae

Fig.64 ¹H NMR spectrum of compound 3af

Fig.65 ¹³C NMR spectrum of compound 3af

Fig.66 ¹H NMR spectrum of compound 3ag

Fig.67 ¹³C NMR spectrum of compound 3ag

Fig.68 ¹H NMR spectrum of compound 3ah

Fig.69 ¹³C NMR spectrum of compound 3ah

Fig.70 ¹H NMR spectrum of compound 3ai

Fig.71 ¹³C NMR spectrum of compound 3ai

Fig.72 ¹H NMR spectrum of compound 3aj

Fig.73 ¹³C NMR spectrum of compound 3aj

Fig.75¹³C NMR spectrum of compound 3ak

Fig.77 ¹³C NMR spectrum of compound 3al

Fig.78 ¹H NMR spectrum of compound 3am

Fig.79 ¹³C NMR spectrum of compound 3am

Fig.80 ¹H NMR spectrum of compound 3an

Fig.81 ¹³C NMR spectrum of compound 3an

Fig.82 ¹H NMR spectrum of compound 3ao

Fig.83 ¹³C NMR spectrum of compound 3ao

Fig.84 ¹H NMR spectrum of compound 3ap

Fig.85 ¹³C NMR spectrum of compound 3ap

Fig.86 ¹H NMR spectrum of compound 3aq

Fig.87 ¹³C NMR spectrum of compound 3aq

Fig.88 ¹H NMR spectrum of compound 3ar

Fig.89 ¹³C NMR spectrum of compound 3ar

Fig.90 ¹H NMR spectrum of compound 3au

Fig.91 ¹³C NMR spectrum of compound 3au

Fig.92 ¹H NMR spectrum of compound 3av

Fig.93 ¹³C NMR spectrum of compound 3av

Fig.94 ¹H NMR spectrum of compound 5a

Fig.95 ¹³C NMR spectrum of compound 5a

Fig.96 ¹H NMR spectrum of compound 5b

Fig.97 ¹³C NMR spectrum of compound 5b

Fig.98 ¹H NMR spectrum of compound 5c

Fig.99 ¹³C NMR spectrum of compound 5c

Fig.100 ¹H NMR spectrum of compound 5d

Fig.101 ¹³C NMR spectrum of compound 5d

Fig.102 ¹H NMR spectrum of compound 5e

Fig.103 ¹³C NMR spectrum of compound 5e

Fig.104 ¹H NMR spectrum of compound 5f

Fig.105 ¹³C NMR spectrum of compound 5f

Fig.106 ¹H NMR spectrum of compound 5g

Fig.107 ¹³C NMR spectrum of compound 5g

Fig.108 ¹H NMR spectrum of compound 5h

Fig.109 ¹³C NMR spectrum of compound 5h

Fig.110 ¹H NMR spectrum of compound 5i

Fig.111 ¹³C NMR spectrum of compound 5i

Fig.112 ¹H NMR spectrum of compound 5j

Fig.113 ¹³C NMR spectrum of compound 5j

Fig.114 ¹H NMR spectrum of compound 5k

Fig.115 ¹³C NMR spectrum of compound 5k

Fig.116 ¹H NMR spectrum of compound 5l

Fig.117 ¹³C NMR spectrum of compound 5l

Fig.118 ¹H NMR spectrum of compound 5m

Fig.119 ¹³C NMR spectrum of compound 5m

Fig.120 ¹H NMR spectrum of compound 5n

Fig.121 ¹³C NMR spectrum of compound 5n

Fig.122 ¹H NMR spectrum of compound 50

Fig.123 ¹³C NMR spectrum of compound 50

Fig.124 ¹H NMR spectrum of compound 5p

Fig.125 ¹³C NMR spectrum of compound 5p

Fig.126 ¹H NMR spectrum of compound 5q

Fig.127 ¹³C NMR spectrum of compound 5q

Fig.128 ¹H NMR spectrum of compound 5r

Fig.129 ¹³C NMR spectrum of compound 5r

Fig.130 ¹H NMR spectrum of compound 5s

Fig.131 ¹³C NMR spectrum of compound 5s

Fig.132 ¹H NMR spectrum of compound 5t

Fig.133 ¹³C NMR spectrum of compound 5t

Fig.134 ¹H NMR spectrum of compound 5u

Fig.135 ¹³C NMR spectrum of compound 5u

Fig.136 1 H NMR spectrum of compound 5v

Fig.137 ¹³C NMR spectrum of compound 5v

8. ¹H NMR copies of the 0.5 gram scale products

Fig.138 ¹H NMR spectrum of compound 3a

Fig.139 ¹H NMR spectrum of compound 3g

Fig.140 ¹H NMR spectrum of compound 31

Fig.141 ¹H NMR spectrum of compound 3m

Fig.142 ¹H NMR spectrum of compound 30

Fig.143 ¹H NMR spectrum of compound 3s

Fig.144 ¹H NMR spectrum of compound 5d

Fig.145 ¹H NMR spectrum of compound 5e