Table of Contents Page No
I. General information and procedure S2-S4
II. Optimization studies S5
III. Spectral data for all products S6-S15
IV. NOE data S16-S17
V. References S17
VI. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra for all products S18-S47
VII. ${ }^{\mathbf{1}} \mathrm{B}$ NMR spectra of $\mathbf{3 d}$ S48
VIII. ORTEP diagram and x-ray data of 3d S49-S50

General information:

All reagents were purchased from Sigma-Aldrich, Fisher-Acros, TCI, or Alfa-Aesar, and were used without further purification unless otherwise noted. All manipulations of oxygen- and moisture-sensitive materials were conducted with a standard Schlenk technique. Flash column chromatography was performed using silica gel (230-400 mesh). Analytical thin layer chromatography (TLC) was performed on $60 \mathrm{~F}_{254}(0.25 \mathrm{~mm})$ plates and visualization was accomplished with UV light (254 and 354 nm) and/or an aqueous alkaline KMnO_{4} solution followed by heating. Proton and carbon nuclear magnetic resonance spectra $\left({ }^{1} \mathrm{H}\right.$ NMR and ${ }^{13} \mathrm{C}$ NMR) were recorded on Bruck 400 or 500 spectrometer with $\mathrm{Me}_{4} \mathrm{Si}$ or solvent resonance as the internal standard (${ }^{1} \mathrm{H} \mathrm{NMR}, \mathrm{Me}_{4} \mathrm{Si}$ at $0 \mathrm{ppm}, \mathrm{CHCl}_{3}$ at $7.24 \mathrm{ppm}, \mathrm{DMSO}$ at $2.49 \mathrm{ppm} ;{ }^{13} \mathrm{C}$ $\mathrm{NMR}, \mathrm{Me}_{4} \mathrm{Si}$ at $0 \mathrm{ppm}, \mathrm{CDCl}_{3}$ at $77.0 \mathrm{ppm}, d_{6}$ - DMSO at 39.7 ppm). ${ }^{1} \mathrm{H}$ NMR data are reported as follows: chemical shift, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, quint $=$ quintet, sext $=$ sextet, sept $=$ septet, $\mathrm{br}=$ broad, $\mathrm{m}=$ multiplet), coupling constants (Hz), and integration. IR spectral data were recorded on a Brucker TENSOR 37 spectrometer. Melting points (mp) were determined using a SRS OptiMelt MPA100. Starting materials 1,6 -enynes were prepared according to the literature procedure. ${ }^{1-3}$

General procedure for the borylative cyclization of activated 1,6 -enynes (1) with bis(pinacolato)diboron (2):

A sealed tube containing $\mathrm{Ni}(\operatorname{cod})_{2}(0.025 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, and bis(pinacolato)diboron 2 ($0.63 \mathrm{mmol}, 2.52$ equiv) was evacuated and purged with nitrogen gas for three times. Freshly distilled toluene $(0.75 \mathrm{~mL})$ and $\mathrm{P}(n-\operatorname{Pr})_{3}(0.025 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ were added and the mixture was kept stirring until the solution became yellow. Then enyne 1 ($0.25 \mathrm{mmol}, 1.0$ equiv) and methanol (0.25 mL) were added to the reaction mixture, sealed with cap and stirred at rt . for 24 h . The mixture was filtered through a Celite pad and washed with ethyl acetate/hexane (v/v $=70: 30$). The filtrate was concentrated and the residue was purified through a column chromatography by using hexane and ethyl acetate as eluent to afford the desired products 3 .

General procedure for the borylative cyclization of unactivated 1,6-enynes (5) with bis(pinacolato)diboron (2):

A sealed tube containing $\mathrm{Ni}(\operatorname{cod})_{2}(0.04 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathrm{P}(o \text {-tolyl})_{3}(0.06 \mathrm{mmol}, 15 \mathrm{~mol} \%)$, $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($0.4 \mathrm{mmol}, 1.0$ equiv), bis(pinacolato)diboron $2(0.4 \mathrm{mmol}, 1.0$ equiv) and 1,6 -enynes 5 ($0.48 \mathrm{mmol}, 1.2$ equiv) were evacuated and purged with nitrogen for three times. Freshly distilled dry $\mathrm{MeOH}(2.0 \mathrm{~mL})$ was added to the sealed tube, and then sealed with cap. The reaction mixture was kept stirring at rt . for 12 h , then diluted with dichloromethane and stirred in the air for 10 min . The mixture was filtered through a Celite and silica gel pad, and then washed with dichloromethane. The filtrate was concentrated and the residue was purified through a column chromatography by using hexane and ethyl acetate as eluent to afford the desired products 6 .

Procedure for the palladium-catalyzed coupling reaction of aromatic iodides and alkenyl boronates 3 : ${ }^{4}$

A $10-\mathrm{mL}$ sealed tube containing $\operatorname{Pd}(\mathrm{dba})_{2}(0.1 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ was evacuated and purged with nitrogen for three times. Freshly distilled THF $(1.0 \mathrm{~mL})$ and iodobenzene ($1.0 \mathrm{mmol}, 1.0$ equiv) were added to the reaction mixture and the system was stirred at rt . for 5 min . Then, alkenyl boronate 3 (1.0 mmol , 1.0 equiv) dissolved in THF (1.0 mL) and an aqueous solution of $3 \mathrm{~N} \mathrm{KOH}(0.25 \mathrm{~mL})$ were sequentially added to the solution and the mixture was heated at $80^{\circ} \mathrm{C}$ for stirring 6 h . The mixture was cooled, filtered through a short Celite pad and washed with dichloromethane. The filtrate was concentrated and the residue was purified through a column chromatography by using hexane and ethyl acetate $(20: 1)$ as eluent to afford the compounds 7.

Procedure for the preparation of 2-methyl-1-phenylheptane-1,5-dione (8): ${ }^{4}$

A $25-\mathrm{mL}$ round-bottomed side-arm flask containing alkenylboronate $3(1.0 \mathrm{mmol})$ was dissolved in THF/ethanol $(2.0 \mathrm{~mL}+1.0 \mathrm{~mL})$ at room temperature. To this solution, 1.0 mL of 30% aq. $\mathrm{H}_{2} \mathrm{O}_{2}$ and 1.0 mL of 1 N NaOH were added and stirred at room temperature for 30 \min. The reaction mixture was quenched slowly by aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution until the
effervescence ceases. Product was extracted with ether, dried in MgSO_{4} and was purified through a column chromatography by using hexane and ethyl acetate $(20: 1)$ as eluent to afford the compounds 8.

Procedure for the preparation of (Z)-1-benzyl-3-benzylidene-4-(hydroxymethyl) -pyrrolidin-2-one (9):

An aqueous solution of NaOH ($3 \mathrm{M}, 3.0$ equiv) was slowly added to a solution of alkylboronate $\mathbf{6 a}(50 \mathrm{mg})$ in THF $(5 \mathrm{~mL})$ at RT. The mixture was then cooled to $0{ }^{\circ} \mathrm{C}$, whereupon a solution of $\mathrm{H}_{2} \mathrm{O}_{2}(33 \% \mathrm{w} / \mathrm{v}, 30$ equiv) was added dropwise and the resulting mixture was stirred at rt . for 1.5 h . Water and $\mathrm{Et}_{2} \mathrm{O}$ were then added, and the aqueous layer was separated and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$. The combined organic fractions were dried over anhydrous MgSO_{4} and filtered through anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under vacuum and the residue was purified through a column chromatography. Primary alcohol 9 was obtained in 90% yield as light yellow oil.

Procedure for the preparation of potassium (Z)-((1-benzyl-4-benzylidene-5-oxo -pyrrolidin-3-yl)methyl) trifluoroborate (10):

A saturated aqueous solution of $\mathrm{KHF}_{2}(4.5 \mathrm{M}, 4.0$ equiv $)$ was slowly added to a solution of alkylboronate $\mathbf{6 a}(100 \mathrm{mg})$ in acetonitrile and kept stirring at rt . for 3 h . The solvent was evaporated, and the remaining white residue was repeatedly extracted with hot acetone, and the combined extracts were filtered to remove inorganic impurities. The solvent was completely removed under vacuum and the resulted white solid was washed with warm $\mathrm{Et}_{2} \mathrm{O}$, and then dried under vacuum without further purification. Primary alkyltrifluoroborate salt $\mathbf{1 0}$ was obtained in 93% yield as a white solid.

Table S1. Optimization studies for the borylative cyclization of (5) with (2) ${ }^{\text {a }}$

Entry	Ligand (15 mol\%)	Additive	Temp (${ }^{\circ} \mathrm{C}$)	Yield(\%) ${ }^{\text {b }}$
1	PPh_{3}	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	50	-
2	$\mathrm{P}(\mathrm{n}-\mathrm{Bu})_{3}$	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	50	-
3	$\mathrm{P}(t-\mathrm{Bu})_{3}$	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	50	30
4	$\mathrm{P}\left(\right.$ anisyl) ${ }_{3}$	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	50	50
5	$\mathrm{P}(\mathrm{OPh})_{3}$	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	50	35
6	Dppf	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	50	44
7	$\mathrm{P}(\text { o-tolyl })_{3}$	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	50	54
8	$\mathrm{P}\left(\right.$ o-tolyl) ${ }_{3}$	CsF	50	22
9	$\mathrm{P}\left(\right.$ o-tolyl) ${ }_{3}$	-	50	30
10	$\mathrm{P}\left(\right.$ o-tolyl) ${ }_{3}$	$\mathrm{NaO}^{t} \mathrm{Bu}$	50	46
11	$\mathrm{P}(\text { o-tolyl })_{3}$	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	rt	62
12	$\mathrm{P}(0 \text {-tolyl })_{3}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	rt	29

${ }^{\text {a }}$ All reactions were carried out using 1,6-enynes (5a) (0.48 mmol), bis(pinacolato)diboron (2) (0.40 mmol), catalyst $(0.04 \mathrm{mmol})$, ligand $(0.06 \mathrm{mmol})$, additive $(0.6 \mathrm{mmol})$ and methanol $(2.0 \mathrm{~mL})$ for 12 h . ${ }^{\text {b }}$ Yields were measured from the crude products by the ${ }^{1} \mathrm{H}$ NMR integration method using mesitylene as an internal standard.

Table S2. Optimization Studies ${ }^{\text {a }}$

$\mathrm{Bn}-\mathrm{N}$	$\overline{=} \mathrm{Ph}+\geqslant$			
Entry	Ratio (5a:2)	$\mathrm{P}(o-\text { tolyl })_{3}(\mathrm{~mol} \%)$	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (eq.)	Yield(\%) ${ }^{\text {b }}$
1	1:1.5	10	1.5	66
2	1:1.5	15	1.5	76
3	1:1.5	20	1.5	72
4	1:1.5	15	0.5	75
5	1:1.5	15	1.0	80
6	1:1.5	15	1.5	76
7	1:1.2	15	1.5	75
8	1.2 : 1	15	1.0	89

${ }^{\mathrm{a}}$ All reactions were carried out using 1, 6-enynes (5a) ($0.40-0.48 \mathrm{mmol}$), bis(pinacolato)diboron (2) ($0.40-0.60$ $\mathrm{mmol})$, catalyst (0.04 mmol), ligand ($0.04-0.08 \mathrm{mmol}, 10-20 \mathrm{~mol} \%$) and methanol (2.0 mL) for 12 h . ${ }^{\mathrm{b}}$ Yields were measured from the crude products by the ${ }^{1} \mathrm{H}$ NMR integration method using mesitylene as an internal standard.

Spectral data for all products:

(E)-1-(2-((4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)(p-tolyl)methylene)cyclopentyl)pr opan-2-one (3a)

Yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.07$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 6.97 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.59-3.54(\mathrm{~m}, 1 \mathrm{H}), 2.79(\mathrm{dd}, J=16.0,2.8$ $\mathrm{Hz}, 1 \mathrm{H}), 2.41$ (dd, $J=16.0,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.30$ (s, 3H), 2.20-2.11 (m, 4H), 1.85-1.78 (m, 1H), 1.64-1.54 (m, 2H), 1.53-1.41 (m, 2H), 1.22 (s, 12H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 208.4,166.5,140.2$, $134.8,128.5,128.4,83.1,50.9,39.9,32.8,31.4,29.5,24.8,24.7$, 23.2, 21.1; HRMS [(FAB), $\left.\mathrm{M}^{+}\right]: 354.2369$ (calcd for $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{BO}_{3} 354.2366$); IR (KBr): 2977, $2869,1712,1612,1511,1349,1303,1141,971,809,763 \mathrm{~cm}^{-1}$.
(E)-1-(2-((4-Methoxyphenyl)(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methylene)cycl opentyl)propan-2-one (3b)

Yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.00(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$, $6.80(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.57-3.53(\mathrm{~m}, 1 \mathrm{H}), 2.78(\mathrm{dd}$, $J=16.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{dd}, J=15.6,11.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.35-2.28$ $(\mathrm{m}, 1 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 1.86-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.64-1.54(\mathrm{~m}, 2 \mathrm{H})$, 1.53-1.38 (m, 2H), $1.22(\mathrm{~s}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 208.4, 166.3, 157.3, 135.5, 129.7, 113.1, 83.1, 55.1, 50.9, 39.8, $32.8,31.4,29.5,24.8,24.7,23.3$; HRMS [(FAB), $\left.\mathrm{M}^{+}\right]: 370.2318$ (calcd for $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{BO}_{4}$ 370.2315); IR (KBr): 2969, 1712, 1604, 1511, 1465, 1349, 1303, 1241, 1141, 971, 809, 709, $694 \mathrm{~cm}^{-1}$.
(E)-1-(2-(Phenyl(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methylene)cyclopentyl)pro pan-2-one (3c)

Yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.25-7.21(\mathrm{~m}, 2 \mathrm{H})$, 7.13-7.09 (m, 1H), 7.04-7.09 (m, 2H), 3.56-3.51 (m, 1H), 2.76 (dd, $J=16.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.38 (dd, $J=16.0,11.6 \mathrm{~Hz}, 1 \mathrm{H})$, 2.30-2.23 (m, 1H), 2.15 (s, 3H), 2.12-2.07 (m, 1H), 1.82-1.75 (m, $1 \mathrm{H}), 1.60-1.43(\mathrm{~m}, 3 \mathrm{H}), 1.19(\mathrm{~s}, 6 \mathrm{H}), 1.18(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 208.4,166.9,143.3,128.7,127.7,125.4$, 83.1, 50.9, 39.8, 32.8,31.5, 29.5, 24.8, 24.7, 23.2; HRMS [(FAB), (M+H) ${ }^{+}$: 341.2286 (calcd for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{BO}_{3} 341.2288$); IR (KBr): 2977, 1712, 1612, 1357, 1303, 1141, 971, 809, 786, 763, $709 \mathrm{~cm}^{-1}$.
(E)-2-(2-((4-Acetylphenyl)(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methylene)cyclop entyl)-1-phenylethan-1-one (3d)

Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.04$ ($\mathrm{d}, \mathrm{J}=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.88(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.45(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.75-3.73$ (m, 1H), 3.40 (dd, $J=16.8,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{dd}, J=16.4$, $10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}), 2.41-2.32(\mathrm{~m}, 1 \mathrm{H}), 2.21-2.12(\mathrm{~m}$, $1 \mathrm{H}), 1.95-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.54(\mathrm{~m}$, 2H), $1.20(\mathrm{~s}, 6 \mathrm{H}), 1.17(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 199.1,198.0,168.6,149.0$, $137.3,134.5,132.8,128.9,128.5,128.1,128.0,83.4,45.8,40.2,33.3,31.9,26.5,24.8,24.6$, 23.4; ${ }^{11} \mathrm{~B}$ NMR ($160 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 29.737; HRMS [(FAB), $\left.\mathrm{M}^{+}\right]: 444.2470$ (calcd for $\mathrm{C}_{28} \mathrm{H}_{33} \mathrm{BO}_{4} 444.2472$); IR (KBr): 2977, 2869, 1681, 1604, 1450, 1357, 1303, 1265, 1141, 971, $802,740 \mathrm{~cm}^{-1}$.
(E)-1-(2-((4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)(thiophen-2-yl)methylene)cyclope ntyl)propan-2-one (3e)

Brown oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.18(\mathrm{~d}, J=5.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.97-6.95(\mathrm{~m}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.50-3.45(\mathrm{~m}$, $1 \mathrm{H}), 2.74(\mathrm{dd}, J=16.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.64-2.57(\mathrm{~m}, 1 \mathrm{H})$, 2.51-2.43 (m, 2H), $2.14(\mathrm{~s}, 3 \mathrm{H}), 1.83-1.60(\mathrm{~m}, 3 \mathrm{H}), 1.54-1.51$ $(\mathrm{m}, 1 \mathrm{H}), 1.28(\mathrm{~s}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 207.8$, $164.4,144.6,126.4,125.7,123.8,83.6,49.9,40.9,33.5,31.4$, 29.9, 24.8, 23.2; HRMS [(FAB), $\left.\mathrm{M}^{+}\right]: 346.1777$ (calcd for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{BO}_{3} \mathrm{~S} 346.1774$); IR (KBr): 2977, 2877, 1712, 1604, 1349, 1303, 1234, 1141, 964, 809, 794, $755 \mathrm{~cm}^{-1}$.
(E)-1-Phenyl-2-(2-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)(thiophen-2-yl)methylen e)cyclopentyl)ethan-1-one (3f)

Brown solid, m.p.: 84-85 ${ }^{\circ} \mathrm{C} . ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $7.99(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.20(\mathrm{dd}, J=4.8,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.99-6.95(\mathrm{~m}, 2 \mathrm{H})$, $3.67-3.63(\mathrm{~m}, 1 \mathrm{H}), 3.31(\mathrm{dd}, J=17.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{dd}, J=$ $17.2,11.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.70-2.64(\mathrm{~m}, 1 \mathrm{H}), 2.57-2.48(\mathrm{~m}, 1 \mathrm{H})$, 1.93-1.84 (m, 2H), 1.78-1.70 (m, 2H), $1.22(\mathrm{~s}, 6 \mathrm{H}), 1.20(\mathrm{~s}, 6 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 199.2,164.1,144.7,137.4,132.8,128.5,128.0,126.4,125.7$, $123.8,83.6,44.9,41.2,33.7,31.8,24.8,24.6,23.4$; HRMS [(FAB), $\left.\mathrm{M}^{+}\right]: 408.1930$ (calcd for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{BO}_{3} \mathrm{~S} 408.1930$); IR (KBr): 2977, 2877, 1689, 1596, 1450, 1349, 1303, 1141, 964, 786, $763 \mathrm{~cm}^{-1}$.
(E)-1-(2-(1-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)ethylidene)cyclopentyl)propan-

2-one (3g)

Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.44-3.41(\mathrm{~m}, 1 \mathrm{H})$, 2.58 (dd, $J=15.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.37-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.26-2.18(\mathrm{~m}$, $2 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 1.71-1.57(\mathrm{~m}, 6 \mathrm{H}), 1.56-1.49(\mathrm{~m}, 1 \mathrm{H}), 1.23(\mathrm{~s}$, $6 \mathrm{H}), 1.22(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 209.0,165.6$, $82.8,50.1,39.9,31.5,31.3,29.2,24.9,24.8,22.4,17.4$; HRMS $\left[(\mathrm{FAB}), \mathrm{M}^{+}\right]: 278.2056$ (calcd for $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{BO}_{3}$ 278.2053); IR (KBr): 2977, 2869, 1712, 1635, 1357, 1303, 1234, 1149, 1087, 964, 848, 809, 755, $701 \mathrm{~cm}^{-1}$.
(E)-1-Phenyl-2-(2-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethylidene)cyclopentyl)ethan-1-one (3h)

Colorless solid, m.p.: $83-84{ }^{\circ} \mathrm{C} . ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $8.04(\mathrm{dd}, J=8.4,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.55-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.41(\mathrm{~m}$, 2 H), $3.61-3.58(\mathrm{~m}, 1 \mathrm{H}), 3.26(\mathrm{dd}, J=16.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.73$ (dd, $J=16.0,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.44-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.28-2.19(\mathrm{~m}, 1 \mathrm{H})$, $1.73-1.64(\mathrm{~m}, 5 \mathrm{H}), 1.60-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.22(\mathrm{~s}, 6 \mathrm{H}), 1.16(\mathrm{~s}, 6 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 199.9,165.8,137.3,132.6,128.4$, $128.3,82.8,44.9,40.2,31.8,31.6,24.8,22.5,17.5 ; \operatorname{HRMS}\left[(\mathrm{FAB}),(\mathrm{M}+\mathrm{H})^{+}\right]: 341.2291$ (calcd for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{BO}_{3} 341.2288$); IR (KBr): 2977, 2869, 1681, 1627, 1450, 1357, 1295, 1141, 1087, 964, 809, $786 \mathrm{~cm}^{-1}$.
(Z)-1-(2-((4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)methylene)cyclopentyl)propan-2one (3i)

Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.30(\mathrm{~s}, 1 \mathrm{H})$, 3.35-3.30 (m, 1H), 2.76 (dd, $J=15.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.48-2.41$ (m, $1 \mathrm{H}), 2.35-2.23(\mathrm{~m}, 2 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 1.85-2.23(\mathrm{~m}, 1 \mathrm{H})$, $1.70-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.38(\mathrm{~m}, 1 \mathrm{H}), 1.23(\mathrm{~s}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 208.6,174.8,82.7,50.5,39.4,36.5,31.8$, 29.2, 24.8, 24.7, 23.3; HRMS [(FAB), M^{+}]: 264.1895 (calcd for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{BO}_{3}$ 264.1897); IR (KBr): 2977, 2877, 1712, 1643, 1365, 1319, 1257, 1149, 971, 840, 809, $709 \mathrm{~cm}^{-1}$.
(Z)-1-Phenyl-2-(2-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methylene)cyclopentyl)et han-1-one (3j)

Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.09(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.54(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.34(\mathrm{~s}$, $1 \mathrm{H}), 3.54-3.46(\mathrm{~m}, 2 \mathrm{H}), 2.71(\mathrm{dd}, J=15.2,10.8 \mathrm{~Hz}, 1 \mathrm{H})$, 2.54-2.48 (m, 1H), 2.39-2.31 (m, 1H), 1.86-1.51 (m, 4H), $1.23(\mathrm{~s}$, $6 \mathrm{H}), 1.18(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 199.7,174.9$, $137.1,132.8,128.4,128.3,82.8,45.5,39.9,36.9,32.1,24.9,24.8$, 23.5; HRMS [(FAB), $\left.\mathrm{M}^{+}\right]: 326.2052$ (calcd for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{BO}_{3} 326.2053$); IR (KBr): 2969, 2877, $1681,1643,1596,1450,1365,1319,1257,1141,971,802,755 \mathrm{~cm}^{-1}$.
(Z)-1-Phenyl-2-(4-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)(p-tolyl)methylene)tetra hydrofuran-3-yl)ethan-1-one (3k)

Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.99$ (dd, $J=8.4$, $1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.57-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.47-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.47(\mathrm{dd}, J=15.6,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.13(\mathrm{~d}, \mathrm{~J}=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.97-3.93(\mathrm{~m}, 1 \mathrm{H}), 3.86-3.81(\mathrm{~m}$, $2 \mathrm{H}), 3.40-3.24(\mathrm{~m}, 2 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{~s}, 6 \mathrm{H}), 1.16(\mathrm{~s}, 3 \mathrm{H})$, $1.12(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 198.9,160.9$, $138.5,137.1,135.6,132.9,128.8,128.6,128.0,127.9,83.5,73.8,70.9,44.2,40.2,24.9,24.7$, 24.6, 21.1; HRMS [(FAB), $\left.\mathrm{M}^{+}\right]: 418.2315$ (calcd for $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{BO}_{4} 418.2315$); IR (KBr): 2977, $2923,2854,2360,1681,1511,1450,1357,1311,1141,971,809,763,609 \mathrm{~cm}^{-1}$.
(Z)-1-Phenyl-2-(4-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)(p-tolyl)methylene)-1-tos ylpyrrolidin-3-yl)ethan-1-one (31)

Brown solid, m.p.: $177-178{ }^{\circ} \mathrm{C} . ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.93(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.59-7.55(\mathrm{~m}, 3 \mathrm{H}), 7.48-7.44(\mathrm{~m}$, $2 \mathrm{H}), 7.23(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.91(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.14(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.86-3.81(\mathrm{~m}, 1 \mathrm{H})$, 3.47-3.40 (m, 2H), 3.23-3.21 (m, 2H), 3.12 (dd, $J=10.0,6.4$ $\mathrm{Hz}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{~s}, 6 \mathrm{H}), 1.06(\mathrm{~s}, 6 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 198.2, 155.8, 143.6, 137.7, $136.8,135.9,133.2,132.2,129.6,128.9,128.6,127.9,127.8,127.7,86.3,53.2,51.6,44.5$, 39.1, 24.7, 24.5, 21.5, 21.2; HRMS [(FAB), (M+H) ${ }^{+}$: 572.2640 (calcd for $\mathrm{C}_{33} \mathrm{H}_{39} \mathrm{BNO}_{5} \mathrm{~S}$ 572.2642); IR (KBr): 2977, 2923, 2854, 1681, 1511, 1450, 1349, 1157, 1095, 1033, 971, 809, $786,763 \mathrm{~cm}^{-1}$.
(Z)-1-Phenyl-2-(3-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)(p-tolyl)methylene)tetra hydro-2H-pyran-4-yl)ethan-1-one (3m)

Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.01$ (d, $J=8.0$ Hz, 2H), 7.58-7.53 (m, 1H), 7.46 (t, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.07 (d, J $=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.91(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.33(\mathrm{~d}, J=14.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.96(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.76-3.71(\mathrm{~m}, 3 \mathrm{H}), 3.51(\mathrm{dd}, J=$ $16.0,10.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.23 (dd, $J=16.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H})$, 2.16-2.08 (m, 1H), 1.73-1.69(m, 1H), $1.16(\mathrm{~s}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 198.8,149.6,137.4,136.9,135.6,132.9$, $128.7,128.6,128.5,128.1,83.5,65.7,63.2,41.5,34.8,30.1,24.7,24.6,21.1$; HRMS [(FAB), M^{+}]: 432.2474 (calcd for $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{BO}_{4} 432.2472$); IR (KBr): 2977, 2931, 2854, 1681, 1604, $1511,1450,1349,1303,1141,971,809,771,755 \mathrm{~cm}^{-1}$.
(Z)-1-Benzyl-3-benzylidene-4-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)pyrr olidin-2-one (6a)

Light yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.85$ ($\mathrm{d}, \mathrm{J}=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.34-7.23(\mathrm{~m}, 8 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 4.52(\mathrm{~s}, 2 \mathrm{H}), 3.47(\mathrm{t}, J=$ $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.12-3.11(\mathrm{~m}, 1 \mathrm{H}), 2.98-2.94(\mathrm{~m}, 1 \mathrm{H}), 1.24-1.18(\mathrm{~m}$ $+\mathrm{s}, 13 \mathrm{H}), 1.10-1.04(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $166.9,137.1,136.5,134.8,133.3,130.5,128.6,128.1,128.0$, 127.7, 127.4, 83.4, 51.6, 46.9, 34.6, 24.9, 24.7; HRMS [(FAB), M^{+}]: 403.2318 (calcd for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{BNO}_{3} 403.2319$); IR (KBr): 3081, 2940, 2879, 1697, 1640, 1493, 1346, 1225, 1056, $990 \mathrm{~cm}^{-1}$.
(Z)-1-Benzyl-3-(4-methylbenzylidene)-4-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)m ethyl)pyrrolidin-2-one (6b)

Light yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.72$ ($\mathrm{d}, \mathrm{J}=5.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.25-7.18(\mathrm{~m}, 5 \mathrm{H}), 7.70(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.60(\mathrm{~s}, 1 \mathrm{H})$, $4.46(\mathrm{~s}, 2 \mathrm{H}), 3.41(\mathrm{~m}, 1 \mathrm{H}), 3.05(\mathrm{~m}, 1 \mathrm{H}), 2.92-2.89(\mathrm{~m}, 1 \mathrm{H}), 2.27$ $(\mathrm{s}, 3 \mathrm{H}), 1.12(\mathrm{~s}+\mathrm{m}, 13 \mathrm{H}), 1.02-0.98(\mathrm{~m}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 167.1,138.1,136.7,136.2,133.4,132.0,130.6$, 128.6, 128.6, 127.4, 83.4, 51.7, 46.9, 34.7, 24.9, 24.7, 21.4; HRMS [(FAB), $\left.\mathrm{M}^{+}\right]: 417.2474$ (calcd for $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{BNO}_{3} 417.2475$); IR (KBr): 3087, 2953, $2861,1696,1625,1485,1321,1276,1032,997 \mathrm{~cm}^{-1}$.
(Z)-1-Benzyl-3-(4-methoxybenzylidene)-4-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) methyl)pyrrolidin-2-one (6c)

Yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.91(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $2 \mathrm{H}), 7.31-7.23(\mathrm{~m}, 5 \mathrm{H}), 6.85(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.60(\mathrm{~s}, 1 \mathrm{H})$, $4.15(\mathrm{~s}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.48-3.43(\mathrm{~m}, 1 \mathrm{H}), 3.10-3.07(\mathrm{~m}, 1 \mathrm{H})$, 2.96-2.92 (m, 1H), 1.23-1.16 (m + 2s, 13H), 1.21-1.01 (m, 1H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 167.3,159.5,136.7,134.9,133.1$, $132.4,128.6,128.1,127.7,127.4,113.1,83.3,55.2,51.7,46.9$, 34.7, 24.9, 24.7; HRMS [(FAB), $\left.\mathrm{M}^{+}\right]: 433.2423$ (calcd for $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{BNO}_{4} 433.2424$); IR (KBr): $3067,2931,2842,1697,1641,1454,1353,1291,1041 \mathrm{~cm}^{-1}$.
(Z)-4-((1-Benzyl-2-oxo-4-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)pyrrolidin -3-ylidene)methyl)benzonitrile (6d)

Yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.89(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $2 \mathrm{H}), 7.58(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.23(\mathrm{~m}, 5 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H})$, $4.50(\mathrm{~s}, 2 \mathrm{H}), 3.49(\mathrm{dd}, J=10.0 \mathrm{~Hz}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{~m}, 1 \mathrm{H})$, $3.01-2.98(\mathrm{~m}, 1 \mathrm{H}), 1.24-1.21(\mathrm{~m}, 1 \mathrm{H}), 1.17(\mathrm{~s}, 12 \mathrm{H}), 1.12-1.10$ $(\mathrm{m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.3,140.7,139.3$, $136.1,131.4,130.9,130.9,128.7,128.2,127.6,119.1,111.0,83.5$, 51.6, 47.0, 34.6, 24.9, 24.7; HRMS [(FAB), $\left.\mathrm{M}^{+}\right]: 428.2269$ (calcd for $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{BN}_{2} \mathrm{O}_{3}$ 428.2271); IR (KBr): 3091, 2964, 2890, 1695, 1663, 1472, 1355, 1270, 1081, $971 \mathrm{~cm}^{-1}$.
(Z)-3-(4-Acetylbenzylidene)-1-benzyl-4-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)me thyl)pyrrolidin-2-one (6e)

Pale yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.90-7.86(\mathrm{~m}, 4 \mathrm{H})$, $7.31-7.22(\mathrm{~m}, 5 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 3.47(\mathrm{t}, J=9.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.14-3.11(\mathrm{~m}, 1 \mathrm{H}), 3.00-2.96(\mathrm{~m}, 1 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H})$, $1.21-1.16(\mathrm{~m}+2 \mathrm{~s}, 13 \mathrm{H}), 1.12-1.06(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 197.8,166.5,139.7,139.5,136.3,136.0,131.7,130.5$, $128.6,128.2,127.7,127.5,83.4,51.5,47.0,34.6,26.6,24.9,24.7$; HRMS [(FAB), $\left.\mathrm{M}^{+}\right]: 445.2419$ (calcd for $\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{BNO}_{4} 445.2424$); IR (KBr): 3071, 2936, $2842,1699,1705,1642,1460,1333,1287,1057,986 \mathrm{~cm}^{-1}$.
(Z)-1-Benzyl-3-ethylidene-4-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)pyrroli din-2-one (6f)

Light yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.29(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.25-7.22(\mathrm{~m}, 3 \mathrm{H}), 5.91(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{dd}, J=$ $19.6,14.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.34(\mathrm{t}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.34-2.83(\mathrm{~m}, 2 \mathrm{H})$, $2.18(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.17-1.16(2 \mathrm{~s}, 12 \mathrm{H}), 0.91-0.87(\mathrm{~m}, 1 \mathrm{H})$, 0.86-0.81 (m, 1H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.9,136.8$, $136.3,128.6,128.1,127.3,83.3,51.7,46.5,32.9,24.8,24.7,13.0$; HRMS [(FAB), $\left.\mathrm{M}^{+}\right]: 341.2151$ (calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{BNO}_{3}$ 341.2162); IR (KBr): 3032, 2912, $2862,1701,1640,1457,1302,1275,1098,976 \mathrm{~cm}^{-1}$.
(Z)-1-Benzyl-3-hexylidene-4-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)pyrrol idin-2-one (6g)

Light yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.28(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.27-7.21(\mathrm{~m}, 3 \mathrm{H}), 5.81(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{dd}, J=$ $14.8,6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.35(\mathrm{t}, \mathrm{J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.91-2.89(\mathrm{~m}, 1 \mathrm{H})$, 2.85-2.71 (m, 3H), 1.40-1.27 (m, 6H), $1.17(\mathrm{~s}, 6 \mathrm{H}), 1.16(\mathrm{~s}, 6 \mathrm{H})$, $1.08-1.04(\mathrm{~m}, 1 \mathrm{H}), 0.94-0.90(\mathrm{~m}, 1 \mathrm{H}), 0.88-0.85(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.6,136.8,136.7,135.4,128.5$, $128.1,127.3,83.3,51.7,46.5,32.9,31.5,29.4,26.5,24.9,24.7,22.6,14.0$; HRMS [(FAB), M^{+}]: 397.2794 (calcd for $\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{BNO}_{3} 397.2788$); IR (KBr): 3021, 2989, 2891, 1703, 1689, 1462, 1367, 1208, 1136, $976,935 \mathrm{~cm}^{-1}$.
(Z)-1-Allyl-3-benzylidene-4-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)pyrroli din-2-one (6h)

Light yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.81$ (d, $J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.28(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~s}$, $1 \mathrm{H}), 5.76-5.70(\mathrm{~m}, 1 \mathrm{H}), 5.21-5.14(\mathrm{~m}, 2 \mathrm{H}), 3.93(\mathrm{~d}, J=6.0 \mathrm{~Hz}$, $2 \mathrm{H}), 3.54(\mathrm{dd}, J=9.6,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.15-3.11(\mathrm{~m}, 1 \mathrm{H}), 3.04-3.00$ $(\mathrm{dd}, J=9.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.27-1.21(\mathrm{~m}+\mathrm{s}, 13 \mathrm{H}), 1.13-1.07(\mathrm{~m}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 166.6, 137.1, 134.7, 133.1, $132.3,130.4,127.9,127.6,117.6,83.4,51.7,44.5,34.6,24.9,24.7 ;$ HRMS [(FAB), $\left.\mathrm{M}^{+}\right]$: 353.2162 (calcd for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{BNO}_{3} 353.2162$); IR (KBr): 3030, 2934, 2821, 1695, 1634, 1472, 1346, 1056, $990,934 \mathrm{~cm}^{-1}$.
(Z)-3-Benzylidene-1-methyl-4-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)pyrr olidin-2-one (6i)

Light yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.80(\mathrm{~d}, \mathrm{~J}=7.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.29(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~s}$, $1 \mathrm{H}), 3.59(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.14-3.10(\mathrm{~m}, 1 \mathrm{H}), 3.06-3.02(\mathrm{~m}$, $1 \mathrm{H}), 2.89(\mathrm{~s}, 3 \mathrm{H}), 1.31-1.24(\mathrm{~m}, 1 \mathrm{H}), 1.22(\mathrm{~s}, 12 \mathrm{H}), 1.11-1.05(\mathrm{~m}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 167.2,137.1,134.8,132.7$, $130.5,127.9,127.6,83.4,54.4,34.6,30.1,24.9,24.8$; HRMS [(FAB), $\left.\mathrm{M}^{+}\right]: 327.2001$ (calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{BNO}_{3} 327.2006$); IR (KBr): 3015, 2856, 2821, 1699, 1656, 1443, 1346, 1372, 1044, 972, $943 \mathrm{~cm}^{-1}$.
(Z)-3-Benzylidene-4-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)-1-tosylpyrroli dine (6j)
 Yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.69(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.32-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.19(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $6.22(\mathrm{~s}, 1 \mathrm{H}), 4.23(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.61$ $(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.97-2.93(\mathrm{~m}, 1 \mathrm{H}), 2.78(\mathrm{t}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{~s}$, $3 \mathrm{H}), 1.17(\mathrm{~s}, 6 \mathrm{H}), 1.15(\mathrm{~s}, 6 \mathrm{H}), 1.14-1.09(\mathrm{~m}, 1 \mathrm{H}), 0.94-0.88(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 143.4,142.3,136.6,133.0,129.6$, $128.5,128.0,127.7,126.8,121.9,83.3,53.6,50.8,40.2,24.8,24.7,21.4 ; \operatorname{HRMS}\left[(\mathrm{FAB}), \mathrm{M}^{+}\right]:$ 453.2143 (calcd for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{BNO}_{4} \mathrm{~S} 453.2145$).
(Z)-2-(2-((4-Acetylphenyl)(4-(trifluoromethyl)phenyl)methylene)cyclopentyl)-1-phenylet han-1-one (7a)

Yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.87$ (d, $J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.56(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.49-7.43(\mathrm{~m}, 3 \mathrm{H})$, $7.32-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.22(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.46-3.36(\mathrm{~m}$, $1 \mathrm{H}), 2.85(\mathrm{dd}, J=15.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.72-2.59(\mathrm{~m}, 2 \mathrm{H})$, $2.57(\mathrm{~s}, 3 \mathrm{H}), 2.38-2.31(\mathrm{~m}, 1 \mathrm{H}), 1.97-1.86(\mathrm{~m}, 2 \mathrm{H})$, 1.58-1.51 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 198.9$, $197.6,149.4,147.3,145.7,136.4,135.3,133.0,132.8,129.9,129.4,129.0,128.7,128.4$, $128.2,127.2,125.7,47.2,39.3,33.2,31.8,26.6,24.9 ;{ }^{19} \mathrm{~F}$ NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-62.77$; HRMS [(FAB), $\left.(\mathrm{M}+\mathrm{H})^{+}\right]: 463.1887$ (calcd for $\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{~F}_{3} \mathrm{O}_{2} 463.1885$); IR (KBr): 3062, 2954, 2931, 2869, 1681, 1604, 1326, 1265, 1164, 1126, 1064, 809, 786, 740, 655, 593, $570 \mathrm{~cm}^{-1}$.
(E)-2-(2-((4-Acetylphenyl)(p-tolyl)methylene)cyclopentyl)-1-phenylethan-1-one (7b)

Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.85$ ($\mathrm{d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.48-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.32-7.23(\mathrm{~m}, 4 \mathrm{H}), 7.14$ (d, $J=$ $8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.46-3.36(\mathrm{~m}, 1 \mathrm{H})$, $2.98(\mathrm{dd}, J=14.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.66-2.60(\mathrm{~m}, 1 \mathrm{H}), 2.55(\mathrm{~s}$, $3 \mathrm{H}), 2.54-2.49(\mathrm{~m}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.93-1.83(\mathrm{~m}, 2 \mathrm{H})$, 1.57-1.47 (m, 3H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 199.6$, $197.8,148.4,147.8,139.1,136.6,134.9,134.1,132.7,129.5,129.4,129.3,128.3,128.2$, 128.0, 43.0,39.5, 33.2, 31.7, 26.6, 25.2, 21.2; $\operatorname{HRMS}\left[(\mathrm{FAB}),(\mathrm{M}+\mathrm{H})^{+}\right]: 409.2171$ (calcd for $\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{O}_{2} 409.2167$); IR (KBr): 2923, 2869, 1681, 1604, 1511, 1450, 1403, 1357, 1265, 1018, 956, 809, 786, $647 \mathrm{~cm}^{-1}$.

(Z)-1-(2-(4-Methylbenzylidene)cyclopentyl)propan-2-one (7c)

Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.14(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $7.08(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.31(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.56-3.53(\mathrm{~m}, 1 \mathrm{H})$, 2.57 (dd, $J=17.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.52-2.39(\mathrm{~m}, 2 \mathrm{H}), 2.30-2.24(\mathrm{~m}$, $4 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 1.99-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.42$ (m, 1H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 208.4,148.4,135.7,134.9$, 129.1, 127.8, 121.2, 46.7, 36.0, 33.6, 30.1, 23.4, 21.1; HRMS [(FAB), M^{+}]: 228.1512 (calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}$ 228.1514); IR (KBr): 2946, 2869, 1712, 1511, 1450, 1419, $1365,1226,1172,1118,1002,809,740,678,624 \mathrm{~cm}^{-1}$.

2-(2-(4-Acetylbenzoyl)cyclopentyl)-1-phenylethan-1-one (8a)

Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.94-7.92$ (m, $2 \mathrm{H}), 7.85(\mathrm{~d}, ~ J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.53-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.41$ $(\mathrm{m}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.49-3.44(\mathrm{~m}, 1 \mathrm{H}), 3.18$ (dd, $J=14.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.99-2.91(\mathrm{~m}, 1 \mathrm{H}), 2.81(\mathrm{dd}, J=$ $15.0,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.15-2.09(\mathrm{~m}, 1 \mathrm{H})$, 2.07-2.00 (m, 1H), 1.79-1.66 (m, 2H), 1.43-1.36 (m, 1H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $201.9,199.8,143.7,136.8,134.6,132.9,129.3,128.6,128.3,52.5,43.8,38.8,32.3,31.4,24.6$, 21.6; HRMS [(FAB), $(\mathrm{M}+\mathrm{H})^{+}$]: 335.1650 (calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{O}_{3} 335.1647$); IR (KBr): 2946, 2923, 2869, 1673, 1604, 1450, 1411, 1373, 1280, 1211, 1180, 979, 833, 725, $678 \mathrm{~cm}^{-1}$.

2-(2-Acetylcyclopentyl)-1-phenylethan-1-one (8b)

Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.94(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, 7.55-7.43 (m, 1H), 7.46-7.431 (m, 2H), $3.10(\mathrm{dd}, J=16.0,8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.89$ (dd, $J=16.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.75-2.67(\mathrm{~m}, 1 \mathrm{H}), 2.64-2.59$ $(\mathrm{m}, 1 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 2.03-1.94(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.64(\mathrm{~m}, 2 \mathrm{H})$, 1.35-1.27 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 201.9$, 199.6, $136.8,133.0,128.5,128.1,58.3,43.9,38.1,32.5,29.6,28.8,24.5 ;$ HRMS [(FAB), $(\mathrm{M}+\mathrm{H})^{+}$]: 231.1385 (calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}_{2}$ 231.1385); IR (KBr): 2946, 2923, $2869,1681,1596,1450,1411,1365,1211,979,833,817,771,609,593 \mathrm{~cm}^{-1}$.

(Z)-1-Benzyl-3-benzylidene-4-(hydroxymethyl)pyrrolidin-2-one (9)

Light yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.86(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.34-7.22(\mathrm{~m}, 8 \mathrm{H}), 6.71(\mathrm{~s}, 1 \mathrm{H}), 4.49(\mathrm{~s}, 2 \mathrm{H}), 3.61-3.58(\mathrm{~m}, 2 \mathrm{H}), 3.40(\mathrm{t}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.15-3.12(\mathrm{~m}, 1 \mathrm{H}), 3.01-2.99(\mathrm{~m}, 1 \mathrm{H}), 2.10(\mathrm{br}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.6,136.2,135.7,134.3,131.7,130.7$, $128.7,128.5,128.2,127.8,127.6,65.7,47.1,46.8,40.8$; HRMS [(FAB), M^{+}]: 293.1415 (calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{2}$ 293.1416); IR (KBr): 3081, 1698, 1493, 1446, 1383, $1214,1090,1056,1027,997 \mathrm{~cm}^{-1}$.

Potassium (Z)-((1-benzyl-4-benzylidene-5-oxopyrrolidin-3-yl)methyl) trifluoroborate

 (10)

White solid, m.p.: $95-98{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , d6-Acetone): δ $8.04(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.17(\mathrm{~m}, 8 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J$ $=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.07(\mathrm{~m}, 1 \mathrm{H}), 2.92(\mathrm{~m}, 1 \mathrm{H}), 0.72-0.68(\mathrm{~m}, 1 \mathrm{H}), 0.25-0.22(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{d}_{6}$-Acetone): δ 168.3, 142.1, 138.7, 136.9, $131.6,121.3,128.9,128.7,128.2,128.0,127.9,52.9,47.2,38.1 ; \operatorname{HRMS}\left[(\mathrm{FAB}), \mathrm{M}^{+}\right]:$ 383.1074 (calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{BF}_{3} \mathrm{KNO} 383.1071$); IR (KBr): 3076, 1695, 1483, 1432, 1375, $1210,1085,1043,1031,985 \mathrm{~cm}^{-1}$.

NOE data

Irradiation Intensity increase
$\mathrm{H}_{1}(\delta 2.16)$ $\mathrm{H}_{2}(\delta 2.36,9.20 \%)$ $\mathrm{H}_{3}(\delta 7.20,1.27 \%)$
$\mathrm{H}_{2}(\delta 2.36)$ $\mathrm{H}_{1}(\delta 2.16,10.26 \%)$ $\mathrm{H}_{3}(\delta 7.20,2.40 \%)$
$\mathrm{H}_{8}(\delta 2.57) \quad \mathrm{H}_{4}(\delta 7.88,1.84$ \%)
$\mathrm{H}_{5}(\delta 2.97)$ $\mathrm{H}_{6}(\delta 3.40,18.6 \%)$ $\mathrm{H}_{9}(\delta 8.40,2.84 \%)$ No NOE for H_{3}
$\begin{array}{lc} \mathrm{H}_{6}(\delta 3.40) & \mathrm{H}_{5}(\delta 2.97,17.4 \%) \\ & \mathrm{H}_{7}(\delta 3.74,2.14 \%) \\ & \mathrm{H}_{9}(\delta 8.04,3.44 \%) \\ & \text { No NOE for } \mathrm{H}_{3} \\ \hline \end{array}$

Irradiation	Intensity increase
$\mathrm{H}_{1}(\delta 2.35)$	$\mathrm{H}_{3}(\delta 5.34,1.39 \%)$
$\mathrm{H}_{2}(\delta 2.51)$	$\mathrm{H}_{3}(\delta 5.34,1.16 \%)$
$\mathrm{H}_{4}(\delta 2.71)$	$\mathrm{H}_{5}(\delta 3.51,11.64 \%)$
	$\mathrm{H}_{6}(\delta 3.46,1.78 \%)$
	$\mathrm{H}_{7}(\delta 8.09,1.25 \%)$
	No NOE for H_{3}
	$\mathrm{H}_{5}(\delta 3.51)$

References

1. C. Molinaro, T. F. Jamison, J. Am. Chem. Soc. 2003, 125, 8076.
2. L. Zhao, X. Lu, W. Xu, J. Org. Chem. 2005, 70, 4059.
3. H.-T. Chang, T. T. Jayanth, C.-H. Cheng, J. Am. Chem. Soc. 2007, 129, 4166.
4. S. Mannathan, M. Jeganmohan, C.-H. Cheng, Angew. Chem. Int. Ed. 2009, 48, 2192.

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR Spectra for Products (400 or 500 MHz)

(E)-1-(2-((4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)(p-tolyl)methylene)cyclopentyl)propan-2-one (3a)

(E)-1-(2-((4-Methoxyphenyl)(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methylene)cyclopentyl)propan-2-one (3b)

(E)-1-(2-(Phenyl(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methylene)cyclopentyl)propan-2-one (3c)

(E)-2-(2-((4-Acetylphenyl)(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methylene)cyclopentyl)-1-phe nylethan-1-one (3d)

ํํํํํํ

管

(E)-1-(2-((4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)(thiophen-2-yl)methylene)cyclopentyl)propan-2-one (3e)

(E)-1-Phenyl-2-(2-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)(thiophen-2-yl)methylene)cyclopentyl)ethan -1-one (3f)

(E)-1-(2-(1-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)ethylidene)cyclopentyl)propan-2-one (3g)

(E)-1-Phenyl-2-(2-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethylidene)cyclopentyl)ethan-1-one (3h)

(Z)-1-Phenyl-2-(2-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methylene)cyclopentyl)ethan-1-one (3j)

(Z)-1-Phenyl-2-(4-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)(p-tolyl)methylene)tetrahydrofuran-3 -yl)ethan-1-one (3k)

(Z)-1-Phenyl-2-(4-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)(p-tolyl)methylene)-1-tosylpyrrolidin-3-yl)ethan-1-one (31)

\qquad

(Z)-1-Phenyl-2-(3-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)(p-tolyl)methylene)tetrahydro-2H-pyran4 -yl)ethan-1-one (3m)

(Z)-1-Benzyl-3-benzylidene-4-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)pyrrolidin-2-one (6a)

(Z)-1-Benzyl-3-(4-methylbenzylidene)-4-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)pyrrolidi n-2-one (6b)

(Z)-1-Benzyl-3-(4-methoxybenzylidene)-4-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)pyrrolid in-2-one (6c)

(Z)-4-((1-Benzyl-2-oxo-4-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)pyrrolidin-3-ylidene)met hyl)benzonitrile (6d)

(Z)-3-(4-Acetylbenzylidene)-1-benzyl-4-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)pyrrolidin -2-one (6e)

(Z)-1-Benzyl-3-ethylidene-4-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)pyrrolidin-2-one (6f)

(Z)-1-Benzyl-3-hexylidene-4-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)pyrrolidin-2-one (6g)

(Z)-1-Allyl-3-benzylidene-4-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)pyrrolidin-2-one (6h)

(Z)-3-Benzylidene-1-methyl-4-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)pyrrolidin-2-one (6i)

(Z)-3-Benzylidene-4-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)-1-tosylpyrrolidine (6j)

(Z)-2-(2-((4-Acetylphenyl)(4-(trifluoromethyl)phenyl)methylene)cyclopentyl)-1-phenylethan-1-one (7a)

(E)-2-(2-((4-Acetylphenyl)(p-tolyl)methylene)cyclopentyl)-1-phenylethan-1-one (7b)

(Z)-1-(2-(4-Methylbenzylidene)cyclopentyl)propan-2-one (7c)

2-(2-Acetylcyclopentyl)-1-phenylethan-1-one (8b)

(Z)-1-Benzyl-3-benzylidene-4-(hydroxymethyl)pyrrolidin-2-one (9)

Potassium (Z)-((1-benzyl-4-benzylidene-5-oxopyrrolidin-3-yl)methyl) trifluoroborate (10)

${ }^{11}$ B spectra of compound $\mathbf{3 d}$

250	200	150	100	50	0	-50	-100	-150

X-Ray Structure of Compound 3d:

(CCDC 1511606 ($\mathbf{3 d}$) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif)

Figure S1. X-ray crystal structure of 3d. Ellipsoids are drawn at the 50\% probability level. The disorder phenyl ring (C21'-C26') have been omitted for clarity.

Table S3. Crystal data and structure refinement for 3d.

Identification code	120427lt_0m
Empirical formula	C28 H33 B O4
Formula weight	444.35
Temperature	100(2) K
Wavelength	0.71073 A
Crystal system	Triclinic
Space group	P -1
Unit cell dimensions	$a=10.0442(4) \AA \quad a=84.471(2)^{\circ}$.
	$\mathrm{b}=10.4197(4) \AA \quad \mathrm{b}=84.954(2)^{\circ}$.
	$\mathrm{c}=11.9542(5) \AA \quad \mathrm{g}=75.059(2)^{\circ}$.
Volume	1200.58(8) \AA^{3}
Z	2
Density (calculated)	$1.229 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.080 \mathrm{~mm}^{-1}$
F(000)	476
Crystal size	$0.15 \times 0.12 \times 0.12 \mathrm{~mm}^{3}$
Theta range for data collection	2.03 to 26.43°.
Index ranges	$-12<=\mathrm{h}<=12,-13<=\mathrm{k}<=13,-14<=\mathrm{l}<=14$
Reflections collected	20192
Independent reflections	$4882[\mathrm{R}(\mathrm{int})=0.0362]$
Completeness to theta $=26.43^{\circ}$	98.8 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9486 and 0.8515
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	4882 / 192 / 358
Goodness-of-fit on F^{2}	1.046
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0520, \mathrm{wR} 2=0.1247$
R indices (all data)	$\mathrm{R} 1=0.0726, \mathrm{wR} 2=0.1392$
Largest diff. peak and hole	0.465 and -0.410 e. \AA^{-3}

