Efficient Trifluoromethylation via the Cyclopropanation of Allenes and Subsequent C-C Bond Cleavage

Yang Tang,^a Qiong Yu,^b and Shengming Ma*^{a,c}

^a State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese

Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China

^b Shanghai Key Laboratory of Green Chemistry and Chemical Process, Department of Chemistry, East

China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P. R. China

^c Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220

Handan Lu, Shanghai 200433, P. R. China

masm@sioc.ac.cn

Supporting Information

General information	S2
Experimental detail and analytical data of	S3-S30
all the products	
Spectra of these compounds	S31-S122

Table of Contents

General Information. NMR spectra were recorded on a commercial instrument at a Bruker-300 spectrometer (300 MHz for ¹H NMR, 75.4 MHz for ¹³C NMR, 282 MHz for ¹⁹F NMR) or an Agilent-400 spectrometer (400 MHz for ¹H NMR, 100 MHz for ¹³C NMR, 376 MHz for ¹⁹F NMR). ¹H NMR spectra were recorded in ppm relative to the residue of CHCl₃ (7.26 ppm) in CDCl₃ or TMS (0.00 ppm). ¹³C NMR spectra were recorded in ppm relative to CDCl₃ (77.0 ppm). ¹⁹F NMR spectra were recorded in oven dried schlenk tubes. All solvents were distilled from the indicated drying reagents right before use: Na (benzophenone) for dioxane and THF; CaH₂ for ClCH₂CH₂Cl, 1,1,1-trichloroethane, 1,1,2-trichloroethane, MeCN, DMSO, DMF, and CH₂Cl₂.

1. Synthesis of starting materials.

The starting materials 1a, ¹1b, ¹1c, ² and 1d² were synthesized according to literatures.

1) Dibenzyl 2-(4-methyl-2,3-pentadienyl)malonate (1e)² (tangy-5-174)

Typical Procedure 1: To a flame-dried Schlenk flask were added Pd(PPh₃)₄ (174.1 mg, 0.15 mmol), 4-methyl-2,3-pentadienyl acetate (421.3 mg, 3 mmol)/DCE (9 mL), dibenzyl malonate (2.5571 g, 9 mmol), and NaH (60% dispersion in mineral oil, 181.2 mg, 4.5 mmol) sequentially under argon. The resulting mixture was stirred at room temperature for 12 h as monitored by TLC. To the resulting mixture was added 10 mL of water, and the resulting mixture was extracted with Et₂O (10 mL \times 3). The combined organic layer was washed with brine (10 mL), dried with MgSO₄, filtered, and concentrated under vacuum to afford 1e (791.2 mg, 72%) via chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 15: 1) as an oil: ¹H NMR (400 MHz, CDCl₃) δ 7.37-7.26 (m, 10 H, Ar-H), 5.16 (d, J = 12.4 Hz, 2 H, one proton of OCH₂ × 2), 5.11 (d, J = 12.4 Hz, 2 H, one proton of OCH₂ × 2), 5.05-4.95 (m, 1 H, =CH), 3.59 $(t, J = 7.4 \text{ Hz}, 1 \text{ H}, \text{CH}), 2.60 (t, J = 6.8 \text{ Hz}, 2 \text{ H}, \text{CH}_2), 1.60 (d, J = 2.8 \text{ Hz}, 6 \text{ H}, \text{CH}_3)$ × 2); ¹³C NMR (100 MHz, CDCl₃) δ 201.7, 168.7, 135.3, 128.5, 128.3, 128.1, 97.6, 85.5, 67.0, 51.5, 28.1, 20.5; IR (neat, cm⁻¹) 1731, 1497, 1452, 1377, 1332, 1265, 1217, 1142, 1083, 1022; MS (ESI) m/z 382 (M+NH4⁺), 365 (M+H⁺); HRMS calcd. for $C_{23}H_{28}O_4N [M+NH_4^+]$: 382.2013; Found: 382.2011.

2) Diethyl 2-(4-ethyl-2,3-hexadienyl)malonate (1f)

4-Ethyl-2,3-hexadienyl acetate (tangy-5-68)

mmol), 4-ethyl-2,3-hexadien-1-ol (631.3 mg, 5 mmol)/Et₂O (15 mL), Et₃N (0.9 mL, d = 0.73 g/mL, 657 mg, 6.25 mmol,), and Ac₂O (0.7 mL, d = 1.08 g/mL, 756 mg, 7.5 mmol) sequentially. The resulting mixture was stirred at room temperature for 9.5 h as monitored by TLC. After evaporation, the residue was purified by chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 6:1) to afford 4-ethyl-2,3-hexadienyl acetate (612.3 mg, 72%) as an oil: ¹H NMR (400 MHz, CDCl₃) δ 5.36-5.27 (m, 1 H, =CH), 4.53 (d, J = 6.4 Hz, 2 H, OCH₂), 2.07 (s, 3 H, CH₃), 1.98 (qd, J_1 = 7.5 Hz, J_2 = 2.8 Hz, 4 H, CH₂ × 2), 1.00 (t, J = 7.4 Hz, 6 H, CH₃ × 2); ¹³C NMR (100 MHz, CDCl₃) δ 202.0, 170.9, 110.3, 88.8, 63.5, 25.3, 21.0, 12.2; IR (neat, cm⁻¹) 2967, 1964, 1740, 1455, 1372, 1324, 1223, 1086, 1022.

Diethyl 2-(4-ethylhexa-2,3-dienyl)malonate (1f)² (tangy-5-172)

Following **Typical Procedure 1**, the reaction of Pd(PPh₃)₄ (173.8 mg, 0.15 mmol), 4-ethyl-2,3-hexadienyl acetate (505.2 mg, 3 mmol)/DCE (9 mL), diethyl malonate (1.4 mL, d = 1.05 g/mL, 1.47 g, 9 mmol), and NaH (60% dispersion in mineral oil, 182.1 mg, 4.5 mmol) afforded **1f** (546.2 mg, 68%) as an oil (eluent: petroleum ether/ethyl acetate = 20:1): ¹H NMR (400 MHz, CDCl₃) δ 5.24-5.16 (m, 1 H, CH=), 4.26-4.13 (m, 4 H, OCH₂ × 2), 3.44 (t, *J* = 7.4 Hz, 1 H, CH), 2.58 (dd, *J*₁ = 7.2 Hz, *J*₂ = 6.0 Hz, 2 H, CH₂), 2.01-1.85 (m, 4 H, CH₂× 2), 1.27 (t, *J* = 7.0, 6 H, CH₃ × 2), 0.97 (t, *J* = 7.4 Hz, 6 H, CH₃ × 2); ¹³C NMR (100 MHz, CDCl₃) δ 200.2, 169.2, 110.2, 89.5, 61.3, 51.7, 28.5, 25.5, 14.0, 12.1; IR (neat, cm⁻¹) 2967, 2935, 2908, 1731, 1455, 1370, 1330, 1261, 1228, 1147, 1095, 1032; MS (EI) *m/z* (%) 268 (M⁺, 45.41), 93 (100); HRMS calcd. for C₁₅H₂₄O₄[M⁺]: 268.1675; Found: 268.1682.

3) Diethyl 2-(4-butyl-2,3-octadienyl)malonate (1g)

4-Butyl-2,3-octadienol³ (tangy-5-79, tangy-5-86, tangy-5-109)

Typical Procedure 3: To a round-bottom flask were added *p*-TsOH·H₂O (38.5 mg, 0.2 mmol), 5-ethynylnonan-5-ol (3.3667 g, 20 mmol), and 40 mL of CH₂Cl₂ sequentially. Then 3,4-dihydro-2*H*-pyran (2.2 mL, d = 0.92 g/mL, 2.02 g, 24 mmol) was added dropwise within 10 min at 0 °C. The resulting mixture was stirred at room temperature for 11 h as monitored by TLC. To the mixture was added 1 mL of Et₃N, and then the solvent was evaporated under vacuum. The crude product was used in the next step without further purification.

To a three-neck flask were added the crude product prepared above and 20 mL of dry THF under argon. Then *n*-BuLi (10.4 mL, 26 mmol, 2.5 M in THF) was added dropwise to the mixture at -78 °C within 30 min. After addition, the resulting mixture was stirred at -78 °C for 30 min, which was followed by the addition of $(CH_2O)_n$ (970.2 mg, 32 mmol). The cooling bath was then removed and the mixture was stirred at room temperature for 9.5 h. After the reaction was complete as monitored by TLC, 10 mL of saturated aqueous NH₄Cl was added and the mixture was extracted with ethyl acetate (20 mL × 3). The combined organic layer was washed with 20 mL of brine, dried with MgSO₄, filtered, and concentrated under vacuum. The crude product was used in the next step without further purification.

To a three-neck flask equipped with a condenser were added LiAlH₄ (911.3 mg, 24 mmol) and 10 mL of dry Et₂O at 0 $^{\circ}$ C under Ar. Then a solution of the crude product prepared above in 10 mL of Et₂O was added dropwise within 30 min. The ice bath was then removed and the resulting mixture was stirred at room temperature for 3.8 h. Then 1 mL of H₂O, 2 mL of 15% NaOH, and 3 mL of H₂O were added sequentially at 0 $^{\circ}$ C to quench the reaction. MgSO₄ was added and the mixture was stirred at room temperature for 5 min. After filtration and evaporation, the residue was

purified by chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 8:1) to afford 4-butyl-2,3-octadien-1-ol (2.4017 g, 66% for 3 steps) as an oil: ¹H NMR (400 MHz, CDCl₃) δ 5.36-5.29 (m, 1 H, CH=), 4.08 (t, *J* = 5.4 Hz, 2 H, OCH₂), 2.01-1.93 (m, 4 H, CH₂ × 2), 1.46-1.25 (m, 9 H, CH₂ × 4 and OH), 0.90 (t, *J* = 7.2 Hz, 6 H, CH₃ × 2); ¹³C NMR (100 MHz, CDCl₃) δ 199.5, 108.1, 92.6, 61.1, 32.2, 29.8, 22.4, 13.9; IR (neat, cm⁻¹) 3322, 2956, 2927, 2860, 1961, 1461, 1416, 1378, 1345, 1298, 1254, 1105, 1052, 1010. MS (ESI) *m/z*: 183 (M+H⁺); HRMS calcd. for C₁₂H₂₃O [M+H⁺]: 183.1743; Found: 183.1744.

4-Butyl-2,3-octadienyl acetate (tangy-5-173)

Following **Typical Procedure 2**, the reaction of DMAP (61.3 mg, 0.5 mmol), 4-butyl-2,3-octadien-1-ol (912.1 mg, 5 mmol)/Et₂O (15 mL), Et₃N (0.9 mL, d = 0.73 g/mL, 657.0 mg, 6.25 mmol), and Ac₂O (0.7 mL, d = 1.08 g/mL, 756.0 mg, 7.5 mmol) for 1.5 h afforded 4-butyl-2,3-octadienyl acetate (1.0211 g, 91%) as an oil (eluent: petroleum ether/ethyl acetate = 15:1): ¹H NMR (400 MHz, CDCl₃) δ 5.27-5.18 (m, 1 H, CH=), 4.51 (d, *J* = 6.8 Hz, 2 H, OCH₂), 2.06 (s, 3 H, O=CCH₃), 1.95(td, *J*₁ = 7.2 Hz, *J*₂ = 2.4 Hz, 4 H, 2×CH₂), 1.44-1.24 (m, 8 H, 4×CH₂), 0.90 (t, *J* = 7.0 Hz, 6 H, 2 × CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 202.6, 170.9, 106.5, 87.4, 63.6, 31.9, 29.6, 22.3, 21.0, 13.9; IR (neat, cm⁻¹) 2957, 1970, 1742, 1461, 1373, 1222, 1022.

Diethyl 2-(4-butyl-2,3-octadienyl)malonate (1g)² (tangy-6-6)

Following **Typical Procedure 1**, the reaction of $Pd(PPh_3)_4$ (173.0 mg, 0.15 mmol), 4-butyl-2,3-octadienyl acetate (547.2 mg, 3 mmol)/DCE (9 mL), diethyl malonate (1.4 mL, d = 1.05 g/mL, 1.47 g, 9 mmol), and NaH (60% dispersion in mineral oil, 180.7 mg, 4.5 mmol) afforded **1g** (720.6 mg, 74%) as an oil (eluent: petroleum ether/ethyl acetate = 20:1): ¹H NMR (400 MHz, CDCl₃) δ 5.14-5.04 (m, 1 H, CH=), 4.26-4.11 (m, 4 H, OCH₂ × 2), 3.43 (t, *J* = 7.6 Hz, 1 H, CH), 2.56 (dd, *J*₁ = 7.6 Hz, *J*₂ = 6.0 Hz, 2 H, CH₂), 1.97-1.82 (m, 4 H, CH₂ × 2), 1.40-1.24 (m, 14 H, CH₂ × 4 and CH₃ × 2), 0.89 (t, *J* = 7.0 Hz, 6 H, CH₃ × 2); ¹³C NMR (100 MHz, CDCl₃): δ 200.9, 169.1, 106.4, 88.1, 61.3, 51.8, 32.3, 29.7, 28.5, 22.4, 14.03, 13.95; IR (neat, cm⁻¹) 2982, 1729, 1444, 1391, 1369, 1331, 1266, 1227, 1148, 1094, 1031; MS (EI) *m/z* (%) 324 (M⁺, 3.35), 93 (100); HRMS calcd. for C₁₉H₃₂O₄ [M⁺]: 324.2301; Found: 324.2289.

4) Diethyl 2-(4,4-trimethylene-2,3-butadienyl)malonate (1h)

4,4-Trimethylene-2,3-butadienol³ (tangy-5-187, tangy-5-188, tangy-5-189)

To a round-bottom flask were added 1-ethynylcyclobutanol (1.9205 g, 20 mmol)/ CH₂Cl₂ (40 mL) and *p*-TsOH·H₂O (38.1 mg, 0.2 mmol) sequentially. Then 3,4-dihydro-2*H*-pyran (2.2 mL, d = 0.92 g/mL, 2.02 g, 24 mmol,) was added dropwise within 10 min at 0 °C. The resulting mixture was stirred at room temperature for 10.5 h as monitored by TLC. To the mixture was added 1 mL of Et₃N and the solvent was evaporated under vacuum. The crude product was used without further purification.

To a three-neck flask were added the crude product prepared above and 20 mL of dry THF under argon. Then *n*-BuLi (10.4 mL, 26 mmol, 2.5 M in hexanes) was added dropwise to the mixture at -78 °C within 30 min. After addition, the resulting mixture was stirred at -78 °C for 30 min, and then $(CH_2O)_n$ (720.5 mg, 24 mmol) was added. The cooling bath was then removed and the mixture was stirred at room temperature for 9 h. After the reaction was complete (monitored by TLC), 10 mL of a saturated

aqueous solution of NH₄Cl was added and the mixture was extracted with ethyl acetate (10 mL \times 3). The combined organic layer was washed with 10 mL of brine, dried with MgSO₄, filtered and concentrated under vacuum. The crude product was used without further purification.

To a three-neck flask equipped with a condenser were added LiAlH₄ (911.5 mg, 24 mmol) and 10 mL of dry Et₂O at 0 °C under Ar. Then the crude product prepared above was dissolved in 10 mL of Et₂O and added dropwise into the mixture within 30 min. The ice bath was then removed and the resulting mixture was stirred at room temperature for 3.8 h. Then 1 mL of H₂O, 2 mL of 15% NaOH, and 3 mL of H₂O were added sequentially at 0 °C to quench the reaction. MgSO₄ was added and the resulting mixture was stirred at room temperature by chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 6:1) to afford 4,4-trimethylene-2, 3-butadienol (681.7 mg, 31% for 3 steps) as an oil: ¹H NMR (400 MHz, CDCl₃) δ 5.40-5.30 (m, 1 H, CH=), 4.10 (d, *J* = 5.6 Hz, 2 H, OCH₂), 2.98-2.82 (m, 4 H, CH₂ × 2), 1.97 (quint, *J* = 8.0 Hz, 2 H, CH₂), 1.67 (brs, 1 H, OH); ¹³C NMR (100 MHz, CDCl₃) δ 194.0, 104.2, 94.1, 60.9, 29.8, 17.4; IR (neat, cm⁻¹) 3323, 2927, 1961, 1461, 1416, 1378, 1327, 1254, 1221, 1104, 1066, 1011.

4,4-Trimethylene-2,3-butadienyl acetate (tangy-5-190)

Following **Typical Procedure 2**, the reaction of DMAP (61.5 mg, 0.5 mmol), 4,4-trimethylene-2, 3-butadien ol (551.2 mg, 5 mmol)/Et₂O (15 mL), Et₃N (0.9 mL, d = 0.73 g/mL, 657 mg, 6.25 mmol), and Ac₂O (0.7 mL, d = 1.08 g/mL, 756 mg, 7.5 mmol) for 2 h afforded 4,4-trimethylene-2,3-butadienyl acetate (561.3 mg, 74%) as an oil (eluent: petroleum ether/ethyl acetate = 10:1): ¹H NMR (400 MHz, CDCl₃) δ 5.29-5.20 (m, 1 H, =CH), 4.53 (d, *J* = 6.8 Hz, 2 H, OCH₂), 2.96-2.81 (m, 4 H, CH₂× 2), 2.07 (s, 3 H, CH₃), 1.97 (quint, *J* = 7.9 Hz, 2 H, CH₂); ¹³C NMR (100 MHz,

CDCl₃) δ 196.8, 170.7, 103.0, 88.8, 63.3, 29.5, 21.0, 17.5; IR (neat, cm⁻¹) 2967, 1964, 1741, 1454, 1372, 1324, 1223, 1086, 1022.

Following **Typical Procedure 1**, the reaction of Pd(PPh₃)₄ (115.9 mg, 0.1 mmol), 4,4-trimethylene-2,3-butadienyl acetate (302.3 mg, 2 mmol), DCE (6 mL), diethyl malonate (0.93 mL, d = 1.05 g/mL, 976.5 mg, 6 mmol), and NaH (60% dispersion in mineral oil, 121.3 mg, 3 mmol) afforded **1f** (269.1 mg, 53%) as an oil (eluent: petroleum ether/ethyl acetate = 10:1): ¹H NMR (400 MHz, CDCl₃) δ 5.21-5.14 (m, 1 H, CH=), 4.27-4.13 (m, 4 H, OCH₂ × 2), 3.50 (t, *J* = 7.4 Hz, 1 H, CH), 2.83 (td, *J*₁ = 8.0 Hz, *J*₂ = 4.0 Hz, 4 H, CH₂ × 2), 2.58 (dd, *J*₁ = 7.6 Hz, *J*₂ = 6.0 Hz, 2 H, CH₂), 1.98-1.87 (m, 2 H, CH₂), 1.28 (t, *J* = 7.0, 6 H, CH₃ × 2); ¹³C NMR (100 MHz, CDCl₃) δ 195.4, 169.0, 103.3, 90.1, 61.3, 51.4, 29.8, 28.5, 17.4, 14.1; IR (neat, cm⁻¹) 2958, 2929, 2869, 1733, 1462, 1370, 1332, 1261, 1226, 1148, 1095, 1034; MS (EI) *m/z* (%) 252 (M⁺, 57.38), 105 (100); HRMS calcd. for C₁₄H₂₀O₄ [M⁺]: 252.1362; Found: 252.1366.

5) Diethyl 2-(4,4-tetramethylene-2,3-butadienyl)malonate (1i)² (tangy-5-12)

Following **Typical Procedure 1**, $Pd(PPh_3)_4$ (231.3 mg, 0.2 mmol), 4,4-tetramethylene-2, 3-butadienyl acetate (654.8 mg, 4.3 mmol), DCE (20 mL), diethyl malonate (2.0 mL, d = 1.05 g/mL, 2.10 g, 12.9 mmol), and NaH (60% dispersion in mineral oil, 261.0 mg, 6.5 mmol) afforded **1i** (737.0 mg, 64%) as an oil (eluent: petroleum ether/ethyl acetate = 20:1): ¹H NMR (400 MHz, CDCl₃) δ 5.15-5.06 (m, 1 H, CH=), 4.27-4.08 (m, 4 H, 2 × OCH₂), 3.47 (t, *J* = 7.4 Hz, 1 H, CH), 2.57 (dd, $J_1 = 7.6$ Hz, $J_2 = 6.0$ Hz, 2 H, CH₂), 2.40-2.24 (m, 4 H, CH₂ × 2), 1.70-1.55 (m, 4 H, CH₂ × 2), 1.27 (t, J = 7.2 Hz, 6 H, OCH₃ × 2); ¹³C NMR (100 MHz, CDCl₃) δ 197.1, 169.1, 106.0, 88.2, 61.3, 51.5, 31.1, 28.4, 27.0, 14.1; IR (neat, cm⁻¹) 2979, 1726, 1446, 1370, 1232, 1152, 1095, 1027; MS (EI) *m/z* (%) 266 (M⁺, 100); HRMS calcd. for C₁₅H₂₂O₄ [M⁺]: 266.1518; Found: 266.1522.

6) Diethyl 2-(4,4-pentamethylene-2,3-butadienyl)malonate (1j)² (tangy-5-22)

Following **Typical Procedure 1**, the reaction of Pd(PPh₃)₄ (173.8 mg, 0.15 mmol), 4,4-pentamethylene-2,3-butadienyl acetate (541.2 mg, 3 mmol), DCE (9 mL), diethyl malonate (1.4 mL, d = 1.05 g/mL, 1.47 g, 9 mmol), and NaH (60% dispersion in mineral oil, 180.3 mg, 4.5 mmol) afforded **1j** (513.9 mg, 61%) as an oil (eluent: petroleum ether/ethyl acetate = 15:1): ¹H NMR (400 MHz, CDCl₃) δ 5.05-4.98 (m, 1 H, =CH), 4.27-4.11 (m, 4 H, OCH₂ × 2), 3.47 (t, *J* = 7.6 Hz, 1 H, CH), 2.55 (t, *J* = 6.8 Hz, 2 H, CH₂), 2.11-1.98 (m, 4 H, CH₂ × 2), 1.64-1.39 (m, 6 H, CH₂ × 3), 1.27 (t, *J* = 7.0 Hz, 6 H, CH₃ × 2); ¹³C NMR (100 MHz, CDCl₃) δ 198.3, 169.1, 104.5, 85.4, 61.3, 51.5, 31.4, 28.2, 27.2, 26.0, 14.0; IR (neat, cm⁻¹) 2981, 2928, 2854, 1731, 1444, 1390, 1369, 1332, 1227, 1148, 1096, 1074, 1033; MS (EI) *m/z* (%) 280 (M⁺, 39.04), 91 (100); HRMS calcd. for C₁₆H₂₄O₄ [M⁺]: 280.1675; Found: 280.1678.

7) Diethyl 2-(4-isopropyl-5-methyl-2,3-hexadienyl)malonate (1k) 4-Isopropyl-5-methyl-2,3-hexadienol³ (tangy-5-177)

Following **Typical Procedure 3**, the reaction of 3-isopropyl-4-methylpent-1-yn-3-ol (2.8087 g, 20 mmol), *p*-TsOH·H₂O (38.3 mg, 0.2 mmol), 3,4-dihydro-2*H*-pyran (2.2 mL, d = 0.92 g/mL, 2.02 g, 24 mmol,) in 40 mL of CH₂Cl₂ afforded the crude product.

Then the reaction of the crude product, *n*-BuLi (10.4 mL, 26 mmol, 2.5 M in THF), and $(CH_2O)_n$ (720.5 mg, 24 mmol) in 20 mL of THF afforded the crude product.

The reaction of the crude product/Et₂O (10 mL) and LiAlH₄ (911.5 mg, 24 mmol) in 10 mL of Et₂O for 2 h afforded 4-isopropyl-5-methyl-2,3-hexadien-1-ol as an oil (1.6146 g, 52% for 3 steps) (eluent: petroleum ether/ethyl acetate = 8:1): ¹H NMR (400 MHz, CDCl₃) δ 5.50-5.44 (m, 1 H, CH=), 4.08 (d, *J* = 5.6 Hz, 2 H, OCH₂), 2.26-2.13 (m, 2 H, CH × 2), 1.38 (brs, 1 H, OH), 1.03 (d, *J* = 6.8 Hz, 6 H, CH₃ × 2), 1.02 (d, *J* = 6.8 Hz, 6 H, CH₃ × 2); ¹³C NMR (100 MHz, CDCl₃) δ 197.6, 95.6, 61.1, 29.5, 22.6, 22.2; IR (neat, cm⁻¹) 3325, 2960, 2929, 2870, 1955, 1462, 1417, 1382, 1363, 1313, 1295, 1199, 1119, 1074, 1009.

4-Isopropyl-5-methyl-2,3-hexadienyl acetate (tangy-5-178)

Following **Typical Procedure 2**, the reaction of DMAP (61.5 mg, 0.5 mmol), 4-isopropyl-5-methyl-2,3-hexadienol (770.5 mg, 5 mmol), Et_2O (15 mL), Et_3N (0.9 mL, d = 0.73 g/mL, 657 mg, 6.25 mmol), and Ac_2O (0.7 mL, d = 1.08 g/mL, 756 mg,

7.5 mmol) for 1.5 h afforded 4-isopropyl-5-methyl-2,3-hexadienyl acetate (718.8 mg, 85%) as an oil (eluent: petroleum ether/ethyl acetate = 15:1): ¹H NMR (400 MHz, CDCl₃) δ 5.34 (t, *J* = 6.4 Hz, 1 H, CH=), 4.52 (d, *J* = 6.4 Hz, 2 H, OCH₂), 2.17 (heptet, *J* = 6.7 Hz, 2 H, CH × 2), 2.06 (s, 3 H, CH₃C=O), 1.02 (d, *J* = 6.8 Hz, 6 H, CH₃ × 2), 1.01 (d, *J* = 6.8 Hz, 6 H, CH₃ × 2); ¹³C NMR (100 MHz, CDCl₃) δ 200.9, 170.9, 120.2, 90.3, 63.5, 29.4, 22.3, 22.1, 21.0; IR (neat, cm⁻¹): 2957, 2929, 2862, 1965, 1742, 1461, 1373, 1221, 1022.

Diethyl 2-(4-isopropyl-5-methyl-2,3-hexadienyl)malonate (1k)² (tangy-5-179)

Following **Typical Procedure 1**, the reaction of Pd(PPh₃)₄ (173.8 mg, 0.15 mmol), 4-isopropyl-5-methyl-2,3-hexadienyl acetate (505.8 mg, 3 mmol), DCE (9 mL), diethyl malonate (1.4 mL, d = 1.05 g/mL, 1.47 g, 9 mmol), and NaH (60% dispersion in mineral oil, 181.1 mg, 4.5 mmol) afforded **1k** (631.5 mg, 71%) as an oil (eluent: petroleum ether/ethyl acetate = 20:1): ¹H NMR (400 MHz, CDCl₃) δ 5.24-5.18 (m, 1 H, =CH), 4.26-4.14 (m, 4 H, 2×OCH₂), 3.43 (t, *J* = 7.6 Hz, 1 H, O=CCH), 2.58 (dd, *J_I* = 7.6 Hz, *J*₂ = 6.0 Hz, 2 H, =CCH₂), 2.20-2.08 (m, 2 H, CH × 2), 1.27 (t, *J* = 7.0 Hz, 6 H, CH₃ × 2), 0.99 (d, *J* = 8.8 Hz, 6 H, CH₃ × 2), 0.98 (d, *J* = 8.8 Hz, 6 H, CH₃ × 2); ¹³C NMR (100 MHz, CDCl₃) δ 199.2, 169.2, 119.7, 90.9, 61.3, 51.9, 29.4, 28.8, 22.4, 22.0, 14.0; IR (neat, cm⁻¹) 2962, 2933, 2871, 1956, 1732, 1463, 1368, 1332, 1263, 1225, 1148, 1095, 1031; MS (EI) *m/z* (%) 296 (M⁺, 14.56), 93 (100); HRMS calcd. for C₁₇H₂₈O₄[M⁺]: 296.1988; Found: 296.1987.

8) Dimethyl 2-(4-phenyl-2,3-pentadienyl)malonate (11)² (tangy-5-147)

To a flame-dried Schlenk flask were added Pd(PPh₃)₄ (232.0 mg, 0.2 mmol),

4-phenyl-2,3-pentadienyl acetate (811.2 mg, 4 mmol)/DCE (20 mL), and dimethyl malonate (1.8 mL, d = 1.05 g/mL, 1.89 g, 12 mmol) sequentially under argon. Then NaH (60% dispersion in mineral oil, 241.1 mg, 6 mmol) was added in portions within 10 min. The resulting mixture was stirred at room temperature for 13 h as monitored by TLC. To the mixture was added 20 mL of water, the resulting mixture was extracted with Et₂O (20 mL × 3). The combined organic layer was washed with brine (20 mL), dried with MgSO₄, filtered, and concentrated under vacuum to afford **11** (658.2 mg, 60%) via chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 10: 1) as an oil: ¹H NMR (400 MHz, CDCl₃) δ 7.39-7.27 (m, 4 H, ArH × 4), 7.23-7.16 (m, 1 H, ArH), 5.54-5.47 (m, 1 H, CH=), 3.72 (s, 3 H, OCH₃), 3.56 (s, 3 H, OCH₃), 3.55 (t, *J* = 7.6 Hz, 1 H, CH), 2.81-2.63 (m, 2 H, CH₂), 2.06 (d, *J* = 2.8 Hz, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 204.0, 169.3, 169.2, 136.7, 128.2, 126.7, 125.7, 102.8, 89.8, 52.6, 52.4, 50.9, 28.0, 17.0; IR (neat, cm⁻¹) 2954, 1730, 1685, 1599, 1493, 1436, 1340, 1264, 1235, 1199, 1152, 1070, 1025; MS (EI) *m/z* (%) 274 (M⁺, 42.51), 142 (100); HRMS caled. for C₁₆H₁₈O₄[M⁺]: 274.1205; Found: 274.1203.

2. Synthesis of (E)-dimethyl 2-(5,5,5-trifluoro-3-iodopent-2-enyl)-

malonate (E)-4a and (Z)-dimethyl 2-(5,5,5-trifluoro-3-iodopent-

2-enyl)malonate (Z)-4a.

Typical Procedure 4: To a flame-dried Schlenk tube were added K_3PO_4 (425.7 mg, 2.0 mmol), $Cu(OAc)_2$ (18.1 mg, 0.10 mmol), ligand (36.3 mg, 0.20 mmol), Togni's reagent II (631.6 mg, 2.0 mmol), TBAI (369.5 mg, 1.0 mmol), **1a** (184.0 mg, 1.0 mmol), and 7 mL of CH₂Cl₂ under argon sequentially. After being stirred at 50 °C for

12 h, the crude reaction mixture was filtrated through a short pad of silica gel eluted with diethyl ether (50 mL). After evaporation, the residue was analyzed by ¹H NMR, and then purified by chromatography on silica gel (purified by chromatography for twice. First round eluent: petroleum ether/CH₂Cl₂ = 3 : 1, then petroleum ether : CH₂Cl₂ : ethyl acetate = 300 : 100 : 3; second round eluent: petroleum ether/ethyl acetate = 200:1) to afford impure (*E*)-4a (50.1 mg, 11%, purity = 80%) and pure (*Z*)-4a (103.5 mg, 27%).

(*E*)-4a: oil; ¹H NMR (600 MHz, CDCl₃) δ 6.52 (t, *J* = 7.8 Hz, 1 H, =CH), 3.76 (s, 6 H, OCH₃ × 2), 3.53-3.43 (m, 3 H, CH₂CF₃ and CH), 2.65 (t, *J* = 7.8 Hz, 2 H, CH₂); ¹³C NMR (150 MHz, CDCl₃) δ 168.6, 144.0, 125.0 (q, *J* = 276.6 Hz), 84.3 (q, *J* = 2.9 Hz), 52.9, 50.1, 43.0 (q, *J* = 30.15 Hz), 30.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -64.7 (s, 3 F); IR (neat, cm⁻¹) 2958, 1736, 1526, 1476, 1437, 1350, 1256, 1204, 1138, 1044, 1017; MS (EI) *m/z* (%) 380 (M⁺, 1.95), 193 (100); HRMS calcd. for C₁₀H₁₂F₃IO₄ [M⁺]: 379.9732; found: 379.9737. The configuration of (*E*)-4a was determined by NOE study.

(*Z*)-4a: oil; ¹H NMR (600 MHz, CDCl₃) δ 5.90 (t, *J* = 6.6 Hz, 1 H, =CH), 3.76 (s, 6 H, CH₃ × 2), 3.54 (t, *J* = 7.2 Hz, 1 H, CH), 3.38 (q, *J* = 9.8 Hz, 2 H, CH₂CF₃), 2.75 (t, *J* = 7.2 Hz, 2 H, CH₂); ¹³C NMR (150 MHz, CDCl₃) δ 168.7, 139.4, 124.9 (q, *J* = 276.6 Hz), 91.6 (q, *J* = 3.4 Hz), 52.7, 49.8, 48.7 (q, *J* = 29.8 Hz), 35.9; ¹⁹F NMR (376 MHz, CDCl₃) δ -65.6 (s, 3 F); IR (neat, cm⁻¹) 2957, 1733, 1437, 1349, 1252, 1120, 1069, 1047; MS (EI) *m*/*z* (%) 380 (M⁺, 4.56), 193 (100); HRMS calcd. for C₁₀H₁₂F₃IO₄ [M⁺]: 379.9732; found: 379.9721. The configuration of (*Z*)-4a was determined by NOE study.

3. Synthesis of cyclopropane-1,1-dicarboxylate 2

Unless otherwise specified, the following compounds were prepared according to **Typical Procedure 4**.

1) Dimethyl 2-(2-methyl-1-trifluoromethyl-1-propenyl)cyclopropane-1,1dicarboxylate 2b (yq-8-113)

The reaction of K₃PO₄ (423.4 mg, 2.0 mmol), Cu(OAc)₂ (8.1 mg, 0.10 mmol), ligand (36.0 mg, 0.20 mmol), Togni's reagent II (632.2 mg, 2.0 mmol), TBAI (368.9 mg, 1.0 mmol), **1b** (212.5 mg, 1.0 mmol), and 7 mL of CH₂Cl₂ afforded **2b** (240.8 mg, 86%) as an oil (eluent: petroleum ether/CH₂Cl₂ = 3:1): ¹H NMR (300 MHz, CDCl₃): δ 3.74 (s, 3 H, OCH₃), 3.62 (s, 3 H, OCH₃), 2.60 (t, $J_{\text{H}}{}^{\text{b}}_{\text{and H}}{}^{\text{c}}_{\text{-H}}{}^{\text{a}}$ = 9.0 Hz, 1 H, =CCH), 2.01 (dd, $J_{\text{H}}{}^{\text{a}}_{\text{-H}}{}^{\text{b}}$ = 8.0 Hz, $J_{\text{H}}{}^{\text{c}}_{\text{-H}}{}^{\text{b}}$ = 5.6 Hz, 1 H, one proton of CH₂), 1.87 (s, 6 H, 2×CH₃), 1.66 (dd, $J_{\text{H}}{}^{\text{a}}_{\text{-H}}{}^{\text{c}}$ = 9.8 Hz, $J_{\text{H}}{}^{\text{b}}_{\text{-H}}{}^{\text{c}}$ = 5.3 Hz, 1 H, one proton of CH₂); ¹³C NMR (75 MHz, CDCl₃): δ 169.8, 167.4, 148.7 (q, *J* = 3.0 Hz), 124.0 (q, *J* = 274.0 Hz), 118.6 (q, *J* = 28.6 Hz), 52.8, 52.2, 35.1, 27.6 (d, *J* = 2.6 Hz), 23.1, 21.9-21.5 (m, 2 C); ¹⁹F NMR (282 MHz, CDCl₃): δ -56.7 (s, 3 F); IR (neat, cm⁻¹): 1730, 1655, 1439, 1378, 1320, 1286, 1220, 1110, 1063; MS (EI) *m/z* (%) 280 (M⁺, 8.67), 141 (100); HRMS calcd. for C₁₂H₁₅O₄F₃[M⁺]: 280.0922; Found: 280.0924.

Synthesis of 2b on 5 mmol scale (yq-10-34)

To a flame-dried Schlenk tube were added K₃PO₄ (2.1202 g, 10.0 mmol), Cu(OAc)₂ (90.7 mg, 0.5 mmol), ligand (180.6 mg, 1 mmol), Togni's reagent II (3.1667 g, 10.0 mmol), TBAI (1.8462 g, 5 mmol), **1b** (1.0604 g, 5.0 mmol), and 35 mL of CH₂Cl₂ under argon sequentially. The resulting mixture was stirred at 50 °C for 12 h, the crude reaction mixture was filtrated through a short pad of silica gel eluted with diethyl ether (100 mL). After evaporation, the residue was analyzed by ¹H NMR, and then purified by chromatography on silica gel (eluent: petroleum ether/CH₂Cl₂ = 3:1) to afford **2b** (1.1061 g, 79%) as an oil: ¹H NMR (300 MHz, CDCl₃): 3.77 (s, 3 H, OCH₃), 3.66 (s, 3 H, OCH₃), 2.63 (t, *J* = 8.9 Hz, 1 H, =CCH), 2.05 (dd, *J*₁ = 8.4 Hz, *J*₂ = 5.4 Hz, 1 H, one proton of CH₂), 1.90 (s, 6 H, 2×CH₃), 1.70 (dd, *J*₁ = 9.8 Hz, *J*₂ = 5.3 Hz, 1 H, one proton of CH₂).

2) Dimethyl 2-(1-trifluoromethyl-1-cyclohexylidene)cyclopropane-1,1-dicarboxylate 2c (yq-11-64)

The reaction of K₃PO₄ (424.0 mg, 2.0 mmol), Cu(OAc)₂ (18.5 mg, 0.10 mmol), ligand (36.1 mg, 0.20 mmol), Togni's reagent II (631.3 mg, 2.0 mmol), TBAI (369.0 mg, 1.0 mmol), **1c** (246.8 mg, 0.98 mmol), and 7 mL of CH₂Cl₂ afforded **2c** (262.5 mg, 84%) as an oil (eluent: petroleum ether/ CH₂Cl₂ = 2:1): ¹H NMR (300 MHz,

CDCl₃) δ 3.74 (s, 3 H, OCH₃), 3.62 (s, 3 H, OCH₃), 2.61 (t, *J* = 9.0 Hz, 1 H, =CCH), 2.50-2.35 (m, 2 H, CH₂), 2.27-2.12 (m, 2 H, CH₂), 1.99 (dd, *J*₁ = 8.6 Hz, *J*₂ = 5.3 Hz, 1 H, one proton of CH₂), 1.72-1.42 (m, 7 H, one proton of CH₂ and 3×CH₂); ¹³C NMR (75 MHz, CDCl₃) δ 169.8, 167.3, 156.2 (q, *J* = 2.6 Hz), 124.2 (q, *J* = 274.7 Hz), 116.0 (q, *J* = 28.2 Hz), 52.8, 52.1, 35.1, 32.5, 32.3 (q, *J* = 2.5 Hz), 28.0, 27.9, 27.1 (q, *J* = 2.× Hz), 26.0, 22.2 (q, *J* = 2.4 Hz); ¹⁹F NMR (282 MHz, CDCl₃) δ = -55.3 (s, 3 F); IR (neat, cm⁻¹) 1729, 1443, 1316, 1218, 1113, 1001; MS (EI) *m/z* (%) 320 (M⁺, 1.25), 159 (100); HRMS calcd. for C₁₅H₁₉O₄F₃ [M⁺]: 320.1235; Found: 320.1239.

3) Diethyl 2-(2-methyl-1-trifluoromethyl-1-propenyl)cyclopropane-1,1-dicarboxylate 2d (yq-8-156)

The reaction of K₃PO₄ (424.1 mg, 2.0 mmol), Cu(OAc)₂ (18.2 mg, 0.10 mmol), ligand (36.0 mg, 0.20 mmol), Togni's reagent II (632.3 mg, 2.0 mmol), TBAI (369.1 mg, 1.0 mmol), **1d** (238.7 mg, 1.0 mmol), and 7 mL of CH₂Cl₂ afforded **2d** (251.9 mg, 82%) as an oil ((purified by chromatography for twice: first round, petroleum ether/ CH₂Cl₂ = 2.5:1, second round: petroleum ether/ ethyl acetate = 30:1): ¹H NMR (300 MHz, CDCl₃) δ 4.28-4.14 (m, 2 H, OCH₂), 4.14-3.98 (m, 2 H, OCH₂), 2.56 (t, *J* = 9.2 Hz, 1 H, =CCH), 1.97 (ddq, *J*₁ = 8.6 Hz, *J*₂ = 5.4 Hz, *J*₃ = 1.0 Hz, 1 H, one proton of CH₂), 1.86 (s, 6 H, 2×CH₃), 1.61 (dd, *J*₁= 9.8 Hz, *J*₂= 5.3 Hz, 1 H, one proton of CH₂), 1.23 (t, *J* = 7.1 Hz, 3 H, CH₃), 1.17 (t, *J* = 7.2 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 169.3, 167.0, 148.4 (q, *J* = 3.2 Hz), 124.0 (q, *J* = 273.8 Hz), 118.6 (q, *J* = 28.7 Hz), 61.5, 61.2, 35.3, 27.1 (d, *J* = 2.6 Hz), 23.1, 21.7 (q, *J* = 2.6 Hz), 21.1 (q, *J* = 2.6 Hz), 13.9, 13.7; ¹⁹F NMR (282 MHz, CDCl₃) δ -56.5 (s, 3 F); IR (neat, cm⁻¹) 1725, 1653, 1447, 1374, 1317, 1283, 1214, 1110, 1023; MS (EI) *m/z* (%) 308 (M⁺, 13.71), 161 (100); HRMS calcd. for $C_{14}H_{19}O_4F_3$ [M⁺]: 308.1235; Found: 308.1237.

4) Dibenzyl 2-(2-methyl-1-trifluoromethyl-1-propenyl)cyclopropane-1,1-

dicarboxylate 2e (yq-9-159)

The reaction of K₃PO₄ (424.2 mg, 2.0 mmol), Cu(OAc)₂ (18.3 mg, 0.10 mmol), ligand (36.0 mg, 0.20 mmol), Togni's reagent II (632.3 mg, 2.0 mmol), TBAI (368.9 mg, 1.0 mmol), **1e** (364.5 mg, 1.0 mmol), and 7 mL of CH₂Cl₂ afforded **2e** (319.5 mg, 74%) as an oil (eluent: petroleum ether/ CH₂Cl₂ = 3:1): ¹H NMR (300 MHz, CDCl₃) δ 7.39-7.22 (m, 10 H, ArH), 5.28-5.01 (m, 4 H, 2×OCH₂), 2.65 (t, *J* = 9.2 Hz, 1 H, =CCH), 2.08 (dd, *J*₁ = 7.8 Hz, *J*₂ = 5.4 Hz, 1 H, one proton of CH₂), 1.82-1.65 (m, 7 H, 2×CH₃ and one proton of CH₂); ¹³C NMR (75 MHz, CDCl₃) δ 169.1, 166.7, 148.7 (q, *J* = 3.0 Hz), 135.4, 135.2, 128.5, 128.4, 128.3, 128.2, 128.1, 127.8, 124.1 (q, *J* = 273.8 Hz), 118.3 (q, *J* = 28.7 Hz), 67.3, 67.2, 35.3, 27.7 (q, *J* = 2.4 Hz), 23.0, 21.6; ¹⁹F NMR (282 MHz, CDCl₃) δ -56.6 (s, 3 F); IR (neat, cm⁻¹) 1727, 1654, 1455, 1380, 1311, 1278, 1208, 1111; MS (EI) *m/z* (%) 432 (M⁺, 0.06), 91 (100); Anal. Calcd. for C₂₄H₂₃O₄F₃: C, 66.66; H, 5.36; Found: C, 66.61; H, 5.54.

5) Diethyl 2-(2-ethyl-1-trifluoromethyl-1-butenyl)cyclopropane-1,1-dicarboxylate 2f (yq-10-84)

The reaction of K₃PO₄ (424.0 mg, 2.0 mmol), Cu(OAc)₂ (18.1 mg, 0.10 mmol), ligand (36.1 mg, 0.20 mmol), Togni's reagent II (632.1 mg, 2.0 mmol), TBAI (369.2 mg, 1.0 mmol), **1f** (268.9 mg, 1.0 mmol), and 7 mL of CH₂Cl₂ afforded **2f** (235.2 mg, 70%) as an oil (eluent: petroleum ether/ CH₂Cl₂ = 3:1): ¹H NMR (300 MHz, CDCl₃) ¹H NMR (300 MHz, CDCl₃) δ 4.26-4.08 (m, 2 H, OCH₂), 4.08-3.96 (m, 2 H, OCH₂), 2.53 (t, *J* = 9.3 Hz, 1 H, =CCH), 2.47-2.25 (m, 2 H, CH₂), 2.20-2.03 (m, 2 H, CH₂), 1.99 (ddq, *J*₁ = 8.6 Hz, *J*₂ = 4.6 Hz, *J*₃ = 1.2 Hz, 1 H, one proton of CH₂), 1.61 (dd, *J*₁ = 9.9 Hz, *J*₂ = 5.4 Hz, 1 H, one proton of CH₂), 1.22 (t, *J* = 7.2 Hz, 3 H, CH₃), 1.17 (t, *J* = 7.1 Hz, 3 H, CH₃), 0.99 (t, *J* = 7.5 Hz, 3 H, CH₃), 0.94 (t, *J* = 7.7 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃): δ 169.3, 166.7, 159.1 (q, *J* = 2.8 Hz), 124.2 (q, *J* = 274.5 Hz), 117.8 (q, *J* = 28.3 Hz), 61.5, 61.2, 35.4, 26.5 (q, *J* = 2.9 Hz), 25.8, 25.2 (q, *J* = 2.5 Hz), 21.0 (q, *J* = 2.5 Hz), 13.8, 13.7, 12.9, 11.6; ¹⁹F NMR (282 MHz, CDCl₃) δ -56.1 (s, 3 F); IR (neat, cm⁻¹) 1728, 1373, 1319, 1212, 1112, 1024; MS (EI) *m/z* (%) 336 (M⁺, 2.88), 189 (100); HRMS calcd. for C₁₆H₂₃O₄F₃ [M⁺]: 336.1548; Found: 336.1549.

6) Diethyl 2-(2-butyl-1-trifluoromethyl-1-hexenyl)cyclopropane-1,1-dicarboxylate 2f and methane-1,1-diyl bis(2-iodobenzoate) 4 (yq-10-68)

The reaction of K_3PO_4 (424.7 mg, 2.0 mmol), $Cu(OAc)_2$ (18.2 mg, 0.10 mmol), ligand (36.1 mg, 0.20 mmol), Togni's reagent II (632.3 mg, 2.0 mmol), TBAI (369.7 mg, 1.0 mmol), **1g** (312.5 mg, 1.0 mmol), and 7 mL of CH₂Cl₂ afforded **2g** (300.4 mg, 79%) and **8** (374.9 mg, 74%) (eluent: petroleum ether/ ethyl acetate = 50:1).

2g: oil; ¹H NMR (300 MHz, CDCl₃) δ 4.30-4.14 (m, 2 H, OCH₂), 4.14-4.00 (m, 2 H, OCH₂), 2.57 (t, *J* = 9.2 Hz, 1 H, =CCH), 2.50-2.27 (m, 2 H, CH₂), 2.17-2.00 (m, 3 H, CH₂ and one proton of CH₂), 1.65 (dd, *J*₁ = 9.8 Hz, *J*₂ = 5.3 Hz, 1 H, one proton of CH₂), 1.50-1.15 (m, 14 H, 7×CH₂), 0.91 (t, *J* = 6.6 Hz, CH₃), 0.88 (t, *J* = 7.2 Hz, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 169.4, 166.7, 157.2 (q, *J* = 3.0 Hz), 124.3 (q, *J* = 274.5 Hz), 118.1 (q, *J* = 28.1 Hz), 61.5, 61.2, 35.6, 33.4, 32.5 (q, *J* = 2.1 Hz), 30.9, 29.6, 26.8 (d, *J* = 3.2 Hz), 22.9, 22.8, 21.1, 13.9, 13.7, 13.6; ¹⁹F NMR (282 MHz, CDCl₃): δ -55.8 (s, 3 F); IR (neat, cm⁻¹) 1728, 1466, 1372, 1318, 1207, 1109, 1024; MS (EI) *m/z* (%) 392 (M⁺, 1.90), 57 (100); HRMS calcd. for C₂₀H₃₁O₄F₃ [M⁺]: 392.2174; Found: 392.2176.

8:⁴ solid; m.p. 71-72 °C (diethyl ether/ hexane) (lit.⁴ 72-74 °C); ¹H NMR (300 MHz, CDCl₃) δ 8.03 (d, *J* = 7.8 Hz, 2 H, ArH), 7.93 (d, *J* = 7.8 Hz, 2 H, ArH), 7.42 (t, *J* = 7.5 Hz, 2 H, ArH), 7.19 (t, *J* = 7.7 Hz, 2 H, ArH), 6.24 (s, 2 H, OCH₂O); ¹³C NMR (75 MHz, CDCl₃) δ 164.7, 141.7, 133.4, 133.0, 131.7, 128.0, 94.8, 80.4; IR (neat, cm⁻¹) 1744, 1581, 1425, 1231, 1153, 1064, 1037; MS (EI) *m/z* (%) 508 (M⁺, 2.55), 231 (100).

Crystal data for compound 8: $C_{15}H_{10}I_2O_4$, MW = 508.03, Monoclinic, space group

P2(1)/c, final *R* indices $[I > 2\sigma(I)]$, *R*1 = 0.0835, *wR*2 = 0.1766, *R* indices (all data) *R*1 = 0.1052, *wR*2 = 0.1859, *a* = 14.884 (2) Å, *b* = 4.3831 (6) Å, *c* = 27.390 (3) Å, *a* = 90°, β = 117.921(6)°, γ = 90°, V = 1578.9(3) Å³, *T* = 296(2) K, *Z* = 4, reflections collected/unique 19434 / 3976 (*R*_{int} = 0.0824), number of observations [> $2\sigma(I)$] 2985, parameters: 190. CCDC 1012501.

7) Diethyl 2-(2,2-trimethylene-1-trifluoromethylvinyl)cyclopropane-1,1-dicarboxylate 2h (yq-9-135)

The reaction of K₃PO₄ (424.3 mg, 2.0 mmol), Cu(OAc)₂ (18.1 mg, 0.10 mmol), ligand (36.4 mg, 0.20 mmol), Togni's reagent II (632.1 mg, 2.0 mmol), TBAI (369.1 mg, 1.0 mmol), **1h** (252.3 mg, 1.0 mmol), and 7 mL of CH₂Cl₂ afforded **2h** (206.4 mg, 64%) as an oil (purified by chromatography for twice: first round, petroleum ether/ CH₂Cl₂ = 3:1, second round: petroleum ether/ ethyl acetate = 30:1): ¹H NMR (300 MHz, CDCl₃) δ 4.26-4.03 (m, 4 H, 2×OCH₂), 3.04-2.72 (m, 4 H, 2×CH₂C=), 2.47 (t, *J* = 8.9 Hz, 1 H, =CCH), 2.10-1.88 (m, 3 H, CH₂ and one proton of CH₂), 1.47 (dd, *J*₁ = 9.5 Hz, *J*₁ = 5.3 Hz, 1 H, one proton of CH₂), 1.22 (t, *J* = 7.2 Hz, 3 H, CH₃), 1.20 (t, *J* = 6.9 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 169.3, 166.9, 156.3 (q, *J* = 4.4 Hz), 124.0 (q, *J* = 273.0 Hz), 114.6 (q, *J* = 29.8 Hz), 61.6, 61.4, 34.7, 31.8, 30.9, 25.8 (q, *J* = 2.0 Hz), 18.5, 17.0 (q, *J* = 1.1 Hz), 13.93, 13.87; ¹⁹F NMR (282 MHz, CDCl₃) δ -61.8 (s, 3 F); IR (neat, cm⁻¹) 2987, 1724, 1372, 1317, 1281, 1211, 1175, 1107, 1024; MS (EI) *m/z* (%) 320 (M⁺, 11.73), 173 (100); HRMS calcd. for C₁₅H₁₉O₄F₃ [M⁺]: 320.1235; Found: 320.1238.

8) Diethyl 2-(2,2-tetramethylene-1-trifluoromethylvinyl)cyclopropane-1,1-

dicarboxylate 2h (yq-9-115)

The reaction of K₃PO₄ (424.5 mg, 2.0 mmol), Cu(OAc)₂ (18.4 mg, 0.10 mmol), ligand (36.2 mg, 0.20 mmol), Togni's reagent II (631.3 mg, 2.0 mmol), TBAI (370.5 mg, 1.0 mmol), **1i** (265.4 mg, 1.0 mmol), and 7 mL of CH₂Cl₂ afforded **2i** (200.8 mg, 60%) as an oil (purified by chromatography for twice: first round, petroleum ether/ CH₂Cl₂ = 3:1, second round: petroleum ether/ ethyl acetate = 30:1): ¹H NMR (300 MHz, CDCl₃) δ 4.29-4.15 (m, 2 H, OCH₂), 4.15-4.01 (m, 2 H, OCH₂), 2.64-2.29 (m, 5 H, 2×CH₂ and =CCH), 2.09-2.02 (m, 1 H, one proton of CH₂), 1.76-1.54 (m, 5 H, 2×CH₂ and one proton of CH₂), 1.26 (t, *J* = 7.2 Hz, 3 H, CH₃), 1.18 (t, *J* = 7.2 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 169.6, 166.9, 159.8 (q, *J* = 3.4 Hz), 124.1 (q, *J* = 272.9 Hz), 114.5 (q, *J* = 29.6 Hz), 61.6, 61.3, 35.0, 33.5, 32.1 (q, *J* = 2.1 Hz), 27.8 (q, *J* = 2.2 Hz), 26.6, 25.4, 20.2, 14.0, 13.9; ¹⁹F NMR (282 MHz, CDCl₃) δ -59.4 (s, 3 F); IR (neat, cm⁻¹) 2984, 2901, 1725, 1374, 1320, 1212, 1105, 1026; MS (EI) *m/z* (%) 334 (M⁺, 1.98), 187 (100); HRMS calcd. for C₁₆H₂₁O₄F₃ [M⁺]: 334.1392; Found: 334.1391.

9) Diethyl 2-(2,2-pentamethylene-1-trifluoromethylvinyl)cyclopropane-1,1-dicarboxylate 2j (yq-9-155)

The reaction of K₃PO₄ (424.7 mg, 2.0 mmol), Cu(OAc)₂ (18.1 mg, 0.10 mmol),

ligand (36.0 mg, 0.20 mmol), Togni's reagent II (632.3 mg, 2.0 mmol), TBAI (369.1 mg, 1.0 mmol), **1j** (279.7 mg, 1.0 mmol), and 7 mL of CH₂Cl₂ afforded **2j** (258.0 mg, 74%) as an oil (eluent: petroleum ether/ CH₂Cl₂ = 3:1): ¹H NMR (300 MHz, CDCl₃) δ 4.27-3.96 (m, 4 H, 2×OCH₂), 2.55 (t , *J* = 9.2 Hz, 1 H, =CCH), 2.50-2.35 (m, 2 H, CH₂), 2.24-2.07 (m, 2 H, CH₂), 1.96-1.90 (m, 1 H, one proton of CH₂), 1.71-1.40 (m, 7 H, 3×CH₂ and one proton of CH₂), 1.23 (t, *J* = 7.2 Hz, 3 H, CH₃), 1.18 (t, *J* = 7.5 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 169.3, 166.9, 155.9 (q, *J* = 2.7 Hz), 124.1 (q, *J* = 271.7 Hz), 116.0 (q, *J* = 28.2 Hz), 61.5, 61.2, 35.3, 32.5, 32.2 (q, *J* = 2.6 Hz), 27.9, 27.8, 26.5 (q, *J* = 2.3 Hz), 26.0, 21.6, 13.8, 13.7; ¹⁹F NMR (282 MHz, CDCl₃) δ -55.2 (s, 3 F); IR (neat, cm⁻¹) 2936, 2858, 1726, 1646, 1448, 1371, 1316, 1207, 1109, 1023; MS (EI) *m/z* (%) 348 (M⁺, 2.24), 159 (100); HRMS calcd. for C₁₇H₂₃O₄F₃ [M⁺]: 348.1548; Found: 338.1550.

10) Diethyl 2-(2-isopropyl-3-methyl-1-trifluoromethyl-1-butenyl)cyclopropane 1,1-dicarboxylate 2k (yq-10-197)

The reaction of K₃PO₄ (636.1 mg, 3.0 mmol), Cu(OAc)₂ (18.2 mg, 0.10 mmol), ligand (36.1 mg, 0.20 mmol), Togni's reagent II (948.1 mg, 3.0 mmol), TBAI (369.2 mg, 1.0 mmol), **1k** (296.2 mg, 1.0 mmol), and 7 mL of CH₂Cl₂ afforded **2k** (184.9 mg, 51%) as an oil (eluent: petroleum ether/ CH₂Cl₂ = 3:1): ¹H NMR (300 MHz, CDCl₃) δ 4.32-4.01 (m, 4 H, 2×OCH₂), 3.18 (quint, *J* = 7.0 Hz, 1 H, MeCHMe), 2.96 (quint, *J* = 7.0 Hz, 1 H, MeCHMe), 2.57 (t , *J* = 9.3 Hz, 1 H, =CCH), 2.08 (ddq, *J*₁ = 8.7Hz, *J*₂ = 4.7 Hz, *J*₃ = 1.2 Hz, 1 H, one proton of CH₂), 1.68 (dd, *J*₁ = 9.8 Hz, *J*₂ = 5.4 Hz, 1 H, one proton of CH₂), 1.27 (t, *J* = 6.2 Hz, 3 H, CH₃), 1.23 (t, *J* = 6.0 Hz, 3 H, CH₃), 1.15-1.07 (m, 12 H, 4×CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 169.6, 166.9, 165.5 (q, *J* = 3.0 Hz), 124.2 (q, J = 272.1 Hz), 118.0 (q, J = 27.1 Hz), 61.6, 61.2, 35.8, 31.9, 30.3, 27.7 (q, J = 2.9 Hz), 21.8 (q, J = 1.7 Hz), 21.7 (q, J = 2.1 Hz), 21.1, 20.8, 20.6, 14.0, 13.8; ¹⁹F NMR (282 MHz, CDCl₃) δ -54.3 (s, 3 F); IR (neat, cm⁻¹): 1727, 1467, 1371, 1317, 1214, 1105, 1024; MS (EI) m/z (%) 364 (M⁺, 1.79), 160 (100); HRMS calcd. for C₁₈H₂₇O₄F₃ [M⁺]: 364.1861; Found: 364.1863.

11) Dimethyl 2-(3-phenyl-1-trifluoromethyl-1-propanyl)cyclopropane-

1,1-dicarboxylate (tangy-5-151)

The reaction of K_3PO_4 (425.0 mg, 2.0 mmol), $Cu(OAc)_2$ (18.3 mg, 0.10 mmol), ligand (36.2 mg, 0.20 mmol), Togni's II (630.9 mg, 2.0 mmol), TBAI (370.1 mg, 1.0 mmol), **1I** (276.1 mg, 1.0 mmol), and 7 mL of CH_2Cl_2 afforded **2I** (256.7 mg, 66%, 3 : 1, purity = 89%) as an oil (eluent: petroleum ether/ $CH_2Cl_2 = 2 : 1$, then petroleum ether : CH_2Cl_2 : ethyl acetate = 200 : 100 : 1). The product was a mixture of two stereoisomers.

Major stereoisomer: ¹H NMR (400 MHz, CDCl₃) δ 7.50-7.26 (m, 4 H, ArH), 7.20-7.14 (m, 1 H, ArH), 3.70 (s, 3 H, OCH₃), 3.68 (s, 3 H, OCH₃), 2.67 (t, *J* = 9.0 Hz, 1 H, CH=), 2.22 (t, *J* = 2.0 Hz, 3 H, CH₃), 1.19 (dd, *J*₁ = 8.8 Hz, *J*₂ = 5.2 Hz, 1 H, one proton of CH₂), 1.03 (dd, *J*₁ = 8.8 Hz, *J*₂ = 5.6 Hz, 1 H, one proton of CH₂); ¹⁹F NMR (376 MHz, CDCl₃) δ -58.2 (s, 3 F); LC-MS (LC conditions: column: Agilent Eclipse × DF (4.6 × 250 mm, 5µm), eluent: CH₃CN : H₂O = 1 : 1, detector: 220 nm) (ESI) *m/z* 343 ([M+H]⁺) (retention time: 29.7 min).

These signals are discernable for the minor stereoisomer: ¹H NMR (400 MHz, CDCl₃) δ 3.82 (s, 3 H, OCH₃), 3.76 (s, 3 H, OCH₃), 2.82 (t, *J* = 9.4 Hz, 1 H, CH=),

2.19-2.16 (m, 3 H, CH₃), 1.76 (dd, $J_1 = 10.0$ Hz, $J_2 = 5.2$ Hz, 1 H, one proton of CH₂); ¹⁹F NMR (376 MHz, CDCl₃) δ -55.9 (s, 3 F); LC-MS (LC conditions: column: Agilent Eclipse × DF (4.6 × 250 mm, 5µm), eluent: CH₃CN : H₂O = 1 : 1, detector: 220 nm) (ESI) *m/z* 343 ([M+H]⁺) (retention time: 10.0 min).

IR for the mixture of two isomers (neat, cm⁻¹): 2956, 2854, 1727, 1643, 1492, 1438, 1374, 1313, 1284, 1214, 1170, 1112, 1031, 1009.

4. Reactions of cyclopropane-1,1-dicarboxylate 2 with other compounds

1) Synthsis of dimethyl 2-phenyl-5-(2-methyl-1-trifluoromethyl-1-propenyl)-(2H)dihydrofuran-3,3-dicarboxylate 5a (yq-11-32)

Typical Procedure 5: To a flame-dried Schlenk tube were added Sc(OTf)₃ (24.7 mg, 0.05 mmol), **2b** (136.9 mg, 0.49 mmol), 3 mL of DCE, and benzaldehyde (160.1 mg, 1.5 mmol), and 2 mL of DCE under argon sequentially. The resulting mixture was stirred at 30 °C for 36 hours. The crude reaction mixture was filtrated through a short pad of silica gel eluted with diethyl ether (50 mL). After evaporation, the residue was analyzed by NMR measurement, and then purified by chromatography on silica gel (eluent: petroleum ether/ethyl acetate =15:1) to afford **5a** (160.5 mg, 85%) as a solid: m.p.: 89-90 °C (diethyl ether/hexane): ¹H NMR (300 MHz, CDCl₃) 7.45-7.38 (m, 2 H, Ar-H), 7.32-7.20 (m, 3 H, ArH), 5.62 (s, 1 H, CHAr), 4.75 (dd, $J_1 = 11.6$ Hz, $J_2 = 6.2$ Hz, 1 H, one proton of CH₂), 3.81 (s, 3 H, CH₃), 3.16 (t, J = 12.5 Hz, 1 H, =CCH), 3.03 (s, 3 H, CH₃), 2.46 (dd, $J_1 = 13.5$ Hz, $J_2 = 5.7$ Hz, 1 H, one proton of CH₂), 2.09 (q, J = 1.8 Hz, 3 H, =CCH₃), 2.07 (q, J = 2.7 Hz, 3 H, =CCH₃); ¹³C NMR (75 MHz, CDCl₃) δ 171.4, 169.0, 147.8 (q, J = 3.4 Hz), 137.0, 128.0, 127.8, 126.9, 124.4 (q, J = 3.4 Hz), 137.0, 128.0, 127.8, 126.9, 124.4 (q, J = 3.4 Hz)

274.8 Hz), 121.4 (q, J = 26.8 Hz), 84.3 (q, J = 2.9 Hz), 75.2, 65.8, 52.9 (q, J = 3.9 Hz), 52.1, 39.2, 22.9 (q, J = 2.7 Hz); ¹⁹F NMR (282 MHz, CDCl₃) δ -56.3 (s, 3 F); IR (neat, cm⁻¹): 2968, 2922, 1725, 1453, 1435, 1374, 1280, 1227, 1203, 1140, 1093, 1053; MS (EI) m/z (%) 386 (M⁺, 6.89), 105 (100); Anal. Calcd. for C₁₉H₂₁F₃O₅: C, 59.06; H, 5.48; Found: C, 59.01; H, 5.45.

Crystal data for compound **5a**: $C_{19}H_{21}F_{3}O_{5}$, MW = 386.36, Triclinic, space group P-1, final R indices $[I > 2\sigma(I)]$, R1 = 0.0615, wR2 = 0.1764, R indices (all data) R1 = 0.0740, wR2 = 0.1907, a = 8.5770 (4) Å, b = 11.2530 (5) Å, c = 11.3999 (5) Å, $a = 83.2610^{\circ}$, $\beta = 69.7150^{\circ}$, $\gamma = 68.4110^{\circ}$, V = 959.58(7) Å³, T = 173(2) K, Z = 2, reflections collected/unique 11222 / 3370 (Rint = 0.0209), number of observations [> $2\sigma(I)$] 2628, parameters: 244. CCDC 1012706.

The following compounds were prepared according to Typical Procedure 5.

2) Dimethyl 2,3-diphenyl-6-(1-trifluoromethyl-2-methyl-1-propenyl)-1,2oxazinane-4,4-dicarboxylate 6a (yq-11-35)

The reaction of Sc(OTf)₃ (24.7 mg, 0.05 mmol), **2b** (140.5 mg, 0.5 mmol), (*Z*)-*N*-benzylideneaniline oxide (191.2 mg, 1.0 mmol), and 5 mL of DCE afforded **6a** (192.8 mg, 81%) as a solid (eluent: petroleum ether/ ethyl acetate = 10:1): m.p.: 186-187 °C (diethyl ether/hexane): ¹H NMR (300 MHz, CDCl₃) 7.57-7.50 (m, 2 H, ArH), 7.20-7.07 (m, 5 H, ArH), 7.05-6.98 (m, 2 H, ArH), 6.78 (t, J = 7.4 Hz, 1 H, ArH), 5.77 (s, 1 H, CHAr), 4.93 (d, J = 12.3 Hz, 1 H, one proton of CH₂), 3.86 (s, 3 H, CH₃), 3.42 (s, 3 H, CH₃), 2.95 (t, J = 13.5 Hz, 1 H, OCH), 2.47 (d, J = 12.9 Hz, 1 H, one proton of CH₂), 2.01 (q, J = 2.8 Hz, 3 H, =CCH₃), 1.92 (q, J = 2.1 Hz, 3 H, =CCH₃); ¹³C NMR (150 MHz, CDCl₃) δ 170.1, 168.0, 148.4, 147.5 (q, J = 3.6 Hz), 134.7, 130.2, 128.5, 127.9, 127.8, 124.4 (q, J = 274.8 Hz), 123.1 (q, J = 27.9 Hz),

121.6, 115.7, 76.4, 66.0, 60.0, 53.3, 52.5, 29.1, 22.7, 22.7 (q, J = 2.9 Hz); ¹⁹F NMR (282 MHz, CDCl₃) δ -54.3 (s, 3 F); IR (neat, cm⁻¹) 1738, 1599, 1494, 1434, 1372, 1330, 1238, 1199, 1161, 1111; MS (EI) m/z (%) 477 (M⁺, 8.79), 198 (100); Anal. Calcd. for C₂₅H₂₆F₃O₅N: C, 62.89; H, 5.49; N, 2.93; Found: C, 62.82; H, 5.47; N, 2.93.

Crystal data for compound **6a**: C₂₅H₂₆F₃NO₅, *MW* = 477.47, Monoclinic, space group P2(1)/c, final *R* indices [$I > 2\sigma(I)$], *R*1 = 0.0494, *wR*2 = 0.1183, *R* indices (all data) *R*1 = 0.0948, *wR*2 = 0.1463, *a* = 14.9433 (6) Å, *b* = 9.3141 (4) Å, *c* = 17.6377 (6) Å, $\alpha = 90^{\circ}$, $\beta = 102.36^{\circ}$, $\gamma = 90^{\circ}$, *V* = 2397.98(16) Å³, *T* = 173(2) K, *Z* = 4, reflections collected/unique 27266 / 4219 ($R_{int} = 0.0620$), number of observations [> $2\sigma(I)$] 2480, parameters: 308. CCDC 1012812.

3) Dimethyl 2,3-diphenyl-6-(2,2-pentamethylene-1-trifluoromethylvinyl) 1,2-oxazinane-4,4-dicarboxylate 6b (yq-11-78)

The reaction of Sc(OTf)₃ (24.9 mg, 0.05 mmol), **2c** (160.0 mg, 0.5 mmol), (*Z*)-*N*-benzylideneaniline oxide (192.4 mg, 1.0 mmol), and 5 mL of DCE afforded **6b** (217.1 mg, 84%) as a solid (eluent: petroleum ether/ ethyl acetate = 20:1): m.p.:170-171 °C (diethyl ether/hexane): ¹H NMR (300 MHz, CDCl₃) 7.56-7.46 (m, 2 H, ArH), 7.22-7.10 (m, 5 H, ArH), 7.07-6.98 (m, 2 H, ArH), 6.81 (t, J = 7.2 Hz, 1 H, ArH), 5.79 (s, 1 H, CHAr), 5.00 (d, J = 12.6 Hz, 1 H, one proton of CH₂), 3.89 (s, 3 H, CH₃), 3.47 (s, 3 H, CH₃), 2.96 (t, J = 13.5 Hz, 1 H, OCH), 2.60-2.28 (m, 5 H, one proton of CH₂ and 2×CH₂), 1.85-1.56 (m, 6 H, 3×CH₂); ¹³C NMR (150 MHz, CDCl₃) δ 170.0, 168.0, 156.1 (q, J = 3.5 Hz), 148.3, 134.7, 130.0, 128.5, 127.9, 127.8, 124.4 (q, J = 275.6 Hz), 121.5, 120.0 (q, J = 27.6 Hz), 115.6, 75.8, 65.7, 59.9, 53.3, 52.6, 33.1 (q, J = 2.7 Hz), 32.7, 29.8, 28.7, 28.5, 26.2; ¹⁹F NMR (282 MHz, CDCl₃) δ -53.5

(s, 3 F); IR (neat, cm⁻¹) 1733, 1599, 1491, 1437, 1344, 1324, 1233, 1197, 1162, 1097, 1033; MS (EI) *m/z* (%) 517 (M⁺, 2.13), 198 (100); Anal. Calcd. for C₂₈H₃₀F₃O₅N: C, 64.98; H, 5.84; N, 2.71; Found: C, 65.06; H, 5.92; N, 2.64.

4) Dimethyl 2-(4-methyl-2-(1-methyl-1*H*-indol-3-yl)-3-(trifluoromethyl) pent-3-en-1-yl)malonate 7a (yq-11-38)

The reaction of Sc(OTf)₃ (25.2 mg, 0.05 mmol), **2b** (133.4 mg, 0.48 mmol), *N*-methylindole (131.3 mg, 1.0 mmol), and 5 mL of DCE afforded **7a** (176.4 mg, 90%) as a solid (eluent: petroleum ether/ ethyl acetate = 10:1): m.p.:110-111 °C (diethyl ether/hexane): ¹H NMR (300 MHz, CDCl₃) 7.43 (d, J = 8.1 Hz, 1 H, ArH), 7.27 (d, J = 8.1 Hz, 1 H, ArH), 7.23-7.15 (m, 1 H, ArH), 7.10-7.03 (m, 1 H, ArH), 6.93 (s, 1 H, =CHN), 4.37 (t, J = 8.0 Hz, 1 H, CH), 3.74 (s, 3 H, CH₃), 3.73 (s, 3 H, CH₃), 3.71 (s, 3 H, CH₃), 3.55 (t, J = 7.4 Hz, 1 H, CH), 2.80-2.68 (m, 1 H, one proton of CH₂), 2.60-2.48 (m, 1 H, one proton of CH₂), 2.03 (q, J = 2.1 Hz, 3 H, CH₃), 1.95 (q, J = 2.5 Hz, 3 H, CH₃); ¹³C NMR (150 MHz, CDCl₃) δ 169.8, 169.7, 142.9 (q, J = 3.6 Hz), 136.7, 127.6, 126.5 (q, J = 25.0 Hz), 126.1 (q, J = 25.3 Hz), 125.2 (q, J = 276.7 Hz), 121.5, 118.9, 118.7, 113.8, 109.2, 52.54, 52.51, 49.7, 34.7, 32.7, 32.2 (q, J = 1.7 Hz), 22.6, 22.5 (q, J = 2.1 Hz); ¹⁹F NMR (282 MHz, CDCl₃) δ -53.9 (s, 3 F); IR (neat, cm⁻¹) 1736, 1458, 1437, 1375, 1315, 1274, 1242, 1200, 1168, 1097, 1016; MS (EI) *m/z* (%) 411 (M⁺, 24.66), 226 (100); Anal. Calcd. for C₂₁H₂₄F₃O₄N: C, 61.31; H, 5.88; N, 3.40; Found: C, 61.30; H, 5.87; N, 3.38.

Crystal data for compound 7a: $C_{21}H_{24}F_3NO_4$, MW = 411.41, Monoclinic, space

group P2(1)/c, final R indices $[I > 2\sigma(I)]$, R1 = 0.0424, wR2 = 0.1036, R indices (all data) R1 = 0.0632, wR2 = 0.1171, a = 15.6855 (6) Å, b = 9.6366 (3) Å, c = 13.4345 (5) Å, a = 90°, β = 96.4°, γ = 90°, V = 2018.03(12) Å3, T = 173(2) K, Z = 4, reflections collected/unique 23009 / 3551 (Rint = 0.0567), number of observations [> $2\sigma(I)$] 2639, parameters: 262. CCDC 1012813.

5. Mechanistic study

1) Reaction of 1f in the presence of TEMPO: Synthesis of 2,2,6,6-Tetramethyl-1-(trifluoromethoxy)piperidine 9 (yq-11-174)

To a flame-dried Schlenk tube were added K₃PO₄ (212.4 mg, 1.0 mmol), Cu(OAc)₂ (9.2 mg, 0.05 mmol), ligand (18.0 mg, 0.10 mmol), Togni's reagent II (316.7 mg, 1.0 mmol), TBAI (185.1 mg, 0.50 mmol), **1g** (162.1 mg, 0.5 mmol), TEMPO (156.3 mg, 1.0 mmol), and 4 mL of CH₂Cl₂ sequentially under argon. The resulting mixture was stirred at 50 °C for 12 h. The crude reaction mixture was filtrated through a short pad of silica gel eluted with diethyl ether (50 mL). After filtration and evaporation, the residue was analyzed by NMR measurement. ¹⁹F NMR analysis of this reaction mixture showed that TEMPO-CF₃ **9**⁵ was formed in 71% yield: ¹H NMR (300 MHz, CDCl₃) δ 1.74-1.50 (m, 5 H, 2×CH₂ and one proton of CH₂), 1.40-1.31 (m, 1 H, one proton of CH₂), 1.18 (s, 12 H, 4×CH₃); ¹³C NMR (75 MHz, CDCl₃) 123.7 (q, *J* = 254.1 Hz), 61.5, 40.0, 32.7 (q, *J* = 2.2 Hz), 20.4, 16.8; ¹⁹F NMR (282 MHz, CDCl₃) δ -56.26 (s, 3 F).

2) Control reaction in the absence of 1g (yq-11-175)

To a flame-dried Schlenk tube were added K_3PO_4 (212.3 mg, 1.0 mmol), $Cu(OAc)_2$ (9.0 mg, 0.05 mmol), ligand (18.4 mg, 0.10 mmol), Togni's reagent II (317.0 mg, 1.0 mmol), TBAI (184.4 mg, 0.50 mmol), TEMPO (155.7 mg, 1.0 mmol), and 4 mL of CH₂Cl₂ under sequentially argon. The resulting mixture was stirred at 50 °C for 12 h. The crude reaction mixture was filtrated through a short pad of silica gel eluented with diethyl ether (50 mL). After filtration and evaporation, the residue was analyzed by NMR measurement. ¹⁹F NMR analysis of this reaction mixture showed that TEMPO-CF₃ was formed in 34% yield: ¹H NMR (300 MHz, CDCl₃) δ 1.74-1.50 (m, 5 H, 2×CH₂ and one proton of CH₂), 1.43-1.32 (m, 1 H, one proton of CH₂), 1.19 (s, 12 H, 4×CH₃); ¹⁹F NMR (282 MHz, CDCl₃) δ -56.26 (s, 3 F).

References:

- (1) Djahanbini, D.; Cazes, B.; Gore, J. Tetrahedron 1987, 43, 3441.
- (2) Lu, P.; Ma, S. Org. Lett. 2007, 9, 2095.
- (3) Zhang, Z.; Bender, C. F.; Widenhoefer, R. A. J. Am. Chem. Soc. 2007, 129, 14148.
- (4) Zhang, Y.; H, J.; Xu, Y.; Wei, Y. J. Chem. Res. 2012, 36, 303.
- (5) Yu, Q.; Ma, S. Chem. Eur. J. 2013, 19, 13304.

S80

S81

РРМ -100 -8-CO2Bn CO2Bn -99 цŮ 219.92d -4yq-9-159-F spect, CDCl3, Sun Jun 16 20:34:03 2013 NA = 8 F1 = 282.376129 MHz -20 000.0 --0

S110

S113

