Supporting Information

Iridium-catalyzed Direct Asymmetric Reductive Amination of Aromatic Ketones

Haizhou Huang, ${ }^{\text {a }}$ Zitong Wu, ${ }^{\text {a Guori Gao, }}{ }^{\text {b }}$ Le Zhou ${ }^{\text {a }}$ and Mingxin Chang *a
${ }^{a}$ Shaanxi Key Laboratory of Natural Products \& Chemical Biology, College of Chemistry and Pharmacy, Northwest A\&F University, 22 Xinong Road, Yangling, Shaanxi 712100, PR China
${ }^{b}$ College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, 88 Wenhuadong Road,Jinan 250014, PR China.
Phone/fax: (+86)-29-8709-2662; e-mail: mxchang@nwsuaf.edu.cn

CONTENTS

I General Remarks S2
II General Procedure for Preparation of Monophos-type Ligands S2
III General Procedure for Asymmetric Reductive Amination S2
IV General Procedure for Removal of Diphenylmethyl Group S23
V References S25
VI NMR \& HRMS Spectra S26

I. General remarks

All reactions were performed in the nitrogen-filled glovebox or under nitrogen using standard Schlenk techniques unless otherwise noted. Chemicals were purchased from Adamas, Energy Chemicals and other companies. Column chromatography was performed using silica gel $60\left(200-300\right.$ mesh). ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectral data were obtaineded from Bruker 500 MHz spectrometers. Chemical shifts are reported in ppm. Enantiomeric excess values were determined by chiral HPLC on an Agilent 1220 Series instrument or by ${ }^{1} \mathrm{H}$ NMR using (S)-2-acetoxy-2-phenylacetic acid as shift reagant. All new products were further characterized by HRMS. A positive ion mass spectrum of sample was acquired on a Thermo Scientific LTQ Orbitrap XL mass spectrometer with an electrospray ionization source.

II. General Procedure for Preparation of Monophos-type ligands

Ligands L1a-e were synthesized according to the reported procedures. ${ }^{[1]}$

A 25 mL Schlenk flask was charged with $(R)-(+)-1,1^{\prime}-\mathrm{bi}(2-n a p h t h o l)(0.57 \mathrm{~g}, 2 \mathrm{mmol})$, phosphorus trichloride ($2.74 \mathrm{~g}, 20$ mmol, 10 equiv), 1-methyl-2-pyrrolidinone ($1.6 \mu \mathrm{~L}, 0.02 \mathrm{mmol}, 0.008$ equiv) under nitrogen. The reaction mixture was heated to $90^{\circ} \mathrm{C}$ for 15 min , and all volatiles were removed under reduced pressure. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL} \times 2)$ was used to remove the traces of phosphorus trichloride. The resulting oil was vacummed for 3 h to give the pale solid which was used directly in next step.

A 25 mL round-bottom flask was charged with 2 mmol of corresponding amine, 3 mmol of $\mathrm{Et}_{3} \mathrm{~N}$ and 10 ml toluene. The above made chlorophosphite was dissolved in 5 mL toluene and was transfered to the reaction flask. The mixture was stirred for 3 h . The solid was removed by filtration. The filtrate was concentrated and purified by flash column chromatography (EtOAc/Hex) to yield desired ligand (yield: 75-95\%).

III. General Procedure for Asymmetric Reductive amination

In a nitrogen-filled glovebox, the complex ($0.5 \mathrm{~mol} \%$) prepared from in situ from $[\operatorname{Ir}(\mathrm{COD}) \mathrm{Cl}]_{2}$ and $\mathbf{L 1 d}$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added to 4-acetoanisole $\mathbf{1 a}(0.3 \mathrm{mmol})$ and diphenylmethylamine $\mathbf{2}(0.39 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution $(1.0 \mathrm{~mL})$. Then $4 \AA$ molecular sieves (0.15 gram), $\mathrm{Ti}(\mathrm{O} i-\operatorname{Pr})_{4}$ (0.2 equiv.), and trifluoroacetic acid (0.5 equiv.) were added subsequently and the total solution was made to 3.0 mL . The resulting vial was transferred to an autoclave, which was charged with 60 atm of H_{2}, and stirred at $50{ }^{\circ} \mathrm{C}$ for 24 h . The hydrogen gas was released slowly and the solution was neutralized with aqueous sodium bicarbonate solution. The organic phase was concentrated and passed through a short column of silica gel to remove the metal complex to give the 80 mg chiral amine product, which was then analyzed by chiral HPLC to determine the enantiomeric excesses.
${ }^{1} \mathrm{H}$ NMR method for determination the ee values: The amine product 3 was mixed with equal amount ($\mathrm{mol} / \mathrm{mol}$) of (S)-2-acetoxy-2-phenylacetic acid and dissolved in CDCl_{3}. Diastereoisomers are formed and the proton signal of amine β-methyl will be splitted. From integration ratio the ee value could be calculated.
N-benzhydryl-1-(4-methoxyphenyl)ethan-1-amine (3a): 84% yield, 97% ee, clear oil, unknown compound. $[\alpha]^{25}{ }_{\mathrm{D}}=-49.1^{\circ}(\mathrm{c}$ $\mathrm{Ph} \quad=0.3, \mathrm{MeOH}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.39(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 4 \mathrm{H}), 7.31(\mathrm{dd}, J=14.1,6.5 \mathrm{~Hz}$, $5 \mathrm{H}), 7.23(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 3 \mathrm{H}), 6.94(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.69(\mathrm{~s}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{q}, J=6.5$ $\mathrm{Hz}, 1 \mathrm{H}), 1.41(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.5,144.7,143.7,137.7,128.5$, $128.4,127.7,127.7,127.4,127.0,126.8,113.8,63.7,55.3,54.5,24.5$. IR (KBr) v: 3308.0, 3060.4, 3024.8, $2962.8,1504.6,1243.8 \mathrm{~cm}^{-1}$. Enantiomeric excess was determined by chiral HPLC: Chiralpak IB-3 column, Hex/IPA $=99.5: 0.5,1 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}, 6.8 \mathrm{~min}, 7.4 \mathrm{~min}$. HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 318.18504$, found: 318.18512.

N-(1-(4-methoxyphenyl)ethyl)aniline(4): ${ }^{[3]} 77 \%$ yield, 29% ee, clear oil, known compound. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ

Ph $7.34(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.20-7.08(\mathrm{~m}, 2 \mathrm{H}), 6.91(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.70(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~d}$, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.50(\mathrm{q}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 1.55(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$. Enantiomeric excess was determined by chiral HPLC: Chiralpak OD-H column, Hex/IPA = 90:10, $1 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}, 8.2$ $\mathrm{min}, 10.4 \mathrm{~min}$.

N-benzyl-1-(4-methoxyphenyl)ethan-1-amine(5): ${ }^{[4]} 47 \%$ yield, 29% ee, clear oil, known compound. ${ }^{1} \mathrm{H}$ NMR (500 MHz,
 $\left.\mathrm{CDCl}_{3}\right) \delta 7.38-7.27(\mathrm{~m}, 7 \mathrm{H}), 6.94(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{q}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.74-$ $3.59(\mathrm{~m}, 2 \mathrm{H}), 1.40(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$. Enantiomeric excess was determined by chiral HPLC for the corresponding acetamide: Chiralpak OD-H column, $\mathrm{Hex} / \mathrm{IPA}=90: 10,1 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}, 11.8 \mathrm{~min}$, 13.5 min .

Peak $\#$	$\begin{aligned} & \text { RetTime } \\ & {[\mathrm{min}]} \end{aligned}$		$\begin{aligned} & \text { Width } \\ & {[\mathrm{min}]} \end{aligned}$	Area [mAU*s]	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	11.832		0. 4453	5032.97266	173. 56529	49.9189
2	13.471 V		0. 5756	5049.32813	134.31917	50.0811

N-benzhydryl-1-phenylethan-1-amine (3b): ${ }^{[2]} 90 \%$ yield, 96% ee, clear oil, known compound. $[\alpha]^{25}{ }_{\mathrm{D}}=-38.2^{\circ}$ (c $=0.3$, Ph MeOH). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40(\mathrm{t}, J=7.3 \mathrm{~Hz}, 6 \mathrm{H}), 7.32(\mathrm{td}, J=11.9,9.9,7.1 \mathrm{~Hz}, 8 \mathrm{H}), 7.25-$ $7.21(\mathrm{~m}, 1 \mathrm{H}), 4.70(\mathrm{~s}, 1 \mathrm{H}), 3.76(\mathrm{q}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.43(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$. IR (KBr) $v: 3457.6,3063.2$, 3026.4, 2966.5, $1452.0,1116.5 \mathrm{~cm}^{-1}$. Enantiomeric excess was determined by ${ }^{1} \mathrm{H}$ NMR using (S)-2-acetoxy-2-phenylacetic acid as shift reagant.

N-benzhydryl-1-(p-tolyl)ethan-1-amine (3c): 83% yield, 99% ee, clear oil, unknown compound. $[\alpha]^{25}{ }_{\mathrm{D}}=-54.0^{\circ}(\mathrm{c}=0.4$,
 $\mathrm{MeOH}) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39(\mathrm{dt}, J=15.9,7.4 \mathrm{~Hz}, 6 \mathrm{H}), 7.31(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$, $7.22(\mathrm{~s}, 5 \mathrm{H}), 4.72(\mathrm{~s}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 144.7,143.7,142.6,136.4,129.2,128.5,128.4,127.7,127.4,127.0,126.8,126.6,63.7$, 54.9, 24.5, 21.2. IR (KBr) $v: 3436.1,3022.6,3026.4,2966.5,1450.8 \mathrm{~cm}^{-1}$. Enantiomeric excess was determined by ${ }^{1} \mathrm{H}$ NMR using (S)-2-acetoxy-2-phenylacetic acid as shift reagant. HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}: 302.19033$, found: 302.1904 .

N-benzhydryl-1-(4-fluorophenyl)ethan-1-amine (3d): 89% yield, 98% ee, clear oil, unknown compound. $[\alpha]^{25}{ }_{\mathrm{D}}=-33.0^{\circ}(\mathrm{c}=$ $0.3, \mathrm{MeOH}) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31(\mathrm{~m}, 12 \mathrm{H}), 7.07(\mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.65(\mathrm{~s}, 1 \mathrm{H}), 3.73$
 $(\mathrm{q}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.40(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 128.6,128.4,128.2,128.2$, 127.7, 127.4, 127.1, 127.0, 115.3, 115.2, 63.8, 54.6, 24.5. IR (KBr) $v: 3441.4,2967.2,1641.6,1491.4$ cm^{-1}. Enantiomeric excess was determined by chiral HPLC: Chiralpak OD-H column, Hex/IPA = 99.6:0.4, $0.9 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}, 12.0 \mathrm{~min}, 13.3 \mathrm{~min}$. HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{FN}[\mathrm{M}+\mathrm{H}]^{+}: 306.16525$, found: 306.16516.

N-benzhydryl-1-(4-chlorophenyl)ethan-1-amine (3e): 87% yield, 97% ee, clear oil, unknown compound. $[\alpha]^{25}{ }_{\mathrm{D}}=-63.0^{\circ}(\mathrm{c}=$ $0.3, \mathrm{MeOH}) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36(\mathrm{dd}, J=10.7,7.5 \mathrm{~Hz}, 6 \mathrm{H}$), $7.33-7.27$ (m, 5 H), 7.25
 $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 3 \mathrm{H}), 4.64(\mathrm{~s}, 1 \mathrm{H}), 3.71(\mathrm{q}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.39(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 144.4,144.1,143.4,132.4,128.6,128.5,128.4,128.1,127.6,127.3,127.1,127.0$, 63.8, 54.6, 24.4. IR (KBr) v: 3463.7, 3061.3, 3026.9, 2969.2, 1488.2, $828.2 \mathrm{~cm}^{-1}$. Enantiomeric excess was determined by chiral HPLC: Chiralpak OD-H column, $\mathrm{Hex} / \mathrm{IPA}=99.5: 0.5,0.9 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}$, $6.2 \mathrm{~min}, 6.8 \mathrm{~min}$. HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{ClN}[\mathrm{M}+\mathrm{H}]^{+}: 322.13570$, found: 322.13556.

N-benzhydryl-1-(4-bromophenyl)ethan-1-amine (3f): 80% yield, 98% ee, clear oil, unknown compound. $[\alpha]^{25}{ }_{\mathrm{D}}=-66.9^{\circ}(\mathrm{c}=$ Ph $0.3, \mathrm{MeOH}) .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.51(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.41-7.28(\mathrm{~m}, 9 \mathrm{H}), 7.24(\mathrm{t}, J=$ $6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.65(\mathrm{~s}, 1 \mathrm{H}), 3.71(\mathrm{q}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.40(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.7$, 144.4, 143.4, 131.6, 128.6, 128.5, 128.4, 127.6, 127.3, 127.1, $127.0,120.5,63.8,54.7,24.4$. IR (KBr) $v: 3446.6,2967.6,1640.5,1016.9 \mathrm{~cm}^{-1}$. Enantiomeric excess was determined by chiral HPLC: Chiralpak OD-H column, Hex/IPA $=98: 2,1 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}, 4.4$ $\min , 4.8 \mathrm{~min}$. HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{BrN}[\mathrm{M}+\mathrm{H}]^{+}: 366.08519$, found: 366.08524 .

Peak \#	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$		Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	4.415	BV	0. 1212	1645.57019	206.03586	48. 9521
2	4. 808	VV	0. 1328	1716. 01917	196.65742	51. 0479

Peak \#	$\begin{gathered} \text { RetTime } \\ {[\min]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height [mAU]	Area \%
1	4. 375		0. 1226	100. 61216	12. 41213	1. 0107
2	4. 746		0. 1324	9853.84180	1133. 45203	98.9893

N-benzhydryl-1-(4-(trifluoromethyl)phenyl)ethan-1-amine (3g): 93\% yield, 97% ee, white solid, unknown compound. Mp: Ph $\quad 52-54^{\circ} \mathrm{C} \cdot[\alpha]^{25} \mathrm{D}=-46.3^{\circ}(\mathrm{c}=0.3, \mathrm{MeOH}) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.65(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, $7.44(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.42-7.28(\mathrm{~m}, 9 \mathrm{H}), 7.25(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~s}, 1 \mathrm{H}), 3.81(\mathrm{q}, J=6.6 \mathrm{~Hz}$, $1 \mathrm{H}), 1.43(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.8,144.2,143.3,128.6,128.4$, 127.6, 127.3, 127.1, 127.1, 127.0, 125.5, 125.5, 63.9, 54.9, 24.4. IR (KBr) v: 3349.3, 3061.13028.4, $2973.5,1323.4,1123.9 \mathrm{~cm}^{-1}$. Enantiomeric excess was determined by chiral HPLC: Chiralpak IB-3 column, $\mathrm{Hex} / \mathrm{IPA}=99.5: 0.5,1 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}, 6.028 \mathrm{~min}, 6.689 \mathrm{~min} . \mathrm{HRMS}$ calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}: 356.16206$, found: 356.16208.

N-benzhydryl-1-(4-nitrophenyl)ethan-1-amine (3h): 86% yield, 95% ee, white solid, unknown compound. $\mathrm{Mp}: 107-110^{\circ} \mathrm{C}$. $\mathrm{Ph} \quad[\alpha]^{25} \mathrm{D}=-79.4^{\circ}(\mathrm{c}=0.3, \mathrm{MeOH}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.24(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.28(\mathrm{~m}, 7 \mathrm{H}), 7.24(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~s}, 1 \mathrm{H}), 3.87$ $(\mathrm{q}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.44(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.1,128.7,128.4$, $127.6,127.5,127.3,127.1,123.9,64.1,55.0,24.3$. IR (KBr) v: 3423.8, 3061.5, 3022.3, 2960.3, $1509.2,1337.0 \mathrm{~cm}^{-1}$. Enantiomeric excess was determined by chiral HPLC: Chiralpak OD-H column, $\mathrm{Hex} / \mathrm{IPA}=94: 6,0.9 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}, 9.8 \mathrm{~min}, 12.0 \mathrm{~min} . \mathrm{HRMS}$ calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 333.15975$, found: 333.15964 .

Methyl 4-(1-(benzhydrylamino)ethyl)benzoate (3i): 90% yield, 95% ee, white solid, unknown compound. Mp : $58-60^{\circ} \mathrm{C}$. $\operatorname{Ph} \quad[\alpha]^{25}{ }_{\mathrm{D}}=-75.1^{\circ}(\mathrm{c}=0.3, \mathrm{MeOH}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.07(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{q}, J$ Ph $=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.43(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 151.1,144.3,143.3,129.9$,
 $128.9,128.6,128.4,127.6,127.3,127.1,127.0,126.8,63.9,55.1,52.1,24.3$. IR (KBr) $v: 3403.1$, $3318.1,3025.2,2959.7,2924.2,1711.0,1277.9 \mathrm{~cm}^{-1}$. Enantiomeric excess was determined by chiral HPLC: Chiralpak OD-H column, $\mathrm{Hex} / \mathrm{IPA}=70: 30,1 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}, 4.5 \mathrm{~min}, 11.1 \mathrm{~min}$. HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 346.18016$, found: 346.18027 .

N-(4-(1-(benzhydrylamino)ethyl)phenyl)acetamide (3j): 91% yield, 92% ee, white solid, unknown compound. Mp:

$92-96^{\circ} \mathrm{C} \cdot[\alpha]^{25}=-68.2^{\circ}(\mathrm{c}=0.3, \mathrm{MeOH}) .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.51(\mathrm{~s}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=$ $4.1 \mathrm{~Hz}, 4 \mathrm{H}), 7.33-7.21(\mathrm{~m}, 8 \mathrm{H}), 4.66(\mathrm{~s}, 1 \mathrm{H}), 3.70(\mathrm{q}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~d}, J=$ $6.7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.4,144.6,141.6,136.6,128.5,128.4,127.7,127.4$, 127.3, 127.0, 126.9, 120.1, 63.7, 54.7, 24.6, 24.4. IR (KBr) v: 3294.3, 3190.6, 3061.9, 3029.1, $2963.2,1662.6,1542.1 \mathrm{~cm}^{-1}$. Enantiomeric excess was determined by chiral HPLC: Chiralpak ODH column, $\mathrm{Hex} / \mathrm{IPA}=90: 10,1 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}, 11.5 \mathrm{~min}, 13.3 \mathrm{~min}$. HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 345.19614$, found: 345.19614.

4-(1-(benzhydrylamino)ethyl)phenyl acetate (3k): 90% yield, 98% ee, clear oil, unknown compound. $[\alpha]^{25}{ }_{\mathrm{D}}=-54.1^{\circ}(\mathrm{c}=0.3$,
 $\mathrm{MeOH}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.32(\mathrm{dd}, J=13.7,8.1 \mathrm{~Hz}, 7 \mathrm{H})$, $7.24(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.70(\mathrm{~s}, 1 \mathrm{H}), 3.75(\mathrm{q}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H})$, $1.41(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) \cdot{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.5,144.5,143.6,143.1,128.5,128.4$, 127.7, 127.7, 127.4, 127.0, 126.9, 121.5, 63.7, 54.6, 24.5, 21.2. IR (KBr) $v: 3425.6,1712.0,1200.2$ cm^{-1}. Enantiomeric excess was determined by chiral HPLC: Chiralpak OD-H column, $\mathrm{Hex} / \mathrm{IPA}=80: 20,1 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}, 4.5 \mathrm{~min}, 6.0 \mathrm{~min}$. HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 346.18016$, found: 346.18015 .

N-benzhydryl-1-(3-methoxyphenyl)ethan-1-amine (31): 83% yield, 98% ee, clear oil, known compound. $[\alpha]^{25}{ }_{\mathrm{D}}=-42^{\circ}(\mathrm{c}=$
 $0.3, \mathrm{MeOH}){ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42-7.33(\mathrm{~m}, 6 \mathrm{H}), 7.29(\mathrm{~s}, 4 \mathrm{H}), 7.22(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.97-6.78(\mathrm{~m}, 3 \mathrm{H}), 4.71(\mathrm{~s}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{q}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.42(\mathrm{~d}, J=6.7 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.8,147.4,144.7,143.7,129.5,128.5,128.4,127.7,127.4$, $127.0,126.9,119.1,112.4,112.2,63.8,55.3,55.2,24.4$. IR (KBr) $v: 3350.4,3025.5,2963.0$, $2837.4,1596.0,1453.0,1264.4 \mathrm{~cm}^{-1}$. Enantiomeric excess was determined by ${ }^{1} \mathrm{H}$ NMR using (S)-2-acetoxy-2-phenylacetic acid as shift reagant. HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 318.18524$,
found: 318.18502.

N-benzhydryl-1-(3-chlorophenyl)ethan-1-amine (3m): 88\% yield, 97% ee, clear oil, unknown compound. $[\alpha]^{25}{ }_{\mathrm{D}}=-48.7^{\circ}(\mathrm{c}$ $\mathrm{Ph}=0.3, \mathrm{MeOH}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.39(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 4 \mathrm{H}), 7.37-7.27(\mathrm{~m}, 8 \mathrm{H}), 7.25(\mathrm{t}, J$ $=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{~s}, 1 \mathrm{H}), 3.72(\mathrm{q}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.41(\mathrm{~d}, J=6.7 \mathrm{~Hz}$, $3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.9,144.3,143.5,134.4,129.8,128.6,128.4,127.6,127.4$, 127.1, 127.0, 126.9, 124.9, 63.9, 54.9, 24.4. IR (KBr) $v: 3450.5,3046.3,3027.5,2969.0,1636.8$, $1455.8 \mathrm{~cm}^{-1}$. Enantiomeric excess was determined by chiral HPLC: Chiralpak OD-H column, $\mathrm{Hex} / \mathrm{IPA}=99.5: 0.5,0.9 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}, 6.1 \mathrm{~min}, 7.0 \mathrm{~min} . \mathrm{HRMS}$ calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{ClN}[\mathrm{M}+\mathrm{H}]^{+}$:
322.13570, found: 322.13580 .

N-benzhydryl-1-(3-(trifluoromethyl)phenyl)ethan-1-amine (3n): 87% yield, 96% ee, clear oil, unknown compound. $[\alpha]^{25}{ }_{\mathrm{D}}=$
 $-34.7^{\circ}(\mathrm{c}=0.3, \mathrm{MeOH}) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.58(\mathrm{~s}, 2 \mathrm{H}), 7.51(\mathrm{q}, J=8.7,7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $7.43-7.29(\mathrm{~m}, 9 \mathrm{H}), 7.24(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~s}, 1 \mathrm{H}), 3.83(\mathrm{q}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.44(\mathrm{~d}, J=6.7$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 130.2,128.9,128.6,128.4,127.6,127.4,127.2,127.0$, $123.8,123.7,64.0,55.1,24.3$. IR (KBr) $v: 3457.2,3027.1,2968.7,1450.7,1327.5,1166.9 \mathrm{~cm}^{-1}$. Enantiomeric excess was determined by chiral HPLC: Chiralpak OD-H column, $\mathrm{Hex} / \mathrm{IPA}=99.4: 0.6$, $0.9 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}, 12.0 \mathrm{~min}, 14.9 \mathrm{~min}$. HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}: 356.16206$, found: 356.16193 .

\boldsymbol{N}-benzhydryl-1-(0-tolyl)ethan-1-imine (3o'): white solid, unknown compound. (Major): ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$
 $7.54-7.18(\mathrm{~m}, 13 \mathrm{H}), 6.90(\mathrm{dd}, J=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{~s}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{~s}, 1 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H})$. HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}: 300.17577$, found: 300.17526 .
N-benzhydryl-1-(2-chlorophenyl)ethan-1-imine (3p'): white solid, unknown compound. (Major): ${ }^{1} \mathrm{H}$ NMR (500 MHz , Ph $\left.\mathrm{CDCl}_{3}\right) \delta 7.50-7.19(\mathrm{~m}, 13 \mathrm{H}), 6.89(\mathrm{dd}, J=7.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{~s}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H})$. HRMS calcd for
 $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{ClN}[\mathrm{M}+\mathrm{H}]^{+}: 320.12005$, found: 320.12003 .
N-benzhydryl-1-(naphthalen-2-yl)ethan-1-amine (3q): 94% yield, 99% ee, white solid, unknown compound. $[\alpha]^{25}{ }_{\mathrm{D}}=-53.3^{\circ}$
 $(\mathrm{c}=0.3, \mathrm{MeOH}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.91(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.86(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.69(\mathrm{~s}, 1 \mathrm{H}), 7.58-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.40(\mathrm{dd}, J=4.1,1.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.33(\mathrm{dd}, J=16.7,8.3 \mathrm{~Hz}, 5 \mathrm{H}), 7.24(\mathrm{t}$, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{~s}, 1 \mathrm{H}), 3.92(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.52(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 144.6,143.6,143.0,133.5,132.9,128.5,128.4,127.8,127.7,127.4,127.0,126.9,126.0$, $125.5,124.8,63.8,55.4,24.4$. IR (KBr) $v: 3447.9,3054.3,2966.5,1637.8,1449.9 \mathrm{~cm}^{-1}$. Enantiomeric excess was determined ${ }^{1} \mathrm{H}$ NMR using (S)-2-acetoxy-2- phenylacetic acid as shift reagant. HRMS calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$: 338.19033, found: 338.19043 .

proton NMR for $3 q(\mathrm{CDCl} 3500 \mathrm{MHz})$

N-benzhydryl-1-(pyridin-2-yl)ethan-1-amine (3r): 76\% yield, 93% ee, clear oil, unknown compound. $[\alpha]^{25}{ }_{\mathrm{D}}=-50.4^{\circ}(\mathrm{c}=$ $0.3, \mathrm{MeOH}) .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl} 3\right) \delta 8.66(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{td}, J=7.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.45$
 $(\mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{dd}, J=12.8,7.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.33-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.22(\mathrm{dd}, J=10.9,7.3 \mathrm{~Hz}, 3 \mathrm{H})$, $4.67(\mathrm{~s}, 1 \mathrm{H}), 3.85(\mathrm{q}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.47(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.6$, $149.6,144.6,143.6,136.28,128.5,128.4,127.7,127.4,127.0,126.9,121.9,64.5,56.5,23.1$. IR (KBr) v : $3314.8,3060.6,3022.0,2969.1,1586.1,1442.5 \mathrm{~cm}^{-1}$. Enantiomeric excess was determined by chiral HPLC: Chiralpak OD-H column, Hex/IPA = 90:10, $1 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}, 4.6 \mathrm{~min}, 5.2 \mathrm{~min}$. HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 289.16993$, found: 289.17007 .

N-benzhydryl-1-(furan-2-yl)ethan-1-amine (3s): 94% yield, 92% ee, clear oil, unknown compound. $[\alpha]^{25}{ }_{\mathrm{D}}=-59.4^{\circ}(\mathrm{c}=0.3$, Ph MeOH). ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.49(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{~s}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 4 \mathrm{H})$, $7.31(\mathrm{q}, J=7.7 \mathrm{~Hz}, 3 \mathrm{H}), 7.24(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.38(\mathrm{~s}, 1 \mathrm{H}), 6.13(\mathrm{~s}, 1 \mathrm{H}), 4.82(\mathrm{~s}, 1 \mathrm{H}), 3.80(\mathrm{q}, J=6.8$ $\mathrm{Hz}, 1 \mathrm{H}), 1.49(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.9,144.5,143.6,141.4,128.5,128.5$, 127.6, 127.4, 127.0, 127.0, 109.8, 105.6, 64.3, 48.9, 21.0. IR (KBr) v: 3461.7, 3062.1, 3027.9, 2974.2, $1453.6 \mathrm{~cm}^{-1}$. Enantiomeric excess was determined by ${ }^{1} \mathrm{H}$ NMR using (S)-2-acetoxy-2-phenylacetic acid as shift reagant. HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 278.15394$, found: 278.15436.

N-benzhydryl-1-(pyridin-2-yl)ethan-1-amine (3t): 90% yield, 86% ee, clear oil, unknown compound. $[\alpha]^{25}{ }_{\mathrm{D}}=-9.4^{\circ}(\mathrm{c}=0.3$,
 $\mathrm{MeOH}) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.62(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{dt}, J=13.0,7.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.28(\mathrm{q}, J=8.2,7.4 \mathrm{~Hz}, 5 \mathrm{H}), 5.20(\mathrm{~s}, 1 \mathrm{H}), 4.23(\mathrm{t}, J=6.9$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.03 (ddd, $J=15.8,8.5,3.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.81 (dt, $J=15.9,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.59-2.46$ (m, 1H), 1.88 (ddd, $J=15.3,12.4,8.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.9,143.3,128.5,127.5$, $127.4,127.1,127.1,126.3,124.7,124.3,65.2,61.0,34.6,30.3$. IR (KBr) $v: 3427.1,3026.6,2944.1$, $1451.1,1026.6 \mathrm{~cm}^{-1}$. Enantiomeric excess was determined by chiral HPLC: Chiralpak IA-3 column, Hex/IPA $=99.5: 0.5,1 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}, 6.2 \mathrm{~min}, 7.3 \mathrm{~min}$. HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}: 300.17468$, found: 300.17490 .

N-benzhydryl-1-phenylpropan-1-amine (3u): 51% yield, 90% ee, clear oil, unknown compound. $[\alpha]^{25}{ }_{\mathrm{D}}=-35.0^{\circ}(\mathrm{c}=0.4$, $\mathrm{MeOH}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.29(\mathrm{~m}, 6 \mathrm{H}), 7.23(\mathrm{dq}, J=17.9,9.9,8.4 \mathrm{~Hz}, 8 \mathrm{H}), 7.15$
$(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~s}, 1 \mathrm{H}), 3.40(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.70(\mathrm{dtt}, J=64.3,14.7,7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.81(\mathrm{t}$, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}-d$) $\delta 128.46,128.38,128.33,127.83,127.38,126.94$, 126.85, $63.63,61.80,31.16,11.01$. Enantiomeric excess was determined by chiral HPLC: Chiralpak OD-H column, $\mathrm{Hex} / \mathrm{IPA}=99.6: 0.4,0.8 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}, 8.4 \mathrm{~min}, 9.0 \mathrm{~min}$. HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}$ $[\mathrm{M}+\mathrm{H}]^{+}: 300.17468$, found: 300.17490 . WWD 1 A , Wavelength $=220 \mathrm{~nm}$ (3u 2017-06-18 21-33--9.D)

VI General Procedure for Removal of Diphenylmethyl Group

3a (0.2 mmol), acetic anhydride (2 drops), 6 mg of $\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}\left(20 \%, 50 \%\right.$ wetted with water) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ were added to a vial. The resulting vial was transferred to an autoclave, which was charged with 25 atm of H_{2}, and stirred at $40^{\circ} \mathrm{C}$ for 20 h . The hydrogen gas was released slowly and the solution was filtered to remove $\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}$. The filtrate was concentrated and then purified by flash column chromatography ($\mathrm{EtOAc} / \mathrm{Hex}$) to yield the desired product 6 (95% yield).
N-(1-(4-methoxyphenyl)ethyl)acetamide (6): ${ }^{[5]} 95 \%$ yield, 96% ee, white solid, known compound. $[\alpha]^{25}{ }_{\mathrm{D}}=-138.0^{\circ}$ (c $=0.4$,
 $\mathrm{MeOH}) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.29(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.91(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.72(\mathrm{~s}$, $1 \mathrm{H}), 5.13(\mathrm{p}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 1.51(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$. IR (KBr) $v: 3255.3$, 3076.2, 3011.2, 2958.7, 1639.1, $1245.6 \mathrm{~cm}^{-1}$. Enantiomeric excess was determined by chiral HPLC: Chiralpak OD-H column, Hex/IPA $=85: 15,1 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}, 6.3 \mathrm{~min}, 7.4 \mathrm{~min}$.

N-(1-(3-methoxyphenyl)ethyl)acetamide (7): ${ }^{[5]} 93 \%$ yield, 95% ee, white solid, known compound. $[\alpha]^{25}{ }_{\mathrm{D}}=-108.3^{\circ}(\mathrm{c}=0.4$,
 $\mathrm{MeOH})$. Enantiomeric excess was determined by chiral HPLC after it was transformed to the corresponding acetamide: Chiralpak OD-H column, $\mathrm{Hex} / \mathrm{IPA}=75: 25,1 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}, 5.9 \mathrm{~min}, 8.8$ min.

V References:

[1] H. Huang, X. Liu, L. Zhou, M. Chang, X. Zhang, Angew. Chem. Int. Ed. 2016, 55, 5309-5312.
[2] A. Nodzewska, K. Sidorowicz, M. Sienkiewicz, Synthesis, 2014, 46, 1475-1480.
[3] W. J. Lu, Y. W. Chen, X. L. Hou, Adv. Synth. Catal., 2010, 352, 103-107.
[4] C. Wang, X. J. Wu, L. Zhou, J. Sun, Chem. Eur. J., 2008, 14, 8789-8792.
[5] G. Li, J.C. Antilla, Org. Lett., 2009, 11(5):1075-1078.
VI NMR \& HRMS Spectra
proton NMR for $3 \mathrm{a}(\mathrm{CDCl} 3,500 \mathrm{MHz})$

$\underset{~-~ ? ~}{7}$

C13 for $3 \mathrm{a}(\mathrm{CDCl} 3,125 \mathrm{MHz})$

$\stackrel{\infty}{\stackrel{\infty}{1}}$

proton NMR for $4(\mathrm{CDCl} 3,500 \mathrm{MHz})$

$\xrightarrow[3]{2}$

proton NMR for $5(\mathrm{CDCl} 3,500 \mathrm{MHz})$

$\stackrel{\circ}{i}$

00083 \#13 RT: 0.38 AV: 1 NL: 3.84E7
T: FTMS + p ESI Full ms [150.00-2000.00]

 $\begin{array}{lllr}5 \quad 9.0 \quad 8.5 \quad 8.0 \quad 7.5 & 7.0 & 6.5 \\ \text { proton NMR for } 3 \mathrm{c}(\mathrm{CDCl} 3, & 500 \mathrm{MHz})\end{array}$

$\begin{array}{ll}\text { N } \\ \underset{\sim}{\text { N }} & \text { N }\end{array}$

~~~



C13 for \(3 \mathrm{c}(\mathrm{CDCl} 3,125 \mathrm{MHz})\)

ホ
~~




proton NMR for \(3 \mathrm{~d}(\mathrm{CDCl} 3,500 \mathrm{MHz})\)




C 13 for \(3 \mathrm{~d}(\mathrm{CDCl} 3,125 \mathrm{MHz})\)


\(\stackrel{\infty}{\text { ì }}\)


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 17 & & 1 & 1 & & 1 & 110 & 1 & 1 & 1 & 1 & & 1 & 1 & 1 & 1 & & 1 \\
\hline 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 \\
\hline
\end{tabular}

proton NMR for \(3 \mathrm{e}(\mathrm{CDCl} 3,500 \mathrm{MHz})\)

।
\(\stackrel{\stackrel{\circ}{4}}{\sim}\)


C13 for \(3 \mathrm{e}(\mathrm{CDCl} 3,125 \mathrm{MHz})\)

\begin{tabular}{|c|c|}
\hline \[
\stackrel{\infty}{\aleph}
\] & \[
\begin{aligned}
& \text { § } \\
& \dot{W} \\
& \stackrel{1}{1}
\end{aligned}
\] \\
\hline
\end{tabular}




00085 \#21 RT: 0.64 AV: 1 NL: 9.26E5

proton NMR for \(3 \mathrm{f}(\mathrm{CDCl} 3,500 \mathrm{MHz})\)


\(\stackrel{\text { O. }}{-}\)


C13 for \(3 \mathrm{f}(\mathrm{CDCl} 3,125 \mathrm{MHz})\)
\(\begin{array}{ll}\circ & \text { k } \\ \text { © } \\ 1 & 1\end{array}\)
I
I
I


\section*{\(00 \times x \neq 9\) Rा: 0.13 AV. 1 N. \(1.61 \in B\) T. FIMS +pESFUI ms [200.00-2000.00]}
 proton NMR for \(3 \mathrm{~g}(\mathrm{CDCl} 3,500 \mathrm{MHz})\)


\(\underbrace{\text { ~ }}\)



C13 for \(3 \mathrm{~g}(\mathrm{CDCl} 3,125 \mathrm{MHz})\)


\(0003 \neq 19\) Rा: 028 AV. 1 N. 246EB
T: FIMS + pESFAI Ms [200.00-2000.00]

proton NMR for \(3 \mathrm{~h}(\mathrm{CDCl} 3,500 \mathrm{MHz})\)

\section*{}
\(\underset{\sim}{\text { E }}\)



C 13 for \(3 \mathrm{~h}(\mathrm{CDCl} 3,125 \mathrm{MHz})\)
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{} \\
\hline \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 \\
\hline
\end{tabular}

proton NMR for \(3 \mathrm{i}(\mathrm{CDCl} 3,500 \mathrm{MHz})\)

\(\underbrace{\text { ? }}_{-}\)



C13 for \(3 \mathrm{i}(\mathrm{CDCl} 3,125 \mathrm{MHz})\)

ぶ
O
ì
1


proton NMR for \(3 \mathrm{j}(\mathrm{CDCl} 3,500 \mathrm{MHz})\)
\(\qquad\)


 C 13 for \(3 \mathrm{j}(\mathrm{CDCl} 3,125 \mathrm{MHz})\)






Proton NMR for \(3 \mathrm{k}(\mathrm{CDCl} 3,500 \mathrm{MHz})\)



C 13 for \(3 \mathrm{k}(\mathrm{CDCl} 3,125 \mathrm{MHz})\)

```
0\varepsilon.0\varepsilon-
```

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 30 & 170 & 160 & 150 & & & 120 & 110 & 100 & 90 & 80 & & 60 & 50 & & 10 & & \\
\hline 3 & 170 & & 150 & 140 & 130 & 120 & & 100 & 9 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 \\
\hline
\end{tabular} T FIMS+pESFII MS[20000-200000

proton NMR for \(31(\mathrm{CDCl} 3,500 \mathrm{MHz})\)




C13 for \(31(\mathrm{CDCl} 3,125 \mathrm{MHz})\)



00087 \#5 RT: 0.12 AV: 1 NL: 8.95E7
T: FTMS + p ESI Full ms [150.00-2000.00]

proton NMR for 3 m (CDC13, 500 MHz )



\section*{C 13 for \(3 \mathrm{~m}(\mathrm{CDCl} 3,125 \mathrm{MHz})\) \\ 







00084 \#26 RT: 0.77 AV: 1 NL: 6.47E6
T: FTMS + p ESI Full ms [150.00-2000.00]

proton NMR for 3 n ( \(\mathrm{CDCl} 3,500 \mathrm{MHz}\) )

\section*{ \\ \(\stackrel{10}{\sim}\)}


C 13 for \(3 \mathrm{n}(\mathrm{CDCl} 3,125 \mathrm{MHz})\)

\(\underset{\substack{\text { in } \\ 1}}{\text { in }}\)

\begin{tabular}{llllllllllllllllllllllll}
\hline 0 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & 1
\end{tabular}

proton NMR for \(30^{\circ}(\mathrm{CDC13}, 500 \mathrm{MHz})\)

\(\begin{array}{ll}\text { ì } \\ \text { ì } \\ 1 & \text { ì }\end{array}\)





proton NMR for \(3 \mathrm{q}(\mathrm{CDCl} 3,500 \mathrm{MHz})\)

```
~-7
```


C 13 for \(3 \mathrm{q}(\mathrm{CDCl} 3,125 \mathrm{MHz})\)





00089 \#3 RT: 0.07 AV: 1 NL: 3.90E7
T: FTMS + p ESI Full ms [150.00-2000.00]

proton NMR for \(3 \mathrm{r}(\mathrm{CDCl} 3,500 \mathrm{MHz})\)

\(\underbrace{\text { G }}\)



C 13 for \(3 \mathrm{r}(\mathrm{CDCl} 3,125 \mathrm{MHz})\)
\(\begin{array}{ll}\text { in } \\ \text { in } \\ i & \text { 亿 } \\ 1\end{array}\)
ले



proton NMR for \(3 \mathrm{~s}(\mathrm{CDCl} 3,500 \mathrm{MHz})\)

+ \(\underbrace{\infty}\)
\(\underbrace{\stackrel{\infty}{~}}\)



C13 for \(3 \mathrm{~s}(\mathrm{CDCl} 3,125 \mathrm{MHz})\)

\(\underset{\sim}{\text { \% }}\)
\(\underset{\text { ì }}{\text { ì }}\)

\begin{tabular}{llllllllllllllllllll}
170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0
\end{tabular}

O10F \(\ddagger 74\) Rा: 1.20 AV. 1 N. 1.39EB
T. FIMS + PESA FU Ms [200.00-2000.00]

proton NMR for \(3 \mathrm{t}(\mathrm{CDCl} 3,500 \mathrm{MHz})\)


ì
\(\underbrace{\text { ~ }}\)



C 13 for \(3 \mathrm{t}(\mathrm{CDCl} 3,125 \mathrm{MHz})\)


ざ

\begin{tabular}{lccccccccccccccccc}
\hline 30 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10
\end{tabular}
proton NMR for \(3 \mathrm{u}(\mathrm{CDCl} 3,500 \mathrm{MHz})\)

\section*{}



C 13 for \(3 \mathrm{u}(\mathrm{CDCl} 3,125 \mathrm{MHz})\)
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{} \\
\hline \\
\hline
\end{tabular}

-
\(\stackrel{\rightharpoonup}{\square}\)

\begin{tabular}{llllllllllllllllllllll}
\hline 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0
\end{tabular}

proton NINR for \(6(\mathrm{CDC13}, 500 \mathrm{MHz})\)

\(\underset{\sim}{N} \underset{\sim}{\min } \underset{\sim}{m} \underset{\sim}{m}\)
+
i
i
-



proton NMR for \(7(\mathrm{CDC13}, 500 \mathrm{MHz})\)
\[
\overrightarrow{~ M}
\]
+
กิ N

~~~

