1

Ni(II)-Catalyzed Enantioselective Mukaiyama-Mannich Reaction Between Silyl Enol Ethers and Cyclic *N*-Sulfonyl α-Ketiminoesters

Lei Xie, Hongli Ma, Jiaqi Li, Yuan Yu, Zhaohai Qin, Bin Fu*

Department of Applied Chemistry, China Agricultural University, Beijing 100193, China

Contents

1.	General information	2
2.	Preparation of N-sulfonyl cyclic ketimines	2
3.	Preparation of enol silyl ethers	3
4.	General procedure for the catalytic asymmetric Mukaiyama-Mannich reaction	3
5.	Characterization data for the products 3	4
6.	Transformations of product 3 to 4 , 5 and 6	17
7.	HPLC chromatograms for products 3~6	.20
8.	¹ H and ¹³ C NMR spectra for products 3~6	59
9.	The structure of 3ka and 3aw ' by X-ray diffraction analysis	98

1. General Information:

All solvents were purified and dried according to standard methods prior to use. Organic solutions were concentrated under reduced pressure on a rotary evaporator. Flash column chromatography was performed using Qingdao Haiyang flash silica gel (100–200 mesh). NMR spectra were recorded with a Bruker Avance DPX300 spectrometer with tetramethylsilane as the internal standard. Mass spectra were obtained on Bruker APEX II FT-ICRMS mass spectrometer. Optical rotations were measured on a Perkine-Elmer 341 LC polarimeter. The enantiomeric excesses were determined by HPLC analysis over a chiral column (Daicel Chiralcel OD-H or Chiralpak AD-H, eluted with hexane-isopropyl alcohol; monitored by UV detector).¹

2. Preparation of N-sulfonyl cyclic ketimines 1²

Under nitrogen atmosphere, a solution of aryl sulfonamide (10 mmol) in THF (40 mL) was cooled to -78 °C in an acetone-ice bath. The solution of *n*-Butyllithium in hexanes (25 mmol) was added dropwise over a 20 minute period. After stirred at -20 °C for 1 h, the yellow mixture was cooled further to -78 °C and diethyl oxalate (30 mmol) was added. The solution was allowed to stir for 1 h then warm slowly to room temperature, and stirred at ambient temperature for another 2 h. The reaction was quenched with 5% HCl (20 mL), water (100 mL) was added, and extracted with ethyl acetate (60 mL×3). The organic phase was washed with brine (100 ml), dried over sodium sulfate. The solvent was removed and the obtained crude product was further purified by flash chromatography (PE/EA = 10/1 – 5/1).

Under nitrogen atmosphere, the above product was dissolved in formic acid (10 mL), and subsequently stirred at room temperature. After 24 h the solution was concentrated and the residue was dissolved in CH_2Cl_2 (50 mL) and washed with NaHCO₃ saturated solution (50 mL×2) to remove traces of formic acid. Then the organic phase was washed with brine, dried over sodium sulfate, and concentrated under reduced pressure. Purification by flash column chromatography (PE/EA = 5/1, v/v) gave the title products **1a-k** in high yield.

3. Preparation of enol silyl ethers

General procedure I ^{3a} (for **2a-2r**, **2t**, **2v**, **2x**):

To a stirred solution of aromatic ketone (5 mmol) in THF (20 mL), LiHMDS (6 mmol, 1M in THF) was added dropwise over a period of 5 min at room temperature. After 20 min, the mixture was quenched with chlorotrimethylsilane (5.5 mmol). and was stirred for another 2h. The solvent was removed and the mixture was diluted with hexane. The resulting precipitate was filtered through the Celite (washing with pentane), and the filtrate was concentrated in vacuo to afford the crude enol silyl ether, which was stored at -20 °C, and the obtained product was distilled prior to use.

Other enol silyl ethers such as 2s, 2w, 2u, 2y and 2z were prepared according to the corresponding literatures^{3b, 3c, 3d}

4. General procedure for the catalytic asymmetric Mukaiyama-Mannich reaction.

Under nitrogen atmosphere, ligand (L2) (0.0022mmol) and Ni(ClO₄)₂·6H₂O (0.002mmol) were dissolved in CHCl₃ (1.0 mL), and stirred for 1 h at room temperature. Subsequently *N*-sulfonyl cyclic ketimines **1** (0.1 mmol) was added, and the resulting mixture was cooled to 0°C and stirred for 10 min before the silyl enol ether **2** (0.20 mmol) was added. The reaction mixture was stirred at 0 °C until the completion of the reaction (monitored by TLC). Then the mixture was directly subjected to flash column chromatography (Petroleum / Ethyl acetate, $10/1 \sim 3/1$, V/V) to afford the corresponding product **3**.

Table ST1. Screening of Lewis acids^a

	COOEt	OTMS	Metal / L2	NH O EtOOC	
	1b	2a		3ba	
Entry	Metal	T (°C)	Time (h)	Yield (%) ^b	ee (%) ^c
1	$Co(ClO_4)_2 \cdot 6H_2O$	0	12	96	97
2	$Zn(ClO_4)_2 \cdot 6H_2O$	0	12	89	94
3	$Cu(ClO_4)_2 \cdot 6H_2O$	0	48	54	57
4	Mg(ClO ₄) ₂ ·6H ₂ O	0	36	90	93
5	Mg(OTf) ₂	0	96	36	8
6	Cu(OTf) ₂	0	48	40	20

7	Ni(OTf) ₂	0	48	43	80
8	Ni(acac) ₂	0	96	trace	-
9	Ni(OAc) ₂ ·4H ₂ O	0	72	75	93
10	Ni(ClO ₄) ₂ ·6H ₂ O	25	12	98	86

^{*a*} Reaction conditions: **1b** (0.1 mmol) and **2a** (0.2 mmol), 10 mol % metal salts and 11 mol % **L2** in 2.0 mL CHCl₃ at 0 °C ^{*b*} Isolated yields. ^{*c*} Determined by chiral HPLC analysis. ^{*d*} Not determined.

 Table ST2
 Optimization of reaction conditions for 1-tetralone derived enol silyl ether as

 the substrate^a

	N + COOEt	OTMS	Metal / L2	NH O EtOOC	
	1a	2x		3ax	
Entry	Metal	Time (h)	Yield $(\%)^b$	d.r. ^{<i>c</i>}	ee (%) ^c
1	Ni(ClO ₄) ₂ ·6H ₂ O	48	94	1.1:1	64, 66
2	$Cu(ClO_4)_2 \cdot 6H_2O$	96	trace	_d	-
3	Co(ClO ₄) ₂ ·6H ₂ O	96	33	3.5:1	96, 98
4	Mg(ClO ₄) ₂ ·6H ₂ O	96	trace	-	-
5	Zn(ClO ₄) ₂ ·6H ₂ O	48	95	11.5:1	98
6	Ni(OTf) ₂	96	trace	-	-
7	Fe(OTf) ₂	96	trace	-	-
8	Cu(OTf) ₂	96	35	-	-
9	Zn(OTf) ₂	48	95	25:1	99

^{*a*} Reaction conditions: **1a** (0.1 mmol) and **2x** (0.2 mmol), 10 mol % metal salts and 11 mol % **L2** in 2.0 mL CHCl₃ at 0 °C; ^{*b*} Isolated yields; ^{*c*} Determined by chiral HPLC analysis; ^{*d*} Not determined.

5. Characterization data for the Mukaiyama-Mannich products 3

White solid, m.p. 59–60 °C, 99% yield. [α]20 D = –167.9 (c, 1.20, CH₂Cl₂); 99% ee, determined by HPLC analysis [Daicel Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 80:20, 1.0 mL/min, 220 nm; t (major) = 17.85 min, t (minor) = 24.75 min]; ¹H NMR (300 MHz, CDCl₃) δ 7.95–7.87 (m, 2H), 7.85–7.78 (m, 1H),

7.75 –7.53 (m, 4H), 7.50 –7.41 (m, 2H), 6.09 (s, 1H), 4.31 (qq, J = 10.8, 7.2 Hz, 2H), 4.08 (d, J = 17.8 Hz, 1H), 3.72 (d, J = 17.8 Hz, 1H), 1.29 (t, J = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 195.65, 169.27, 136.60, 135.28, 133.67, 133.33, 130.49, 128.47, 127.86, 123.92, 121.54, 65.16, 63.17, 48.81, 13.61. ESI-HRMS: Calcd for C₁₈H₁₇NNaO₅S⁺ ([M+Na⁺]): 382.0720; Found:

White solid, m.p. 60 – 62 °C, 99% yield; $[\alpha]20 \text{ D} = -117.4$ (c, 1.02, CH₂Cl₂); 99% ee, determined by HPLC analysis [Daicel Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 80:20, 1.0 mL/min, 220 nm; t (major) = 13.44 min, t (minor) = 21.91 min]; ¹H NMR (300 MHz, CDCl₃) δ 7.96 – 7.88 (m,

2H), 7.73 – 7.67 (m, 1H), 7.65 – 7.56 (m, 1H), 7.52 – 7.40 (m, 4H), 6.04 (s, 1H), 4.42 – 4.22 (m, 2H), 4.09 (d, J = 17.8 Hz, 1H), 3.70 (d, J = 17.8 Hz, 1H), 2.50 (s, 3H), 1.31 (t, J = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 195.73, 169.39, 144.51, 136.90, 135.34, 133.61, 132.57, 131.40, 128.44, 127.85, 124.05, 121.26, 76.28, 65.00, 63.07, 48.95, 21.53, 13.61. ESI-HRMS: Calcd for C₁₉H₂₀NO₅S⁺ ([M+H⁺]): 374.1057; Found: 374.1060.

White solid, m.p. 152–153.5 °C, 99% yield; $[\alpha]20 \text{ D} = -170.9 \text{ (c, } 0.67, CH_2Cl_2)$; 99% ee, determined by HPLC analysis [Daicel Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 80:20, 1.0 mL/min, 220 nm; t (major) = 14.83 min, t (minor) = 22.17 min]; ¹H NMR (300 MHz, CDCl₃) δ

7.95–7.86 (m, 2H), 7.74–7.66 (m, 1H), 7.63–7.54 (m, 1H), 7.50–7.40 (m, 2H), 7.15 – 7.08 (m, 2H), 6.09 (s, 1H), 4.44–4.20 (m, 2H), 4.08 (d, J = 17.8 Hz, 1H), 3.91 (s, 3H), 3.72 (d, J = 17.8 Hz, 1H), 1.30 (t, J = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 195.65, 169.27, 163.62, 139.18, 135.29, 133.63, 128.44, 127.84, 127.19, 122.88, 116.94, 108.30, 64.85, 63.11, 55.73, 48.94, 13.65. ESI-HRMS: Calcd for C₁₉H₂₀NO₆S⁺ ([M+H⁺]): 390.1006; Found: 390.1007.

White solid, m.p. 150–151 °C, 98% yield. [α]20 D = -163.4 (c, 0.76, CH₂Cl₂); 99% ee, determined by HPLC analysis [Daicel Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 80:20, 1.0 mL/min, 220 nm; t (major) = 7.20 min, t (minor) = 12.30 min]; ¹H NMR (300 MHz, CDCl₃) δ 7.96 – 7.89 (m, 2H), 7.77 – 7.71 (m, 1H), 7.70 – 7.63 (m, 2H), 7.63 – 7.55 (m, 1H), 7.51 – 7.41 (m, 2H), 6.08 (s, 1H), 4.47 – 4.18 (m, 2H), 4.08 (d, *J* = 17.8 Hz, 1H), 3.75 (d, *J* = 17.8 Hz, 1H), 1.38 (s, 9H), 1.31 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 195.72, 169.40, 157.82, 136.77, 135.35, 133.62, 132.52, 128.43, 128.14, 127.89, 121.04, 120.31, 65.19, 62.96, 48.89, 35.29, 30.86, 13.70. ESI-HRMS: Calcd for 5

White solid, m.p. 63 -64 °C, 99% yield. $[\alpha]20 \text{ D} = -124.1$ (c, 0.80, CH₂Cl₂); 99% ee, determined by HPLC analysis [Daicel Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 80:20, 1.0 mL/min, 220 nm; t (major) = 10.85 min, t (minor) = 17.42 min]; ¹H NMR (300 MHz, CDCl₃) δ 7.96 –

7.87 (m, 2H), 7.85 – 7.77 (m, 1H), 7.64 – 7.56 (m, 1H), 7.52 – 7.28 (m, 4H), 6.20 (s, 1H), 4.43 – 4.25 (m, 2H), 4.05 (d, J = 17.7 Hz, 1H), 3.75 (d, J = 17.7 Hz, 1H), 1.31 (t, J = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 195.30, 168.80, 165.28 (d, J = 256.0 Hz), 139.82 (d, J = 9.1 Hz), 135.15, 133.77, 131.40 (d, J = 2.7 Hz), 128.50, 127.87, 123.81 (d, J = 9.9 Hz), 118.48 (d, J = 24.0 Hz), 111.33 (d, J = 25.0 Hz), 64.74 (d, J = 2.1 Hz), 63.44, 48.69, 13.60. ESI-HRMS: Calcd for C₁₈H₁₆FNNaO₅S⁺ ([M+Na⁺]): 400.0625; Found: 400.0625.

White solid, m.p. 65–66.5 °C,; $[\alpha]20 \text{ D} = -161.4$ (c, 0.66, CH₂Cl₂); 99% ee, determined by HPLC analysis [Daicel Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 80:20, 1.0 mL/min, 220 nm; t (major) = 10.82 min, t (minor) = 19.38 min]; ¹H NMR (300 MHz, CDCl₃) δ 7.97 – 7.86 (m,

2H), 7.79 - 7.72 (m, 1H), 7.71 - 7.67 (m, 1H), 7.65 - 7.55 (m, 2H), 7.51 - 7.42 (m, 2H), 6.19 (s, 1H), 4.34 (qq, J = 10.7, 7.1 Hz, 2H), 4.07 (d, J = 17.7 Hz, 1H), 3.73 (d, J = 17.7 Hz, 1H), 1.32 (t, J = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 195.32, 168.77, 139.76, 138.66, 135.14, 133.87, 133.77, 130.98, 128.50, 127.88, 124.28, 122.74, 64.78, 63.46, 48.69, 13.61. ESI-HRMS: Calcd for $C_{18}H_{17}CINO_5S^+$ ([M+H⁺]): 394.0510; Found: 394.0514.

White solid, m.p. 58–59 °C, 97% yield. $[\alpha]20 \text{ D} = -138.3$ (c, 0.83, CH₂Cl₂); 97% ee, determined by HPLC analysis [Daicel Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 80:20, 1.0 mL/min, 220 nm; t (major) = 8.26 min, t (minor) = 18.11 min]; ¹H NMR (300 MHz, CDCl₃) δ 8.02

-7.87 (m, 5H), 7.65 -7.56 (m, 1H), 7.51 -7.43 (m, 2H), 6.29 (s, 1H), 4.48 -4.24 (m, 2H), 4.13 (d, J = 17.7 Hz, 1H), 3.76 (d, J = 17.7 Hz, 1H), 1.31 (t, J = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 195.23, 168.63, 138.69, 137.73, 135.36 (q, J = 33.3 Hz), 135.07, 133.84, 128.51, 127.90, 6

127.79 (dd, J = 7.3, 3.8 Hz), 122.58 (d, J = 273.4 Hz), 122.48, 121.43 (q, J = 3.9 Hz), 65.07, 63.54, 48.59, 13.56. ESI- HRMS: Calcd for C₁₉H₁₆F₃NNaO₅S⁺ ([M+Na⁺]): 450.0593; Found: 450.0597.

White solid, m.p. 92– 94 °C, 99% yield. $[\alpha]20 \text{ D} = -161.1 \text{ (c, } 1.24, CH_2Cl_2); 94\%$ ee, determined by HPLC analysis [Daicel Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 80:20, 1.0 mL/min, 220 nm; t (major) = 16.34 min, t (minor) = 21.53 min]; ¹H NMR (300 MHz, CDCl₃) δ 8.00 –

7.89 (m, 2H), 7.73 – 7.57 (m, 3H), 7.54 – 7.34 (m, 3H), 6.33 (s, 1H), 4.50 (d, J = 17.8 Hz, 1H), 4.37 – 4.19 (m, 2H), 3.61 (d, J = 17.8 Hz, 1H), 1.25 (t, J = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 195.94, 168.32, 157.66 (d, J = 257.7 Hz), 137.79 (d, J = 2.6 Hz), 135.33, 133.73, 133.07 (d, J = 7.2 Hz), 128.49, 127.87, 122.68 (d, J = 16.8 Hz), 120.71 (d, J = 21.3 Hz), 117.72 (d, J = 4.3 Hz), 64.30, 64.25, 63.19, 45.36, 45.33, 13.43. ESI-HRMS: Calcd for C₁₈H₁₆FNNaO₅S⁺ ([M+H⁺]): 400.0625; Found: 400.0629.

White solid, m.p. 66–68 °C, 97% yield. $[\alpha]20 \text{ D} = -128 \text{ (c, } 1.23, \text{ CH}_2\text{Cl}_2\text{)};$ 97% ee, determined by HPLC analysis [Chiralpak AD-H column, *n*-hexane/*i*-PrOH = 70:30, 0.9 mL/min, 220 nm; t (minor) = 22.10 min, t (major) = 26.94 min]; ¹H NMR (300 MHz, CDCl₃) δ 7.95 – 7.86 (m, 2H),

7.68 – 7.52 (m, 4H), 7.49 – 7.42 (m, 2H), 6.20 (s, 1H), 4.33 (qq, J = 10.7, 7.1 Hz, 2H), 4.05 (d, J = 17.7 Hz, 1H), 3.73 (d, J = 17.7 Hz, 1H), 1.31 (t, J = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 195.28, 168.83, 139.36, 135.17, 134.48, 133.75, 133.36, 131.25, 129.19, 128.50, 127.85, 122.25, 64.20, 63.43, 48.61, 13.61. ESI-HRMS: Calcd for C₁₈H₁₆ClNNaO₅S⁺ ([M+H⁺]): 416.0330; Found: 416.0334.

White solid, m.p. 50–52 °C, 98% yield. $[\alpha]20 \text{ D} = -133.6$ (c, 1.33, CH₂Cl₂); 96% ee, determined by HPLC analysis [Daicel Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 80:20, 1.0 mL/min, 220 nm; t (major) = 8.04 min, t (minor) = 18.02 min]; ¹H NMR (300 MHz,

CDCl₃) δ 7.96 – 7.82 (m, 3H), 7.65 – 7.41 (m, 5H), 6.25 (s, 1H), 4.47 – 4.22 (m, 2H), 4.05 (d, J = 17.7 Hz, 1H), 3.78 (d, J = 17.7 Hz, 1H), 1.31 (t, J = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 7

195.19, 168.64, 152.47 (q, J = 1.7 Hz), 139.42, 135.12, 133.79, 133.70, 128.50, 127.89, 123.47, 122.98, 119.83 (q, J = 260.2 Hz), 116.15, 64.81, 63.49, 48.56, 13.52. ESI-HRMS: Calcd for $C_{19}H_{17}F_3NO_6S^+([M+H^+])$: 444.0723; Found: 444.0725.

White solid, m.p. 92–95 °C, 99% yield. $[\alpha]20 \text{ D} = -163.3 \text{ (c, } 0.73, CH_2Cl_2); 99\%$ ee, determined by HPLC analysis [Daicel Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 80:20, 1.0 mL/min, 220 nm; t (major) = 15.86 min, t (minor) = 24.68 min]; ¹H NMR (300 MHz, CDCl₃) δ 8.45 – 8.38 (m,

1H), 8.17 – 8.10 (m, 1H), 8.02 – 7.95 (m, 1H), 7.94 – 7,86 (m, 2H), 7.77 – 7.62 (m, 3H), 7.61 – 7.53 (m, 1H), 7.48 – 7.39 (m, 2H), 6.28 (s, 1H), 4.43 – 4.25 (m, 2H), 4.21 (d, J = 17.7 Hz, 1H), 3.75 (d, J = 17.8 Hz, 1H), 1.30 (t, J = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 195.58, 169.26, 135.43, 135.29, 134.60, 133.67, 130.76, 129.12, 128.46, 128.36, 128.12, 127.85, 125.14, 122.86, 119.42, 65.21, 63.24, 48.57, 13.66. ESI-HRMS: Calcd for C₂₂H₁₉NNaO₅S⁺ ([M+H⁺]): 432.0876; Found: 432.0879.

White solid, m.p. 58–61 °C, 99% yield. [α]20 D = (c, 1.26, CH₂Cl₂); 97% ee, determined by HPLC analysis [Daicel Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 80:20, 1.0 mL/min, 220 nm; t (major) = 16.90 min, t (minor) = 19.91 min]; ¹H NMR (300 MHz, CDCl₃) δ 7.86 – 7.77 (m, 3H),

7.73 – 7.59 (m, 3H), 7.29 – 7.23 (m, 2H), 6.09 (s, 1H), 4.39 – 4.22 (m, 2H), 4.07 (d, J = 17.7 Hz, 1H), 3.70 (d, J = 17.7 Hz, 1H), 2.41 (s, 3H), 1.30 (t, J = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 195.22, 169.33, 144.67, 136.65, 135.26, 133.29, 132.86, 130.43, 129.13, 127.98, 123.95, 121.50, 65.21, 63.10, 48.70, 21.37, 13.60. ESI-HRMS: Calcd for C₁₉H₁₉NNaO₅S⁺ ([M+Na⁺]): 396.0876; Found: 396.0874.

White solid, m.p. 68–70 °C, 98% yield. [α]20 D = -142.8 (c, 0.86, CH₂Cl₂); 95% ee, determined by HPLC analysis [Daicel Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 70:30, 0.9 mL/min, 220 nm; t (minor) = 28.09 min, t (major) = 86.78 min]; ¹H NMR (300 MHz, CDCl₃) δ 7.91 –

7.84 (m, 2H), 7.83 – 7.78 (m, 1H), 7.73 – 7.58 (m, 3H), 7.47 – 7.29 (m, 5H), 7.03 – 6.96 (m, 2H), 8

6.10 (s, 1H), 5.12 (s, 2H), 4.30 (qq, J = 10.7, 7.1 Hz, 2H), 4.04 (d, J = 17.6 Hz, 1H), 3.66 (d, J = 17.6 Hz, 1H), 1.29 (t, J = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 194.02, 169.39, 162.99, 136.68, 135.65, 135.26, 133.27, 130.42, 130.24, 128.58, 128.38, 127.96, 127.13, 123.95, 121.50, 114.50, 69.89, 65.27, 63.08, 48.50, 29.35, 13.62. ESI-HRMS: Calcd for C₂₅H₂₃NNaO₆S⁺ ([M+Na⁺]): 488.1138; Found: 488.1144.

White solid, m.p. 62–64 °C, 96% yield. $[\alpha]20 \text{ D} = -153.1 \text{ (c, } 0.70, CH_2Cl_2); 98\%$ ee, determined by HPLC analysis [Daicel Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 80:20, 1.0 mL/min, 220 nm; t (minor) = 19.04 min, t (major) = 25.08 min]; ¹H NMR (300 MHz, CDCl₃) δ 7.99 – 7.90 (m,

2H), 7.85 – 7.79 (m, 1H), 7.74 – 7.60 (m, 3H), 7.18 – 7.07 (m, 2H), 6.12 (s, 1H), 4.32 (qq, J = 10.7, 7.1 Hz, 2H), 4.07 (d, J = 17.7 Hz, 1H), 3.69 (d, J = 17.7 Hz, 1H), 1.30 (t, J = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 194.09, 169.19, 165.87 (d, J = 256.4 Hz), 136.52, 135.23, 133.39, 131.79 (d, J = 3.1 Hz), 130.61 (d, J = 11.0 Hz), 130.55, 123.96, 121.48, 115.63 (d, J = 22.1 Hz), 65.13, 63.20, 48.61, 13.59. ESI-HRMS: Calcd for C₁₈H₁₇FNO₅S⁺ ([M+H⁺]): 378.0806; Found: 378.0809.

White solid, m.p. 65–68 °C, 94% yield. $[\alpha]20 \text{ D}=-135.2 \text{ (c, } 1.0, \text{ CH}_2\text{Cl}_2);$ 98% ee, determined by HPLC analysis [Daicel Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 80:20, 1.0 mL/min, 220 nm; t (minor) = 21.77 min, t (major) = 31.21 min]; ¹H NMR (300 MHz, CDCl₃) δ 7.86 – 7.54 (m, 8H),

6.12 (s, 1H), 4.32 (qq, J = 10.8, 7.1 Hz, 2H), 4.06 (d, J = 17.8 Hz, 1H), 3.68 (d, J = 17.8 Hz, 1H), 1.30 (t, J = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 194.74, 169.15, 136.44, 135.18, 133.98, 133.44, 131.80, 130.58, 129.36, 128.99, 123.95, 121.51, 65.06, 63.27, 48.64, 13.63. ESI-HRMS: Calcd for C₁₈H₁₆BrNNaO₅S⁺ ([M+Na⁺]): 459.9825; Found: 459.9830.

White solid, m.p. 66–68 °C, 95% yield. [α]20 D = –133.7 (c, 1.10, CH₂Cl₂); 99% ee, determined by HPLC analysis [Daicel Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 70:30, 0.9 mL/min, 220 nm; t (minor) = 16.73 min, t (major) = 38.84 min]; ¹H NMR (300 MHz,

CDCl₃) δ 8.20 – 8.05 (m, 2H), 8.03 – 7.92 (m, 2H), 7.86 – 7.81 (m, 1H), 7.77 – 7.59 (m, 3H), 6.10 (s, 1H), 4.33 (qq, J = 10.7, 7.1 Hz, 2H), 4.10 (d, J = 17.8 Hz, 1H), 3.95 (s, 3H), 3.75 (d, J = 17.9 Hz, 1H), 1.31 (t, J = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 195.22, 169.08, 165.62, 138.38, 136.47, 135.31, 134.33, 133.38, 130.57, 129.63, 127.79, 123.88, 121.57, 65.03, 63.28, 52.19, 49.02, 13.61. ESI-HRMS: Calcd for C₂₀H₁₉NNaO₇S⁺ ([M+Na⁺]): 440.0774; Found: 440.0779.

White solid, m.p. 60 –62 °C, 97% yield. $[\alpha]20 \text{ D} = -126.7 \text{ (c, } 1.34, CH_2Cl_2); 99% ee, determined by HPLC analysis [Daicel Chiralcel OD-H column,$ *n*-hexane/*i* $-PrOH = 80:20, 1.0 mL/min, 220 nm; t (minor) = 17.22 min, t (major) = 26.03 min]; ¹H NMR (300 MHz, CDCl₃) <math>\delta$ 8.06 –

7.99 (m, 2H), 7.86 – 7.81 (m, 1H), 7.78 – 7.60 (m, 5H), 6.10 (s, 1H), 4.34 (qq, J = 10.7, 7.1 Hz, 2H), 4.09 (d, J = 17.8 Hz, 1H), 3.75 (d, J = 17.8 Hz, 1H), 1.31 (t, J = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 194.81, 169.00, 137.93, 136.46, 135.34, 134.84 (q, J = 32.7 Hz), 133.42, 130.61, 128.25, 125.54 (q, J = 3.6 Hz), 123.88, 123.07 (q, J = 272.9 Hz), 121.57, 65.01, 63.34, 48.86, 13.60. ESI-HRMS: Calcd for C₁₉H₁₆F₃NNaO₅S⁺ ([M+Na⁺]): 450.0593; Found: 450.0588.

White solid, m.p. 73 –74 °C, 96% yield. [α]20 D = –133.2 (c, 0.88, CH₂Cl₂); 99% ee, determined by HPLC analysis [Daicel Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 70:30, 0.9 mL/min, 220 nm; t (minor) = 30.95 min, t (major) = 60.06 min]; ¹H NMR (300 MHz, CDCl₃) δ 8.36 –

8.27 (m, 2H), 8.13 – 8.05 (m, 2H), 7.87 – 7.81 (m, 1H), 7.77 – 7.62 (m, 3H), 6.09 (s, 1H), 4.35 (qq, J = 10.7, 7.1 Hz, 2H), 4.10 (d, J = 17.8 Hz, 1H), 3.78 (d, J = 17.8 Hz, 1H), 1.33 (t, J = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 194.33, 168.85, 150.45, 139.65, 136.37, 135.36, 133.48, 130.70, 128.99, 123.84, 123.67, 121.61, 64.95, 63.45, 48.98, 13.62. ESI-HRMS: Calcd for C₁₈H₁₆N₂NaO₇S⁺ ([M+Na⁺]): 427.0570; Found: 427.0572.

White solid, m.p. 50 - 52 °C, 98% yield. [α]20 D = -140.8 (c, 1.18 CH₂Cl₂); 99% ee, determined by HPLC analysis [Daicel Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 80:20, 1.0 mL/min, 220 nm; t (major) = 13.98 min, t (minor) = 26.64 min]; ¹H NMR (300 MHz, CDCl₃) δ 7.86 – 7.79 (m, 1H), 7.72 – 7.59

10

(m, 4H), 7.45 – 7.36 (m, 1H), 7.29 – 7.21 (m, 2H), 6.11 (s, 1H), 4.42 – 4.25 (m, 2H), 4.05 (d, J = 17.7 Hz, 1H), 3.65 (d, J = 17.7 Hz, 1H), 2.53 (s, 3H), 1.32 (t, J = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 198.88, 169.36, 138.78, 136.68, 135.45, 135.32, 133.28, 131.97, 131.94, 130.42, 128.68, 125.52, 123.89, 121.52, 65.36, 63.13, 51.07, 21.18, 13.64. ESI-HRMS: Calcd for C₁₉H₁₉NNaO₅S⁺ ([M+Na⁺]): 396.0876; Found: 396.0879.

White solid, m.p. 132–133 °C, 96% yield. $[\alpha]20 \text{ D} = -147.7 \text{ (c, } 0.97, CH_2Cl_2); 96% ee, determined by HPLC analysis [Chiralpak AD-H column,$ *n*-hexane/*i* $-PrOH = 70:30, 0.9 mL/min, 220 nm; t (major) = 31.50 min, t (minor) = 40.03 min]; ¹H NMR (300 MHz, CDCl₃) <math>\delta$ 7.89 – 7.76 (m, 2H),

7.74 – 7.58 (m, 3H), 7.55 – 7.47 (m, 1H), 7.05 – 6.93 (m, 2H), 6.09 (s, 1H), 4.29 (qt, J = 14.2, 5.3 Hz, 2H), 4.12 (t, J = 11.4 Hz, 1H), 3.86 (d, J = 6.6 Hz, 3H), 3.74 (d, J = 18.6 Hz, 1H), 1.29 (t, J = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 196.50, 169.63, 159.15, 136.86, 135.16, 134.69, 133.30, 130.50, 130.30, 125.42, 124.09, 121.38, 120.48, 111.42, 65.60, 62.91, 55.25, 54.12, 13.63. ESI-HRMS: Calcd for C₁₉H₁₉NNaO₆S⁺ ([M+Na⁺]): 412.0825; Found: 412.0830.

3al

White solid, m.p. 92–93 °C, 97% yield. $[\alpha]20 \text{ D} = -147.5 \text{ (c, } 1.11, \text{ CH}_2\text{Cl}_2\text{)};$ 99% ee, determined by HPLC analysis [Daicel Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 80:20, 1.0 mL/min, 220 nm; t (major) = 12.69 min, t (minor) = 15.30 min]; ¹H NMR (300 MHz, CDCl₃) δ 7.99 – 7.89 (m, 1H), 7.86 – 7.80

(m, 1H), 7.76 - 7.50 (m, 4H), 7.31 - 7.23 (m, 1H), 7.19 - 7.09 (m, 1H), 6.06 (s, 1H), 4.32 (qq, J = 10.7, 7.1 Hz, 2H), 4.14 (dd, J = 18.6, 3.7 Hz, 1H), 3.67 (dd, J = 18.6, 3.6 Hz, 1H), 1.31 (t, J = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 193.54 (d, J = 3.9 Hz), 169.29, 162.06 (d, J = 255.7 Hz), 136.41, 135.45 (d, J = 9.3 Hz), 135.18, 133.34, 130.46, 130.37 (d, J = 2.1 Hz), 124.41 (d, J = 3.3 Hz), 123.97, 123.64 (d, J = 12.4 Hz), 121.52, 116.46 (d, J = 23.6 Hz), 65.16 (d, J = 3.2 Hz), 63.14, 53.41 (d, J = 9.0 Hz), 13.60. ESI-HRMS: Calcd for C₁₈H₁₆FNNaO₅S⁺ ([M+Na⁺]): 400.0625; Found: 400.0629.

White solid, m.p. 50 - 53 °C, 96% yield. [α]20 D = -125.1 (c, 1.09, CH₂Cl₂); NH 0 1_{EtO_2C} 99% ee, determined by HPLC analysis [Daicel Chiralcel OD-H column, *n*-1) hexane/*i*-PrOH = 80:20, 1.0 mL/min, 220 nm; t (major) = 15.80 min, t (minor) = 24.28 min]; ¹H NMR (300 MHz, CDCl₃) δ 7.85 – 7.79 (m, 1H), 7.72 – 7.58 (m, 4H), 7.47 – 7.29 (m, 3H), 6.09 (s, 1H), 4.44 – 4.28 (m, 2H), 4.14 (d, *J* = 18.0 Hz, 1H), 3.69 (d, *J* = 18.0 Hz, 1H), 1.35 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 197.80, 169.03, 136.68, 136.50, 135.29, 133.36, 132.51, 131.28, 130.56, 130.51, 129.51, 126.81, 123.91, 121.51, 65.29, 63.33, 52.44, 13.65. ESI-HRMS: Calcd for C₁₈H₁₆CINNaO₅S⁺ ([M+Na⁺]): 416.0330; Found: 416.0334.

White solid, m.p. 45–46 °C, 96% yield. $[\alpha]20 \text{ D} = -71.2$ (c, 0.83, CH₂Cl₂); 99% ee, determined by HPLC analysis [Daicel Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 80:20, 1.0 mL/min, 220 nm; t (major) = 12.91 min, t (minor) = 20.69 min]; ¹H NMR (300 MHz, CDCl₃) δ 7.83 – 7.76 (m, 1H), 7.70 – 7.57

(m, 4H), 7.53 - 7.47 (m, 1H), 7.41 - 7.27 (m, 2H), 6.08 (s, 1H), 4.45 - 4.26 (m, 2H), 4.08 (d, J = 18.0 Hz, 1H), 3.65 (d, J = 18.0 Hz, 1H), 1.34 (t, J = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 198.75, 168.95, 139.01, 136.50, 135.31, 133.76, 133.36, 132.22, 130.52, 128.97, 127.29, 123.88, 121.51, 118.77, 77.15, 76.73, 76.31, 65.21, 63.39, 51.93, 13.70. ESI-HRMS: Calcd for $C_{18}H_{17}BrNO_5S^+$ ([M+H⁺]): 438.0005; Found: 438.0009.

White solid, m.p. 57–58 °C, 98% yield. [α]20 D = –156.3 (c, 1.13, CH₂Cl₂); 98% ee, determined by HPLC analysis [Daicel Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 80:20, 1.0 mL/min, 220 nm; t (major) = 14.96 min, t (minor) = 26.69 min]; ¹H NMR (300 MHz, CDCl₃) δ 7.84

-7.78 (m, 1H), 7.77 -7.58 (m, 5H), 7.44 -7.30 (m, 2H), 6.11 (s, 1H), 4.31 (qq, *J* = 10.7, 7.1 Hz, 2H), 4.09 (d, *J* = 17.8 Hz, 1H), 3.72 (d, *J* = 17.8 Hz, 1H), 2.38 (s, 3H), 1.30 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 195.82, 169.30, 138.33, 136.65, 135.31, 135.27, 134.43, 133.35, 130.47, 128.37, 128.34, 125.09, 123.99, 121.48, 65.19, 63.13, 48.86, 20.94, 13.62. ESI-HRMS: Calcd for C₁₉H₂₀NO₅S⁺ ([M+H⁺]): 374.1057; Found: 374.1058.

-7.80 (m, 1H), 7.75 - 7.58 (m, 3H), 7.51 - 7.42 (m, 2H), 7.40 - 7.32 (m, 1H), 7.17 - 7.11 (m, 1H), 6.08 (s, 1H), 4.32 (qq, J = 10.7, 7.1 Hz, 2H), 4.07 (d, J = 17.8 Hz, 1H), 3.84 (s, 3H), 3.71 (d, J = 17.8 Hz, 1H), 1.31 (t, J = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 195.50, 169.24, 159.63, 136.62, 135.31, 133.31, 130.48, 129.44, 123.92, 121.53, 120.52, 120.29, 111.94, 65.18, 63.17, 55.16, 48.89, 13.62. ESI-HRMS: Calcd for C₁₉H₂₀NO₆S⁺ ([M+H⁺]): 390.1006; Found: 390.1005.

White solid, m.p. 58 – 60 °C, 98% yield. $[\alpha]20 \text{ D} = -137.2$ (c, 1.13, CH₂Cl₂); 99% ee, determined by HPLC analysis [Daicel Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 80:20, 1.0 mL/min, 220 nm; t (major) = 17.99 min, t (minor) = 30.46 min]; ¹H NMR (300 MHz, CDCl₃) δ 8.06 –

8.01 (m, 1H), 7.89 – 7.79 (m, 2H), 7.76 – 7.60 (m, 4H), 7.39 – 7.31 (m, 1H), 6.07 (s, 1H), 4.33 (qq, J = 10.7, 7.1 Hz, 2H), 4.05 (d, J = 17.8 Hz, 1H), 3.69 (d, J = 17.8 Hz, 1H), 1.31 (t, J = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 194.36, 169.06, 136.97, 136.48, 135.32, 133.38, 130.90, 130.57, 130.07, 126.39, 123.89, 122.80, 121.57, 65.00, 63.29, 48.77, 13.62. ESI-HRMS: Calcd for C₁₈H₁₆BrNNaO₅S⁺ ([M+Na⁺]): 459.9825; Found: 459.9828.

White solid, m.p. 73 –74 °C, 98% yield. [α]20 D = –134.4 (c, 1.17, CH₂Cl₂); 99% ee, determined by HPLC analysis [Daicel Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 80:20, 1.0 mL/min, 220 nm; t (minor) = 23.68 min, t (major) = 26.01 min]; ¹H NMR (300 MHz, CDCl₃) δ 8.41 (s,

1H), 8.03 - 7.49 (m, 10H), 6.15 (s, 1H), 4.44 - 4.25 (m, 2H), 4.22 (d, J = 17.7 Hz, 1H), 3.88 (d, J = 17.7 Hz, 1H), 1.32 (t, J = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 195.55, 169.32, 136.71, 135.60, 135.37, 133.33, 132.64, 132.04, 130.49, 130.00, 129.28, 128.64, 128.41, 127.51, 126.72, 124.00, 123.08, 121.56, 65.27, 63.19, 48.87, 13.64. ESI-HRMS: Calcd for C₂₂H₁₉NNaO₅S⁺ ([M+Na⁺]): 432.0876; Found: 432.0880.

White solid, m.p. 56–58 °C, 98% yield. [α]20 D = –133.6 (c, 1.09, CH₂Cl₂); 98% ee, determined by HPLC analysis [Daicel Chiralpak AD-H column, *n*-hexane/*i*-PrOH = 70:30, 0.9 mL/min, 220 nm; t (major) = 24.23 min, t (minor)

= 36.80 min]; ¹H NMR (300 MHz, CDCl₃) δ 7.86 -7.79 (m, 1H), 7.74-7.58 (m, 4H), 7.27 - 7.23 13

(m, 1H), 6.59 - 6.55 (m, 1H), 6.07 (s, 1H), 4.44-4.21 (m, 2H), 3.95 (d, J = 17.7 Hz, 1H), 3.60 (d, J = 17.7 Hz, 1H), 1.32 (t, J = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 184.31, 169.05, 151.37, 146.77, 136.53, 135.21, 133.32, 130.47, 123.94, 121.48, 117.93, 112.35, 64.87, 63.26, 48.15, 13.59. ESI-HRMS: Calcd for C₁₆H₁₅NNaO₆S⁺ ([M+Na⁺]): 372.0512; Found: 372.0516.

White solid, m.p. 64–66 °C, 97% yield. $[\alpha]20 \text{ D} = -154 \text{ (c, } 1.14, \text{CH}_2\text{Cl}_2\text{)}; 97\%$ ee, determined by HPLC analysis [Daicel Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 80:20, 1.0 mL/min, 220 nm; t (minor) = 20.85 min, t (major) = 23.03 min]; ¹H NMR (300 MHz, CDCl₃) δ 7.83 – 7.78 (m, 1H), 7.76 – 7.57

(m, 5H), 7.15 - 7.10 (m, 1H), 6.09 (s, 1H), 4.42 - 4.22 (m, 2H), 4.04 (d, J = 17.4 Hz, 1H), 3.65 (d, J = 17.4 Hz, 1H), 1.31 (t, J = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 188.27, 169.04, 142.17, 136.47, 135.21, 134.57, 133.41, 132.76, 130.54, 128.10, 124.01, 121.45, 65.16, 63.27, 48.86, 13.61. ESI-HRMS: Calcd for C₁₆H₁₆NO₅S₂⁺ ([M+H⁺]): 366.0464; Found: 366.0466.

White solid, m.p. 64–65 °C, 93% yield. $[\alpha]20 \text{ D} = -157 \text{ (c, } 0.73, \text{ CH}_2\text{Cl}_2);$ 98% ee, determined by HPLC analysis [Daicel Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 80:20, 1.0 mL/min, 220 nm; t (minor) = 25.49 min, t (major) = 34.44 min]; ¹H NMR (300 MHz, CDCl₃) δ 7.85–7.78 (m, 1H), 7.72–7.49 (m, 6H), 7.45 – 7.35 (m, 3H), 6.71 (d, *J* = 16.3 Hz, 1H), 6.08 (s, 1H), 4.31 (qq, *J* = 10.7, 7.1 Hz, 2H), 3.83 (d, *J* = 17.6 Hz, 1H), 3.42 (d, *J* = 17.5 Hz, 1H), 1.32 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 195.37, 169.20, 144.34, 136.64, 135.23, 133.61, 133.29, 130.72, 130.42, 128.72, 128.16, 124.72, 123.92, 121.48, 65.13, 63.15, 50.09, 13.62. ESI-HRMS: Calcd for C₂₀H₂₀NO₅S⁺ ([M+H⁺]): 386.1057; Found: 386.1058.

 $B_{EtO_2C}^{O}$ WI Bau Ph

White solid, m.p. 49 – 51 °C, 96% yield. [α]20 D = –111.2 (c, 0.91, CH₂Cl₂); 99% ee, determined by HPLC analysis [Daicel Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 80:20, 1.0 mL/min, 220 nm; t (minor) = 14.45 min, t (major) = 30.54 min]; ¹H NMR (300 MHz, CDCl₃) δ 7.84 – 7.77 (m, 1H), 7.72 –

7.58 (m, 3H), 7.58 – 7.51 (m, 2H), 7.51 – 7.42 (m, 1H), 7.42 – 7.33 (m, 2H), 5.99 (s, 1H), 4.43 – 4.20 (m, 2H), 3.84 (d, J = 18.2 Hz, 1H), 3.40 (d, J = 18.2 Hz, 1H), 1.32 (t, J = 7.1 Hz, 3H). ¹³C ¹⁴

NMR (75 MHz, CDCl₃) δ 182.20, 168.68, 136.10, 135.21, 133.37, 132.84, 130.91, 130.57, 128.40, 123.83, 121.54, 118.92, 93.14, 86.60, 64.66, 63.42, 54.39, 13.61. ESI-HRMS: Calcd for C₂₀H₁₈NO₅S⁺ ([M+H⁺]): 384.0900; Found: 384.0900.

White solid, m.p. 47–49 °C, 98% yield. [α]20 D = -50.1 (c, 1.22, CH₂Cl₂); 99% ee, determined by HPLC analysis [Daicel Chiralcel OD-H column, *n*hexane/*i*-PrOH = 80:20, 1.0 mL/min, 220 nm; t (major) = 10.29 min, t (minor) = 13.34 min]; ¹H NMR (300 MHz, CDCl₃) δ 7.97–7.88 (m, 2H), 7.84–7.75

(m, 2H), 7.68–7.52 (m, 3H), 7.49–7.40 (m, 2H), 6.15 (s, 1H), 4.43 (q, J = 7.1 Hz, 2H), 4.27 (q, J = 7.5 Hz, 1H), 1.48 (d, J = 7.5 Hz, 3H), 1.41 (t, J = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 200.78, 168.81, 136.93, 135.43, 133.33, 132.35, 130.24, 128.49, 128.27, 126.08, 121.31, 68.62, 63.18, 49.94, 14.38, 13.72. ESI-HRMS: Calcd for C₁₉H₁₉NNaO₅S⁺ ([M+Na⁺]): 396.0876; Found: 396.0877.

White solid, m.p. 52–53 °C, 97% yield. [α]20 D=–142.1 (c, 1.15, CH₂Cl₂); >20:1 dr, 99% ee, determined by HPLC analysis [Daicel Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 80:20, 1.0 mL/min, 220 nm; t (major) = 13.18 min, t (minor) = 21.00 min]; ¹H NMR (300 MHz,

CDCl₃) δ 8.02 – 7.94 (m, 2H), 7.93 – 7.86 (m, 1H), 7.86 – 7.80 (m, 1H), 7.75 – 7.64 (m, 2H), 7.00 – 6.90 (m, 2H), 5.99 (s, 1H), 5.65 (d, *J* = 46.1 Hz, 1H), 4.38 (q, *J* = 7.1 Hz, 2H), 3.88 (s, 3H), 1.33 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 190.00 (d, *J* = 20.0 Hz), 167.45, 164.37, 135.71, 133.26, 133.01, 131.86, 131.81, 130.91, 126.91, 126.84, 121.25, 113.75, 92.08 (d, *J* = 201.3 Hz), 66.19 (d, *J* = 22.6 Hz), 63.48, 55.27, 13.62. ESI-HRMS: Calcd for C₁₉H₁₈FNNaO₆S⁺ ([M+Na⁺]): 430.0731; Found: 430.0735.

White solid, m.p. 85–86 °C, 95% yield. [α]20 D = –141.0 (c, 1.07, CH₂Cl₂); 98:2 dr, 99% ee, determined by HPLC analysis [Daicel Chiralpak AD-H column, *n*-hexane/*i*-PrOH = 70:30, 0.9 mL/min, 220 nm; t (minor) = 32.82

min, t (major) = 35.45 min]; ¹H NMR (300 MHz, CDCl₃) δ 8.04 – 7.95 (m, 1H), 7.84–7.77 (m, 1H), 7.76–7.59 (m, 3H), 7.52 –7.44 (m, 1H), 7.35 – 7.27 (m, 1H), 7.24 – 7.17 (m, 1H), 5.85 (s, 15

1H), 4.44 –4.22 (m, 2H), 3.81 (dd, J = 13.9, 4.2 Hz, 1H), 3.07 – 2.84 (m, 2H), 2.29 – 2.08 (m, 1H), 1.56 – 1.42 (m, 1H), 1.32 (t, J = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 196.25, 169.90, 143.61, 135.45, 135.22, 133.84, 133.54, 131.54, 130.52, 128.45, 127.23, 126.55, 123.87, 121.65, 69.16, 63.16, 55.95, 28.48, 23.08, 13.59. ESI-HRMS: Calcd for C₂₀H₁₉NNaO₅S⁺ ([M+Na⁺]): 408.0876; Found: 408.0881.

White solid, m.p. 40–41 °C, 96% yield. [α]20 D = -65 (c, 1.08, CH₂Cl₂); 96% ee, determined by HPLC analysis [Daicel Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 80:20, 1.0 mL/min, 220 nm; t (major) = 20.35 min, t (minor) = 23.37 min]; ¹H NMR (300 MHz, CDCl₃) δ 7.91–7.84 (m, 2H), 7.83–7.74 (m, 2H), 7.74 – 7.53 (m, 3H), 7.51–7.42 (m, 2H), 6.99 (d, *J* = 15.5 Hz, 1H), 6.92–6.79 (m, 1H), 5.86 (s, 1H), 4.36 (q, *J* = 7.1 Hz, 2H), 3.23 (dd, *J* = 14.1, 7.2 Hz, 1H), 2.98 (dd, *J* = 14.1, 6.9 Hz, 1H), 1.35 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 189.98, 168.64, 139.74, 137.15, 136.89, 135.31, 133.38, 132.72, 130.83, 130.51, 128.36, 128.31, 124.42, 121.35, 67.85, 63.72, 42.89, 13.82. ESI-HRMS: Calcd for C₂₀H₁₉NNaO₅S⁺ ([M+Na⁺]): 408.0876; Found: 408.0881.

Viscous oil, 21% yield. [α]20 D = -46 (c, 0.43, CHCl₃); 30% ee, determined by HPLC analysis [Daicel Chiralcel AD-H column, *n*-hexane/*i*-PrOH = 60:40, 1.0 mL/min, 230 nm; t (major) = 14.95 min, t (minor) = 25.56 min]; ¹H NMR (300 MHz, CDCl₃) δ 8.14 - 8.07 (m, 2H), 8.00 - 7.94 (m, 1H), 7.91 - 7.85 (m, 1H), 7.81 - 7.65 (m, 3H), 7.56 - 7.48 (m, 2H), 6.01 (s, 1H), 4.47 - 4.36 (m, 2H), 1.36 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 187.48 (dd, *J* = 32.0, 28.9 Hz), 165.26 (dd, *J* = 7.2, 2.0 Hz), 136.32, 134.89, 133.26, 131.48, 130.88, 130.11 (d, *J* = 2.2 Hz), 130.06 (d, *J* = 2.5 Hz), 128.52, 126.72 (d, *J* = 5.6 Hz), 121.62, δ 115.10 (t, *J* = 269.8 Hz), 68.23 (dd, *J* = 26.0, 23.9 Hz), 64.08, 13.52. ESI-HRMS: Calcd for C₁₈H₁₄F₂NO₅S⁻ ([M-H⁻]): 394.0566; Found: 394.0569.

6. Transformations of product 3 to 4, 5 and 6

6.1 The preparation of 4

A solution of **3***ba* (0.2 mmol) in MeOH (8.5 mL) and EtOAc(0.8 mL) was added to a mixture of Pd/C(10% on carbon, 35 mg) in MeOH (0.5 mL). The mixture was stirred under H₂ (1atm) for 24 hours. The reaction mixture was then filtered through Celite and the filtrate was concentrated under reduced pressure. The remained oil was purified through flash column chromatography (PE/EA = 5/1) to give product *4ba* as a viscous liquid. 78% yield. [α]20 D= -32.1 (c, 1.33, CH₂Cl₂); 97% ee, determined by HPLC analysis [Daicel Chiralpak AD-H column, *n*-hexane/*i*-PrOH = 80:20, 1.0 mL/min, 220 nm; t (minor) = 15.73 min, t (major) = 24.16 min]; ¹H NMR (300 MHz, CDCl₃) δ 7.66 - 7.60 (m, 1H), 7.49 - 7.44 (m, 1H), 7.40 - 7.33 (m, 1H), 7.30 - 7.11 (m, 5H), 5.84 (s, 1H), 4.34 - 4.18 (m, 2H), 2.81 - 2.59 (m, 2H), 2.57 - 2.47 (m, 1H), 2.45 (s, 3H), 2.37-2.22 (m, 1H), 1.34 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 169.68, 144.33, 139.93, 138.13, 132.35, 131.11, 128.14, 128.11, 125.90, 124.70, 120.88, 68.48, 63.24, 41.67, 30.61, 21.53, 13.79. ESI-HRMS: Calcd for C₁₈H₁₉NNaO₄S⁺ ([M+Na⁺]): 368.0927; Found: 368.0926.

6.2 The preparation of 5⁸

To a suspension of product **3aa** (0.3mmol), KI (0.6 mmol) and THF (3 mL) was added TBHP (0.60 mmol, 5.5 mol/L in n-decane) in portions during 2 h. After completion of the reaction (monitored by TLC), the solvent was evaporated in vacuo. Purification of the residue by column chromatography (PE/EA = 10/1 - 5/1, V/V) afforded the desired aziridine product **5**. 95% yield. [α]20 D = +78.8 (c, 0.92, EtOAc); 98% ee, determined by HPLC analysis [Daicel

Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 70:30, 0.8 mL/min, 215 nm; t (major) = 11.39 min, t (minor) = 12.86 min]; ¹H NMR (300 MHz, CDCl₃) δ 8.27 – 8.21 (m, 1H), 8.16 – 8.08 (m, 2H), 7.85 – 7.74 (m, 2H), 7.73 – 7.63 (m, 2H), 7.59 – 7.49 (m, 2H), 4.46 – 4.20 (m, 2H), 3.94 (s, 1H), 1.27 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 187.36, 163.08, 134.34, 134.31, 133.73, 17

133.23, 132.87, 130.90, 128.82, 128.68, 126.90, 123.02, 77.12, 76.70, 76.28, 62.75, 59.60, 53.32, 13.43. ESI-HRMS: Calcd for C₁₈H₁₆NO₅S ⁺ ([M+H⁺]): 358.0743; Found: 358.0744.

The preparation of 6

Under nitrogen atmosphere, to a solution of **3am** (88mg, 0.2mmol) in anhydrous toluene (3 mL) was added CuI (0.5 equiv), DMEDA (1.0 equiv), K_2CO_3 (2.5 equiv). After heating for 1 h at 50 °C, the heterogeneous mixture was cooled to room temperature and AcOEt (6 mL) was added, the mixture was then passed through a pad of Celite. The filtrate was concentrated under reduced pressure and the residue was purified by silica gel column chromatography (PE/EA = 3/1m V'V) to afford the product **6** in 95% yield.

White solid, m.p. 55 –56 °C, 95% yield. [α]20 D = –143.5 (c, 0.35, CH₂Cl₂); 98% ee, determined by HPLC analysis [Daicel Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 80:20, 1.0 mL/min, 220 nm; t (mnior) = 24.53 min, t (major) = 26.23 min]; ¹H NMR (300 MHz, CDCl₃) δ 8.06 – 7.97 (m, 1H), 7.97 – 7.89 (m, 1H), 7.89 – 7.82 (m, 1H), 7.80 – 7.59 (m, 4H), 7.25 – 7.18 (m, 1H), 4.21 – 3.97 (m, 2H), 3.76 (d, *J* = 16.4 Hz, 1H), 2.97 (d, *J* = 13.3 Hz, 1H), 1.02 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 188.33, 167.91, 138.31, 135.76, 133.95, 133.64, 133.54, 130.82, 127.99, 123.99, 123.19, 121.74, 121.67, 118.01, 77.19, 76.76, 76.34, 68.62, 63.12, 45.86, 13.37. ESI-HRMS: Calcd for C₁₈H₁₅NNaO₅S⁺ ([M+Na⁺]): 380.0563; Found: 380.0566.

References.

1 Liu, R.-R.; Wang, D.-J.; Wu, L.; Xiang, B.; Zhang, G.-Q.; Gao, J.-R.; Jia, Y.-X. ACS Catal. **2015**, *5*, 6524.

2 (a) Wang, H.; Jiang T.; Xu, M.-H. J. Am. Chem. Soc. 2013, 135, 971; (b) Yan, Z., Wu, B., Gao,
X., Chen, M. W., Zhou, Y. G. Org. Lett. 2016, 18, 692.

3 (a) Wiles, C., Watts, P., Haswell, S. J., Pombo-Villar, E. *Tetrahedron.* **2005**, *61*, 10757; (b) Tanis, S. P., Evans, B. R., Nieman, J. A., Parker, T. T., Taylor, W. D., Heasley, S. E., Hester, M. 18

- R. *Tetrahedron: Asymmetry.* 2006 *17*, 2154. (c) Ferrié, L., Boulard, L., Pradaux, F., Bouzbouz, S.,
 Reymond, S., Capdevielle, P., Cossy, J. *J. Org. Chem.* 2008, *73*, 1864. (d) Hoffmann, R.V.; Kim,
 O. *J. Org. Chem.* 1991, *36*, 1014.
- 4. He, Y., Zhang, X., Shen, N., Fan, X. J. Fluorine Chem. 2013, 156, 9.
- 5 Schuler, M., Silva, F., Bobbio, C., Tessier, A., Gouverneur, V. Angew. Chem. Int. Ed. 2008, 47, 7927-7930.
- 6. Qiao, B., Huang, Y. J., Nie, J., Ma, J. A. Org. Lett. 2015, 17, 4608.
- 7 Fu, J.P.;; Karur, S.; Madera, A. M.; Pecchi, S.; Sweeney, Z. K.; Tjandra, M.; Yifru, A. Patent Appl. WO 2014160649A1, **2014**.
- 8. Lai, B. N., Qiu, J. F., Zhang, H. X., Nie, J., Ma, J. A. Org. Lett. 2016, 18, 520.

Daicel Chiralcel OD-H, n-hexane/i-PrOH = 80:20, 1.0 mL/min, 220 nm; t_R (major) = 17.85

Daicel Chiralcel OD-H, n-hexane/i-PrOH = 80:20, 1.0 mL/min, 220 nm; t_R (major) = 13.44 min, t_R (minor) = 21.91 min; 99% ee.

Daicel Chiralcel OD-H, n-hexane/i-PrOH = 80:20, 1.0 mL/min, 220 nm; t_R (major) = 14.83 min, t_R (minor) = 22.17 min; 99% ee.

Daicel Chiralcel OD-H, n-hexane/i-PrOH = 80:20, 1.0 mL/min, 220 nm; t_R (major) = 7.20 min, t_R (minor) = 12.30 min; 99% ee.

Daicel Chiralcel OD-H, n-hexane/i-PrOH = 80:20, 1.0 mL/min, 220 nm; t_R (major) = 10.85 min, t_R (minor) = 17.42 min; 99% ee.

Daicel Chiralcel OD-H, n-hexane/i-PrOH = 80:20, 1.0 mL/min, 220 nm; t_R (major) = 10.82 min, t_R (minor) = 19.38 min; 99% ee.

Daicel Chiralcel OD-H, n-hexane/i-PrOH = 80:20, 1.0 mL/min, 220 nm; t_R (major) = 8.26 min, t_R (minor) = 18.11 min; 97% ee.

Daicel Chiralcel OD-H, n-hexane/i-PrOH = 80:20, 1.0 mL/min, 220 nm; t_R (major) = 16.34 min, t_R (minor) = 21.53 min; 94% ee.

Daicel Chiralpak AD-H, n-hexane/i-PrOH = 70:30, 0.9 mL/min, 220 nm; t_R (minor) = 18.95 min, t_R (major) = 23.01 min; 97% ee.

Daicel Chiralcel OD-H, n-hexane/i-PrOH = 80:20, 1.0 mL/min, 220 nm; t_R (major) = 7.62 min, t_R (minor) = 15.36 min; 96% ee.

Daicel Chiralcel OD-H, n-hexane/i-PrOH = 80:20, 1.0 mL/min, 220 nm; t_R (major) = 15.86 min, t_R (minor) = 24.68 min; 99% ee.

Daicel Chiralcel OD-H, n-hexane/i-PrOH = 80:20, 1.0 mL/min, 220 nm; t_R (minor) = 19.62 min, t_R (major) = 20.80 min; 99% ee.

Daicel Chiralcel OD-H, n-hexane/i-PrOH = 70:30, 0.9 mL/min, 220 nm; t_R (minor) = 28.09 min, t_R (major) = 86.78 min; 95% ee.

Daicel Chiralcel OD-H, n-hexane/i-PrOH = 80:20, 1.0 mL/min, 220 nm; t_R (minor) = 19.04 min, t_R (major) = 25.08 min; 98% ee.

Daicel Chiralcel OD-H, n-hexane/i-PrOH = 80:20, 1.0 mL/min, 220 nm; t_R (minor) = 21.77 min, t_R (major) = 31.21 min; 98%.

Daicel Chiralcel OD-H, n-hexane/i-PrOH = 70:30, 0.9 mL/min, 220 nm; t_R (minor) = 16.73 min, t_R (major) = 38.84 min; 99% ee.

#

1

2

Time

16.217

38.256

Area

13539.4 241.4

14386.2 92.9

Height

Width

0.9349

2.5812

Area%

48.484

51.516

Symmetry

0.57

0.411

Daicel Chiralcel OD-H, n-hexane/i-PrOH = 80:20, 1.0 mL/min, 220 nm; t_R (minor) = 17.22 min, t_R (major) = 26.03 min; 99% ee.

Daicel Chiralcel OD-H, n-hexane/i-PrOH = 70:30, 0.9 mL/min, 220 nm; t_R (minor) = 30.95 min, t_R (major) = 60.06 min; 99% ee.

Daicel Chiralcel OD-H, n-hexane/i-PrOH = 80:20, 1.0 mL/min, 220 nm; t_R (major) = 13.98 min, t_R (minor) = 26.44 min; 99% ee.

Daicel Chiralpak AD-H, n-hexane/i-PrOH = 70:30, 0.9 mL/min, 220 nm; t_R (major) = 31.50 min, t_R (minor) = 40.03 min; 96% ee.

Daicel Chiralcel OD-H, n-hexane/i-PrOH = 80:20, 1.0 mL/min, 220 nm; t_R (major) = 12.69 min, t_R (minor) = 15.30 min; 99% ee.

Daicel Chiralcel OD-H, n-hexane/i-PrOH = 80:20, 1.0 mL/min, 220 nm; t_R (major) = 15.80 min, t_R (minor) = 24.28 min; 99% ee.

Daicel Chiralcel OD-H, n-hexane/i-PrOH = 80:20, 1.0 mL/min, 220 nm; t_R (major) = 12.91 min, t_R (major) = 20.69 min; 99% ee.

Daicel Chiralcel OD-H, n-hexane/i-PrOH = 80:20, 1.0 mL/min, 220 nm; t_R (major) = 14.96 min, t_R (minor) = 26.69 min; 98% ee.

0.359

56.536

0.314

43.464

Daicel Chiralcel OD-H, n-hexane/i-PrOH = 80:20, 1.0 mL/min, 220 nm; t_R (major) = 22.95 min, t_R (minor) = 69.05 min; 98% ee.

44

1

2

22.915

61.003

88474

935.4

68018.7 247 4.5891

1.5764

Daicel Chiralcel OD-H, n-hexane/i-PrOH = 80:20, 1.0 mL/min, 220 nm; t_R (major) = 17.99 min, t_R (minor) = 30.46 min; 99% ee.

Daicel Chiralcel OD-H, n-hexane/i-PrOH = 80:20, 1.0 mL/min, 220 nm; t_R (minor) = 23.68min, t_R (major) = 26.01 min; 99% ee.

Daicel Chiralpak AD-H, n-hexane/i-PrOH = 70:30, 0.9 mL/min, 220 nm; t_R (major) = 24.23 min, t_R (minor) = 36.80 min; 98% ee.

Daicel Chiralcel OD-H, n-hexane/i-PrOH = 80:20, 1.0 mL/min, 220 nm; t_R (minor) = 20.85min, t_R (major) = 23.03 min; 97% ee.

Daicel Chiralcel OD-H, n-hexane/i-PrOH = 80:20, 1.0 mL/min, 220 nm; t_R (minor) = 25.49 min, t_R (major) = 34.44 min; 98% ee.

Daicel Chiralcel OD-H, n-hexane/i-PrOH = 80:20, 1.0 mL/min, 220 nm; t_R (minor) = 14.45 min, t_R (major) = 30.54min; 99% ee.

Daicel Chiralcel OD-H, n-hexane/i-PrOH = 80:20, 1.0 mL/min, 220 nm; t_R (major) = 10.29 min, t_R (minor) = 13.43 min; 99% ee.

Daicel Chiralcel OD-H, n-hexane/i-PrOH = 70:30, 0.9 mL/min, 220 nm; t_R (major) = 13.18 min, t_R (minor) = 21.00 min; 99% ee.

Daicel Chiralpak AD-H, n-hexane/i-PrOH = 70:30, 1.0 mL/min, 220 nm; t_R (minor) = 32.82 min, t_R (major) = 35.45 min; 99% ee.

Zn(ClO₄)₂–L2 as catalyst: 92:8, 97%ee

Zn(OTf)₂-L2 as catalyst: dr 98:2; 99% ee

Daicel Chiralcel OD-H, n-hexane/i-PrOH = 80:20, 1.0 mL/min, 220 nm; t_R (major) = 20.35 min, t_R (minor) = 23.37 min; 96% ee.

VWD1 A, Wavelength=230 nm (H:\2017-06-14+746+A-5+TWOSI.D) A98-5-12 mAU 949 12 Ö ,0 10 NH EtO₂C Ph 8 F 3ax' 6 ^{66,0}1, ^{63,1}2; 262 4 2 0. 17.5 22.5 12.5 15 27.5 30 10 20 25 . min # Time Area Height Width Area% Symmetry 1 14.949 498.5 12.4 64.810 0.599 0.67 2 25.562 270.7 3.9 1.1591 35.190 0.617 VWD1 A, Wavelength=230 nm (H:\2017-06-14+745+R-5+TWOSI.D) mAU -9 160 140 120 · 25.458 100 -80 · 60 · 40 -20 0 17.5 10 12.5 15 22.5 27.5 20 25 30 mir # Time Area Height Width Area% Symmetry 1 14.911 6861.5 172.8 0.5923 50.308 0.529 2 25.458 6777.4 96.1 1.0471 49.692 0.488

Daicel Chiralcel OD-H, n-hexane/i-PrOH = 60:40, 1.0 mL/min, 230 nm; t_R (major) = 14.95 min, t_R (minor) = 25.56 min; 30% ee.

Daicel Chiralcel OD-H, n-hexane/i-PrOH = 80:20, 1.0 mL/min, 220 nm; t_R (minor) = 15.73 min, t_R (major) = 24.16 min; 97% ee.

Daicel Chiralcel OD-H, n-hexane/i-PrOH = 70:30, 0.8 mL/min, 215 nm; t_R (major) = 11.39 min, t_R (minor) = 12.86 min; 98% ee.

Daicel Chiralcel OD-H, n-hexane/i-PrOH = 80:20, 1.0 mL/min, 220 nm; t_R (minor) = 24.53 min, t_R (major) = 26.23 min; 98% ee.

240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -5 fl (ppm)

20 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -: f1 (ppm)

20 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -: f1 (ppm)

20 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

20 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -: f1 (ppm)

-0.01

9. The structure of **3ka** and **3aw'** by X-ray diffraction analysis

 Table S3. Crystal data and structure refinement for (S)-3ka (CCDC 1522074)

Empirical formula	C22H19NO5S
Formula weight	409.44
Temperature / K	105.8
Crystal system	orthorhombic
Space group	P212121
a / Å, b / Å, c / Å	8.8173(4), 14.3926(7), 15.3659(7)
$\alpha/^{\circ}, \beta/^{\circ}, \gamma/^{\circ}$	90.00, 90.00, 90.00
Volume / Å ³	1950.00(15)
Ζ	4
ρ_{calc} / mg mm ⁻³	1.395
μ / mm^{-1}	1.775
F(000)	856
Crystal size / mm3	$0.25 \times 0.24 \times 0.23$
2Θ range for data collection	8.42 to 141.9°
Index ranges	-10 ≤ h ≤ 9, -17 ≤ k ≤ 17, -17 ≤ l ≤ 18
Reflections collected	6453
Independent reflections	3678[R(int) = 0.0210 (inf-0.9Å)]
Data/restraints/parameters	3678/0/264
Goodness-of-fit on F ²	1.061
Final R indexes [I> 2σ (I) i.e. $F_o>4\sigma$ (F_o)]	$R_1 = 0.0271$, $wR_2 = 0.0686$
Final R indexes [all data]	$R_1 = 0.0275$, $wR_2 = 0.0689$
Largest diff. peak/hole / e Å ⁻³	0.330/-0.306
Flack Parameters	0.003(12)
Completeness	0.989

Crystal structure for *3aw*' (CCDC 1536298)

3aw' from different perspective