Silver-Catalyzed Cyclization of Nitrones with 2-Azetine: A Radical

Approach to 2,3-Disubstituted Quinolines

Hao Yan, Xincheng Li, Chunxiang Wang* and Boshun Wan* Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China and University of Chinese Academy of Sciences, Beijing 100049, China

*E-mail: cxwang@dicp.ac.cn; bswan@dicp.ac.cn

Supporting Information

Table of Contents

1. Substrate Preparation	S2–S3
2. Screening Reaction Conditions	S4
3. Characterization of Products	S5–S11
4. Control Experiments	S12–S15
5. EPR spectra of Ag-catalyzed transformations	S16
6. Crystal Structure of Products	S17–S19
7. References	S20
8. Copies of NMR Spectra	S21–S71

1. Substrate Preparation

Nitrones¹ (listed below) and *N*-boc-2-azetine² were synthesized according to the reported procedures.

1.1 General procedure for the preparation of nitrones

Nitroarene (1.0 equiv), aldehyde (1.1 equiv) and NH₄Cl (1.2 equiv) were dissolved in a 1:1 mixture of EtOH and water (2 mL/mmol of starting material) and cooled to 0 °C (ice bath). Then zinc powder (2.0 equiv) was added to the resulting mixture, and the reaction was allowed to warm to room temperature and stirred for 16 hours. The reaction mixture was filtered and washed with CH_2Cl_2 . The filtrate was extracted with CH_2Cl_2 (4 × 50 mL) and the combined organic layer was washed with brine, dried over Na₂SO₄, concentrated under reduced pressure to give crude nitrones. Pure nitrones were obtained by recrystallization from ethyl acetate (cal. 65% yield).

1.2 General procedure for the preparation of N-Boc-2-azetine

To a solution of azetidinol **SI-1** (8.00 g, 46.2 mmol) in CCl4 (50 mL) was added Ph_3P (13.3 g, 50.8 mmol, 1.1 equiv) and NaHCO₃ (30 mg). The reaction mixture was heated to reflux. After 17 h, the reaction mixture was cooled to rt, concentrated to dryness under reduced pressure, suspended in pet ether (50 mL) and filtered. The solid was resuspended in pet ether (50 mL) and filtered. The combined pet ether washings were concentrated to dryness under reduced pressure suder reduced pressure. Purification (Si-gel, pet ether/ ethyl acetate 1:0 \rightarrow 4:1) gave chloride **SI-2** as a colorless oil (6.6 g, 75%).

To a solution of *t*-BuOK (440 mg, 3.92 mmol) in DMSO (5 mL) was added dropwise *N*-Boc-3-chloroazetidine **SI-2** (500 mg, 2.61 mmol) in THF (5 mL). The reaction mixture was then heated to 70°C for 17 h, then cooled to rt. Water (10 mL) was added and the reaction mixture extracted with n-Pentane (2 × 10 mL). The combined organic layers were concentrated to dryness under reduced pressure. Purification (Si-gel, pet ether/ ethyl acetate 1:0 \rightarrow 10:1) gave azetine **2** as a colorless liquid (364 mg, 60%).

2. Screening Reaction Conditions

Table S1 summarizes in-depth condition tuning for the reaction of nitrone 1a with N-Boc-2-azetine 2.

Lable S1. Screening reaction conditions. ⁴	Fable S1	. Screening	reaction	conditions.	[a]
--	-----------------	-------------	----------	-------------	-----

Entry	Additive 1/x mol%	Additive 2/x mol%	Solvent	<i>t</i> [°C]	Yield of 3a ^[b]
1	[Cp*RhCl ₂] ₂ /2.5	AgSbF ₆ /10	DCE	80	trace
2	[Cp*CoI ₂] ₂ /2.5	$AgSbF_6/10$	DCE	80	trace
3	[Rh(COD)BF ₄] ₂ /2.5	BINAP/5	DCE	80	NR
4	[Cp*RuCl ₂] ₂ /2.5	AgSbF ₆ /10	DCE	80	trace
5	AgSbF ₆ /10		DCE	80	36
6	AgOAc/10		DCE	80	NR
7	AgBF ₄ /10		DCE	80	46
8	AgOTf/10		DCE	80	58
9	Ag_2CO_3		DCE	80	NR
10	AgOTf/10	PPh ₃ /20	DCE	80	NR
11	AgOTf/10	$K_2S_2O_8/100$	DCE	80	50
12	AgOTf/5		DCE	80	23
13	AgOTf/100		DCE	80	30
14	AgOTf/10		DCE	40	74
15	AgOTf/10		DCE	25	48
16	AgOTf/10		THF	40	71
17	AgOTf/10		toluene	40	85; 81 ^[c]
18	AgOTf/10		DCM	40	58
19	AgOTf/10		DMF	40	NR
20 ^[d]	AgOTf/10		toluene	100	70 ^[d]

^{*a*}Reaction conditions: **1a** (0.25 mmol), **2** (0.5 mmol), 2.0 mL of solvent reacted for 18 h unless otherwise stated. ^{*b*}Yield of **3a** was determined by HPLC analysis using naphthalene as an internal standard. ^{*c*}Isolated yield. ^[d]**1a** (0.5 mmol), **2** (0.25 mmol).

3. Characterization of Products

3a, 81% yield, white solid, mp 112–114 °C, $R_f = 0.5$ (petroleum ether/ethyl acetate = 4/1); ¹H NMR (400 MHz, CDCl₃) δ 8.19 (s, 1H), 8.14 (d, J = 8.4 Hz, 1H), 7.83 (d, J = 8.0 Hz, 1H), 7.70 (t, J = 7.6 Hz, 1H), 7.57–7.52 (m, 3H), 7.51–7.43 (m, 3H), 4.87 (s, 1H),4.44 (d, J = 6.2 Hz, 2H), 1.44 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 155.9, 147.1, 140.1, 135.3, 130.5, 129.6, 129.4, 128.72, 128.7, 128.6, 127.5, 127.4, 126.8, 79.9, 42.5, 28.5; HRMS (ESI, m/z) calcd for C₂₁H₂₃N₂O₂ [M + H]⁺ 335.1754, found 335.1762.

3b, 80% yield, white solid, mp 104–106 °C, $R_f = 0.4$ (petroleum ether/ethyl acetate = 4/1); ¹H NMR (400 MHz, acetone-d₆) δ 8.28 (s, 1H), 8.02 (d, *J* = 8.4 Hz, 1H), 7.92 (d, *J* = 8.2 Hz, 1H), 7.72 (t, *J* = 7.6 Hz, 1H), 7.62 (d, *J* = 8.4 Hz, 2H), 7.56 (t, *J* = 7.5 Hz, 1H), 7.07 (d, *J* = 8.4 Hz, 2H), 6.57 (s, 1H), 4.48 (d, *J* = 5.9 Hz, 2H), 3.88 (s, 3H), 1.43 (s, 9H); ¹³C NMR (100 MHz, acetone-d₆) δ 160.8, 159.6, 156.8, 147.9, 135.3, 133.6, 132.3, 131.3, 129.92, 129.90, 128.2, 128.1, 127.1, 114.3, 79.1, 55.6, 42.9, 28.6; HRMS (ESI, m/z) calcd for C₂₂H₂₅N₂O₃ [M + H]⁺ 365.1860, found 365.1862.

3c, 74% yield, white solid, mp 115–118 °C, $R_f = 0.4$ (petroleum ether/ethyl acetate = 4/1); ¹H NMR (400 MHz, CDCl₃) δ 8.20 (s, 1H), 8.12 (d, J = 8.4 Hz, 1H), 7.84 (d, J = 8.0 Hz, 1H), 7.71 (t, J = 7.6 Hz, 1H), 7.56 (t, J = 7.4 Hz, 1H), 7.49–7.41 (m, 1H), 7.33–7.26 (m, 2H), 7.14 (m, 1H), 4.90 (s, 1H), 4.43 (d, J = 6.1 Hz, 2H), 1.44 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 162.9 (d, J = 247.3 Hz), 158.1, 155.9, 147.1, 142.2, 135.6, 130.3 (d, J = 8.3 Hz), 129.9, 129.4, 127.6, 127.5, 127.1, 124.6 (d, J = 3.1 Hz), 116.1(d, J = 22.6 Hz), 80.1, 42.4, 28.5; ¹⁹F NMR (377 MHz, CDCl₃) δ -112.4; HRMS (ESI, m/z) calcd for C₂₁H₂₂FN₂O₂ [M + H]⁺ 353.1660, found 353.1662.

3d, 73% yield, white solid, mp 120–123 °C, $R_f = 0.3$ (petroleum ether/ethyl acetate = 4/1); ¹H NMR (400 MHz, CDCl₃) δ 8.12 (s, 1H), 8.04 (d, J = 8.4 Hz, 1H), 7.77 (d, J = 8.1 Hz, 1H), 7.64 (t, J = 7.5 Hz, 1H), 7.48 (t, J = 7.5 Hz, 1H), 7.41 (q, J = 8.5 Hz, 4H), 4.78 (s, 1H), 4.36 (d, J = 6.1 Hz, 2H), 1.37 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 158.3, 155.9, 147.1, 138.5, 135.6, 134.9, 130.3, 129.9, 129.4, 128.9, 127.5, 127.49, 127.1, 80.1, 42.5, 28.5; HRMS (ESI, m/z) calcd for C₂₁H₂₂ClN₂O₂ [M + H]⁺ 369.1364, found 369.1383.

3e, 78% yield, yellow solid, mp 120–123 °C, $R_f = 0.35$ (petroleum ether/ethyl acetate = 4/1); ¹H NMR (400 MHz, CDCl₃) δ 8.15 (s, 1H), 8.10 (d, J = 7.6 Hz, 1H), 7.79 (t, J = 5.8 Hz, 1H), 7.68 (d, J = 7.7 Hz, 1H), 7.61–7.50 (m, 3H), 7.43–7.34 (m, 2H), 5.08 (s, 1H), 4.38 (d, J = 6.4 Hz, 2H), 1.43 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 158.1, 155.8, 146.9, 138.8, 135.5, 131.7, 130.5, 130.2, 129.8, 129.2, 127.5, 127.4, 126.9, 123.0, 79.9, 42.3, 28.4, 28.3; HRMS (ESI, m/z) calcd for C₂₁H₂₂BrN₂O₂ [M + H]⁺ 413.0859, found 413.0882.

3f, 70% yield, white solid, mp 131–133 °C R_f = 0.2 (petroleum ether/ethyl acetate = 4/1); ¹H NMR (400 MHz, CDCl₃) δ 8.35 (d, *J* = 8.5 Hz, 2H), 8.25 (s, 1H), 8.12 (d, *J* = 8.4 Hz, 1H), 7.91–7.86 (m, 1H), 7.80–7.73 (m, 3H), 7.60 (t, *J* = 7.5 Hz, 1H), 4.86 (s, 1H), 4.44 (d, *J* = 6.1 Hz, 2H), 1.43 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 157.1, 155.7, 147.9, 136.0, 130.3, 130.1, 129.5, 127.7, 127.6, 123.9, 80.3, 42.4, 28.5; HRMS (ESI, m/z) calcd for C₂₁H₂₂ N₃O₄ [M + H]⁺ 380.1605, found 380.1609.

3g, 71% yield, white solid, mp 125–128 °C R_f = 0.4 (petroleum ether/ethyl acetate = 4/1); ¹H NMR (400 MHz, CDCl₃) δ 8.23 (s, 1H), 8.12 (d, *J* = 8.5 Hz, 1H), 7.87 (d, *J* = 8.2 Hz, 1H), 7.78–7.72 (m, 3H), 7.69 (d, *J* = 8.0 Hz, 2H), 7.58 (t, *J* = 7.5 Hz, 1H), 4.83 (s, 1H), 4.44 (d, *J* = 6.0 Hz, 2H), 1.44 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 159.5, 158.0, 155.9, 147.2, 137.5, 135.5, 133.3, 129.8, 129.5, 128.6 (q, *J* = 270 Hz),

128.0 (q, J = 32 Hz), 126.9, 126.7, 126.6, 126.5, 125.0 (q, J = 3.8 Hz), 79.9, 42.6, 28.5; ¹⁹F NMR (377 MHz, CDCl₃) δ -62.6; HRMS (ESI, m/z) calcd for C₂₂H₂₂F₃N₂O₂ [M + H]⁺403.1628, found 403.1648.

3h, 81% yield, white solid, mp 115–118 °C, $R_f = 0.4$ (petroleum ether/ethyl acetate = 4/1); ¹H NMR (400 MHz, CDCl₃) δ 8.19 (s, 1H), 8.13 (d, J = 8.5 Hz, 1H), 7.84 (d, J = 8.1 Hz, 1H), 7.70 (t, J = 7.7 Hz, 1H), 7.54 (t, J = 7.5 Hz, 1H), 7.39 (t, J = 7.9 Hz, 1H), 7.13–7.03 (m, 2H), 6.99 (dd, J = 8.3, 2.5 Hz, 1H), 4.86 (s, 1H), 4.44 (d, J = 6.2 Hz, 2H), 3.85 (s, 3H), 1.44 (s, 9H).; ¹³C NMR (100 MHz, CDCl₃) δ 159.9, 147.1, 141.4, 135.5, 130.5, 129.8, 129.7, 129.4, 127.5, 126.8, 121.0, 114.7, 114.1, 79.9, 55.5, 42.5, 28.5; HRMS (ESI, m/z) calcd for C₂₂H₂₅N₂O₃ [M + H]⁺ 365.1860, found 365.1881.

3i, 75% yield, colourless oil, ¹H NMR (400 MHz, CDCl₃) δ 8.20 (s, 1H), 8.13 (d, J = 8.0 Hz, 1H), 7.86 (d, J = 7.5 Hz, 1H), 7.71 (t, J = 6.8 Hz, 1H), 7.56 (t, J = 6.4 Hz, 1H), 7.37–7.24 (m, 4H), 4.89–4.77 (m, 1H), 4.20 (s, 2H), 2.10 (s, 3H), 1.42 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 155.9, 139.4, 135.7, 135.0, 130.9, 130.7, 129.5, 129.3, 128.6, 128.2, 127.6, 127.5, 126.8, 126.2, 79.8, 42.20, 28.5, 19.7; HRMS (ESI, m/z) calcd for C₂₂H₂₅N₂O₂ [M + H]⁺ 349.1911, found 349.1915.

3j, 65% yield, colourless oil, $R_f = 0.4$ (petroleum ether/ethyl acetate = 4/1); ¹H NMR (400 MHz, CDCl₃) δ 8.23 (s, 1H), 8.16 (d, J = 8.5 Hz, 1H), 8.01 (s, 1H), 7.96 (d, J = 8.4 Hz, 1H), 7.91–7.83 (m, 3H), 7.74–7.65 (m, 2H), 7.59–7.52 (m, 3H), 4.85 (s, 1H), 4.50 (d, J = 6.1 Hz, 2H), 1.41 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 159.5, 155.9, 147.2, 137.5, 135.5, 133.3, 130.7, 129.7, 129.7, 128.55, 128.51, 128.2, 127.9, 127.6, 127.5, 126.9, 126.7, 126.6, 126.5, 80.0, 42.6, 28.5; HRMS (ESI, m/z) calcd for C₂₅H₂₅N₂O₂ [M + H]⁺ 385.1911, found 385.1921.

3k, 68% yield, colourless oil, $R_f = 0.3$ (petroleum ether/ethyl acetate = 4/1); ¹H NMR (400 MHz, CDCl₃) δ 8.29 (s, 1H), 8.16 (d, *J* = 8.4 Hz, 1H), 7.94 (dd, *J* = 11.1, 8.2 Hz, 3H), 7.74 (t, *J* = 7.7 Hz, 1H), 7.60 (td, *J* = 8.1, 7.6, 5.8 Hz, 2H), 7.53–7.46 (m, 2H), 7.39–7.32 (m, 2H), 4.62 (s, 1H), 4.17 (d, *J* = 6.4 Hz, 2H), 1.38 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 159.0, 155.8, 147.2, 137.4, 135.2, 133.9, 131.9, 131.7, 129.7, 129.5, 129.0, 128.6, 127.7, 127.0, 126.8, 126.4, 126.3, 125.6, 125.3, 79.8, 42.2, 28.4; HRMS (ESI, m/z) calcd for C₂₅H₂₅N₂O₂ [M + H]⁺ 385.1911, found 385.1928.

31, 71% yield, white solid, mp 98–100 °C, $R_f = 0.5$ (petroleum ether/ethyl acetate = 4/1); ¹H NMR (400 MHz, CDCl₃) δ 8.18 (s, 1H), 7.64 (d, J = 7.7 Hz, 1H), 7.42 (t, J = 6.9 Hz, 3H), 7.38–7.20 (m, 6H), 7.14 (s, 1H), 6.93 (d, J = 8.6 Hz, 2H), 3.84 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 156.0, 154.3, 147.9, 147.2, 143.9, 137.3, 129.9, 129.2, 129.0, 127.6, 127.2, 126.8, 112.5, 112.3, 79.9, 43.1, 28.6; HRMS (ESI, m/z) calcd for C₁₉H₂₁N₂O₃ [M + H]⁺ 325.1547, found 325.1560.

3m, 70% yield, white solid, mp 98–100 °C, R_f = 0.5 (petroleum ether/ethyl acetate = 4/1); ¹H NMR (400 MHz, CDCl₃) δ 8.18 (s, 1H), 8.08 (d, *J* = 8.5 Hz, 1H), 7.78 (d, *J* = 8.1 Hz, 1H), 7.66 (d, *J* = 12.6 Hz, 2H), 7.49 (s, 1H), 7.26 (s, 1H), 6.63–6.61 (m, 1H), 5.27 (s, 1H), 4.73 (d, *J* = 6.4 Hz, 2H), 1.45 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 156.0, 147.9, 147.2, 143.9, 137.3, 129.9, 129.8, 129.0, 127.6, 126.8, 112.5, 112.3, 79.9, 43.1, 28.6; HRMS (ESI, m/z) calcd for C₁₉H₂₁N₂O₂S [M + H]⁺ 341.1318, found 341.1496.

3n, 82% yield, colourless oil, $R_f = 0.4$ (petroleum ether/ethyl acetate =4/1); ¹H NMR (400 MHz, CDCl₃) δ 8.16 (s, 1H), 7.56 (d, J = 6.6 Hz, 2H), 7.51–7.31 (m, 5H), 7.04 (d, J = 7.5 Hz, 1H), 4.80 (s, 1H), 4.45 (d, J = 6.2 Hz, 2H), 4.05 (s, 3H), 1.44 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 158.4, 156.0, 155.6, 140.3, 139.1, 135.3, 129.2, 128.6,

126.9, 119.4, 107.9, 79.9, 56.2, 42.6, 28.5; HRMS (ESI, m/z) calcd for $C_{22}H_{25}N_2O_3$ [M + H]⁺ 365.1860, found 365.1874.

30, 83% yield, colourless oil, $R_f = 0.4$ (petroleum ether/ethyl acetate = 4/1); ¹H NMR (400 MHz, CDCl₃) δ 8.09 (s, 1H), 8.02 (d, *J* = 9.2 Hz, 1H), 7.54–7.42 (m, 5H), 7.35 (dd, *J* = 9.2, 2.7 Hz, 1H), 7.09 (t, *J* = 2.4 Hz, 1H), 4.87 (s, 1H), 4.42 (d, *J* = 6.2 Hz, 2H), 3.93 (s, 3H), 1.44 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 157.9, 156.9, 143.1, 140.0, 134.2, 130.7, 128.7, 128.6, 128.3, 122.3, 104.8, 79.8, 55.6, 42.4, 28.4; HRMS (ESI, m/z) calcd for C₂₂H₂₅N₂O₃ [M + H]⁺ 365.1860, found 365.1872.

3p, 72% yield, white solid, mp 100–102, $R_f = 0.3$ (petroleum ether/ethyl acetate = 4/1); ¹H NMR (400 MHz, CDCl₃) δ 8.11 (s, 1H), 8.06 (d, *J* = 9.0 Hz, 1H), 7.83 (d, *J* = 2.3 Hz, 1H), 7.63 (dd, *J* = 9.0, 2.4 Hz, 1H), 7.54–7.45 (m, 5H), 4.85 (s, 1H), 4.44 (d, *J* = 6.3 Hz, 2H), 1.45 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 159.8, 155.9, 145.5, 139.7, 134.3, 132.5, 131.7, 131.1, 130.6, 128.9, 128.8, 128.7, 128.1, 126.2, 80.1, 42.5, 28.5; HRMS (ESI, m/z) calcd for C₂₁H₂₂ClN₂O₂ [M + H]⁺ 369.1364, found 369.1373.

3q, 71% yield, white solid, mp 111–114, $R_f = 0.4$ (petroleum ether/ethyl acetate = 4/1); ¹H NMR (400 MHz, CDCl₃) δ 8.10 (s, 1H), 7.99 (d, *J* = 8.7 Hz, 2H), 7.76 (d, *J* = 8.8 Hz, 1H), 7.55–7.45 (m, 5H), 4.85 (s, 1H), 4.44 (d, *J* = 6.2 Hz, 2H), 1.45 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 159.9, 156.0, 145.7, 139.7, 134.2, 133.1, 131.7, 131.2, 129.5, 128.9, 128.8, 128.7, 128.6, 120.7, 80.1, 42.5, 28.5; HRMS (ESI, m/z) calcd for C₂₁H₂₂BrN₂O₂ [M + H]⁺413.0859, found 413.0858.

3r, 55% yield, white solid, mp 106–108, $R_f = 0.3$ (petroleum ether/ethyl acetate = 4/1); ¹H NMR (400 MHz, CDCl₃) δ 8.63 (s, 1H), 8.30 (d, J = 7.7 Hz, 2H), 8.17 (d, J = 8.8 Hz, 1H), 7.59–7.48 (m, 5H), 4.84 (s, 1H), 4.47 (d, J = 7.1 Hz, 4H), 1.46 (s, 9H), 1.34–1.23 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.3, 161.6, 155.9, 148.9, 139.7, 136.3, 130.6, 130.2, 129.6, 129.2, 128.9, 128.8, 128.7, 128.0, 126.6, 80.4, 61.5, 42.4, 28.5, 14.5; HRMS (ESI, m/z) calcd for $C_{24}H_{27}N_2O_4$ [M + H]⁺ 407.1965, found 407.1971.

3s and **3s'**, 66% yield, **3s**:**3s'** = 2:1, white solid, mp 100–102 °C, $R_f = 0.3$ (petroleum ether/ethyl acetate = 4/1); ¹H NMR (400 MHz, CDCl₃) δ 8.35 (s, 0.69H), 8.15 (s, 0.33H), 7.99 (d, J = 8.5 Hz, 0.71H), 7.92 (s, 0.32H), 7.73 (d, J = 8.3 Hz, 0.34H), 7.60–7.45 (m, 5.66H), 7.38 (t, J = 5.6 Hz, 1.03H), 4.84 (s, 0.96H), 4.45 (dd, J = 15.3, 6.2 Hz, 2H), 2.72 (s, 2H), 2.56 (s, 1H), 1.45 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 159.5, 159. 0, 156.0, 147.4, 140.3, 140.2, 140.0, 135.2, 134.3, 132.0, 129.9, 129.4, 129.1, 128.79, 128.75, 128.71, 128.68, 128.61, 128.56, 128.4, 127.7, 127.2, 126.8, 79.89, 42.7, 28.5, 22.1, 18.8; HRMS (ESI, m/z) calcd for C₂₂H₂₅N₂O₂ [M + H]⁺ 349.1911, found 349.1925.

3t, 80% yield, colorless oil, $R_f = 0.4$ (petroleum ether/ethyl acetate = 4/1); ¹H NMR (400 MHz, CDCl₃) δ 8.04 (s, 1H), 7.99 (d, J = 9.2 Hz, 1H), 7.48–7.42 (m, 2H), 7.32 (dd, J = 9.2, 2.8 Hz, 1H), 7.05 (d, J = 2.8 Hz, 1H), 7.01–6.93 (m, 2H), 4.94 (s, 1H), 4.42 (d, J = 6.1 Hz, 2H), 3.91 (s, 3H), 3.83 (s, 3H), 1.43 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 159.8, 157.9, 156.7, 143.2, 134.2, 132.6, 130.7, 130.2, 128.2, 122.3, 114.1, 104.9, 79.8, 55.6, 55.5, 42.6, 28.5; HRMS (ESI, m/z) calcd for C₂₃H₂₇N₂O₄ [M + H]⁺ 395.1965, found 395.1986.

3u, 70% yield, colorless oil, $R_f = 0.25$ (petroleum ether/ethyl acetate = 4/1); ¹H NMR (400 MHz, CDCl₃) δ 8.11 (s, 1H), 8.00 (d, J = 9.2 Hz, 1H), 7.74 (d, J = 8.1 Hz, 2H), 7.66 (d, J = 8.0 Hz, 2H), 7.37 (dd, J = 9.2, 2.8 Hz, 1H), 7.10 (d, J = 2.8 Hz, 1H), 4.86 (s, 1H), 4.42 (d, J = 6.1 Hz, 2H), 3.95 (s, 3H), 1.44 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 158.4, 155.9, 155.4, 143.8, 143.3, 134.6, 130.9 (q, J = 270 Hz), 130.4, 129.4, 128.7, 125.7, 125.62 (q, J = 3.8 Hz), 122.9, 104.9, 80.1, 55.7, 42.4, 28.5; HRMS (ESI, m/z) calcd for C₂₃H₂₄F₃N₂O₃ [M + H]⁺ 433.1734, found 433.1756.

3v, 62% yield, white solid, mp 160–163 °C, $R_f = 0.2$ (petroleum ether/ethyl acetate = 4/1); ¹H NMR (400 MHz, CDCl₃) δ 8.59 (d, J = 1.8 Hz, 1H), 8.28 (d, J = 8.0 Hz, 2H), 8.14 (d, J = 8.8 Hz, 1H), 7.53 (d, J = 8.2 Hz, 2H), 7.02 (d, J = 8.3 Hz, 2H), 4.92 (s, 1H), 4.47 (dq, J = 14.3, 7.1, 6.5 Hz, 4H), 3.87 (s, 3H), 1.46 (t, J = 4.7 Hz, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 166.2, 160.2, 148.8, 136.2, 131.9, 131.5, 130.4, 130.1, 129.4, 128.9, 128.24, 126.3, 114.1, 79.9, 61.3, 55.4, 42.4, 28.4, 14.4; HRMS (ESI, m/z) calcd for C₂₅H₂₉N₂O₅ [M + H]⁺437.2071, found 437.2074.

4b, 92% yield, white solid, mp 80–83 °C, $R_f = 0.6$ (petroleum ether/ethyl acetate = 4/1); ¹H NMR (400 MHz, CDCl₃) δ 7.16–7.12 (m, 2H), 7.08 (dd, J = 8.7, 7.1 Hz, 2H), 6.99 (d, J = 8.2 Hz, 2H), 6.78–6.70 (m, 3H), 5.93 (d, J = 25.9 Hz, 1H), 4.95 (s, 1H), 3.74 (dd, J = 8.2, 7.3 Hz, 1H), 3.65 (s, 3H), 3.47–3.42 (m, 1H), 3.34 (s, 1H), 1.44 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 158.9, 153.7, 150.3, 132.2, 128.5, 127.9, 121.1, 114.0, 92.9, 80.4, 69.3, 55.3, 49.3, 28.5; HRMS (ESI, m/z) calcd for C₂₂H₂₇N₂O₄ [M + H]⁺ 383.1965, found 383.1977.

4. Control Experiments

Scheme S1. Summary of control experiments

Scheme S1-1. The effect of radical inhibitor

This reaction was performed following the "General Procedure", only except that 20 mol% or 2.0 equiv TEMPO was added. The desired product **3b** was not observed, suggesting that a radical-mediated pathway might be involved.

Scheme S1-2. Isolation of intermediate 4b and its further transformation to 3b

Nitrone **1b** (0.25 mmol) and 2.0 mL of solvent toluene was weighted and placed in a dried Schlenk tube, followed by the *N*-Boc-2-azetine **2** (0.5 mmol, 2 equiv). The reaction mixture was stirred at 40 °C for 10 h. After cooling to room temperature, the solvent was removed under reduced pressure and the residue was purified by silica gel chromatography using PE/EA to afford the intermediate **4b**. The product was isolated in 92% yield.

AgOTf (0.025 mmol, 6.4 mg, 10 mol%), intermediate **4b** (0.25 mmol) and 2.0 mL of solvent toluene were weighted in the glove box and placed in a dried Schlenk tube. The reaction mixture was stirred at 40 °C for 18 h. After cooling to room temperature, the solvent was removed under reduced pressure and the residue was purified by silica gel chromatography using PE/EA to afford the desired product **3b** in 85% yield.

Scheme S1-3. Reaction of 1b-d₅ with 2

This reaction was performed following the "General Procedure", only except that **1b-***d*₅ was used as nitrone.

Scheme S1-4. Reaction of 1b with $2-d_1$

This reaction was performed following the "General Procedure", only except that **2-** d_1 was used. Compared with the ¹H NMR spectra of **3b**, the deuterium atom was completely transferred into the product (>95% deuterium incorporation).

Scheme S1-5. Intermolecular competitive reactions

AgOTf (0.025 mmol, 6.4 mg, 10 mol%), nitrone **1b** (0.25 mmol), nitrone **1b**- d_5 were weighted in the glove box and placed in a dried Schlenk tube. Then 2.0 mL of solvent toluene was added, followed by the *N*-Boc-2-azetine **2** (0.5 mmol, 2 equiv). The reaction mixture was stirred at 40 °C for 5 h. After cooling to room temperature, the solvent was evaporated and the crude product was directly purified by silica gel column chromatography to give the mixture of **3b** and **3b**- d_4 . A PIE value of 1.0 was obtained on the basis of ¹H NMR analysis.

Scheme S1-5. Competition reaction between 10 and 1r

AgOTf (0.025 mmol, 6.4 mg, 10 mol%), nitrone **1o** (0.25 mmol), nitrone **1r** were weighted in the glove box and placed in a dried Schlenk tube. Then 2.0 mL of solvent toluene was added, followed by the *N*-Boc-2-azetine **2** (0.5 mmol, 2 equiv). The reaction mixture was stirred at 40 °C for 18 h. After cooling to room temperature, the solvent was evaporated and the crude product was directly purified by silica gel column chromatography to give the product **3o** and **3r** respectively. The isolated yield ratio of **3o**:**3r** was 12:1.

5. EPR spectra of Ag-catalyzed transformations

6. Crystal Structure of Products

ORTEP drawing of 3e (CCDC1526502) with thermal ellipsoids at the 50% probability

Table S1.	Crystal	data and	structure	refinement	for	cd16158m_	_a.
-----------	---------	----------	-----------	------------	-----	-----------	-----

Identification code	cd16158m_a		
Empirical formula	C21 H21 Br N2 O2		
Formula weight	413.31		
Temperature	273(2) K		
Wavelength	0.71073 Å		
Crystal system	Triclinic		
Space group	P -1		
Unit cell dimensions	$a = 5.095(8) \text{ Å}$ $\alpha = 73.395(18)^{\circ}.$		
	b = 12.261(19) Å β = 81.56(2)°.		
	$c = 17.00(3) \text{ Å}$ $\gamma = 78.69(2)^{\circ}.$		
Volume	993(3) Å ³		
Ζ	2		
Density (calculated)	1.382 Mg/m^3		
Absorption coefficient	2.085 mm^{-1}		
F(000)	424		
Crystal size	0.160 x 0.080 x 0.040 mm ³		
Theta range for data collection	1.757 to 24.998°.		
Index ranges	-6<=h<=5, -13<=k<=14, -20<=l<=19		
Reflections collected	4250		
Independent reflections	3288 [R(int) = 0.1751]		
Completeness to theta = 25.242°	91.6 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.7456 and 0.3425		
Refinement method	Full-matrix least-squares on F ²		

Data / restraints / parameters3288 / 78 / 249Goodness-of-fit on F20.963Final R indices [I>2sigma(I)]R1 = 0.0911, wR2 = 0.2098R indices (all data)R1 = 0.2545, wR2 = 0.2887Largest diff. peak and hole0.494 and -0.436 e.Å⁻³

ORTEP drawing of 3e (CCDC1526503) with thermal ellipsoids at the 50% probability

~				
Identification code	cd16586			
Empirical formula	C22 H26 N2 O4			
Formula weight	382.45			
Temperature	293(2) K			
Wavelength	0.71073 Å			
Crystal system	Triclinic			
Space group	P -1			
Unit cell dimensions	a = 6.1408(17) Å	$\alpha = 87.399(7)^{\circ}.$		
	b = 10.540(3) Å	$\beta = 81.181(6)^{\circ}.$		
	c = 16.567(5) Å	$\gamma = 79.922(6)^{\circ}$.		
Volume	1043.1(5) Å ³			
Z	2			
Density (calculated)	1.218 Mg/m^3			
Absorption coefficient	0.084 mm^{-1}			
F(000)	408			
Crystal size	0.200 x 0.140 x 0.080	$) \text{ mm}^3$		
Theta range for data collection	1.963 to 24.994°.			
Index ranges	-7<=h<=7, -12<=k<=	9, -19<=l<=19		
Reflections collected	5786			
Independent reflections	3671 [R(int) = 0.0343	3]		
Completeness to theta = 25.242°	97.1 %			
Absorption correction	Semi-empirical from equivalents			
Max. and min. transmission	0.7456 and 0.5750			
Refinement method	Full-matrix least-squa	Full-matrix least-squares on F ²		

Table S2.Crystal data and structure refinement for cd16586.

Data / restraints / parameters	3671 / 12 / 257
Goodness-of-fit on F ²	1.081
Final R indices [I>2sigma(I)]	R1 = 0.0721, wR2 = 0.1651
R indices (all data)	R1 = 0.1062, wR2 = 0.1818
Extinction coefficient	n/a
Largest diff. peak and hole	0.199 and -0.223 e.Å ⁻³

7. References

- 1. N. Duguet, A. M. Z. Slawin and A. D. Smith, Org. Lett. 2009, 11, 3858.
- 2. D. M. Hodgson, C. I. Pearson and M. Kazmi, Org. Lett. 2014, 16, 856.

8. Copies of NMR Spectra

S26

— -112.36

S47

S59

