SUPPORTING IN FORMATION FOR

Palladium Catalyzed Aliphatic C—H Acetoxylation of Aliphatic Primary Amines to γ-Amino Alcohol Derivatives

Kang Chen[‡],¹ Ding Wang[‡],¹ Zhao-Wei Li,¹ Zheng Liu¹, Fei Pan¹, Yun-Fei Zhang¹, Zhang-Jie Shi^{* 1,2}

¹Beijing National Laboratory of Molecule Sciences (BNLMS) and Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, 100871 Beijing, China ²State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, 200032 Shanghai, China

Table of Contents

General Information	S2
Optimization of Reaction Conditions	S 3
Preparation and Characterization of Reaction Substrates	S4
Pd-Catalyzed C(sp ³)-H Acetoxylation of Primary Amines	S34
Transformations of the γ -Amino Alcohol Derivatives	S45
Mechanistic Studies	S48
References	S51
NMR Spectra	S52

1. General Information

Chemical Reagents. Unless otherwise noted, materials and solvents were purchased from commercial suppliers and used without further purification. $Pd(OAc)_2$ was purchased from Sinocompound. Co., Ltd. $PhI(OAc)_2$ was obtained from Ouhe Co., Ltd. $CDCl_3$ and $AcOH-d_4$ were purchased from J&K Chemical and Cambridge Isotope Laboratories.

Instrumentation. ¹H NMR and ¹³C NMR data were obtained on Bruker 400 MHz and 500 MHz nuclear resonance spectrometers unless otherwise specified. CDCl₃ as the solvent and tetramethylsilane (TMS) as the internal standard were employed. Chemical shifts were reported in units (ppm) by assigning TMS resonance in the ¹H NMR spectrum as 0.00 ppm. The data of ¹H NMR was reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet and br = broad), coupling constant (*J* values) in Hz and integration. Chemical shifts for ¹³C NMR spectra were recorded in ppm from TMS using the central peak of CDCl₃ (77.0 ppm) as the internal standard. Column chromatography was performed using 200 - 300 mesh silica gel with the indicated solvent system according to standard techniques. HRMS (ESI) analysis was performed by State Authorized Analytical Instrumentation Center, Peking University.

2. Optimization of Reaction Conditions

	NH ₂		[Pd] (10 mol%) PhI(OAc) ₂ (x equiv)			
			Temp. (°	C), Time (h)		
Entry	Time (h)	Temp. (^o C)	PhI(OAc) ₂ (x equiv)	Pd cat.	AcOH (y mL)	Yield ^a
1	3	120	2.0	Pd(OAc) ₂	1.0 mL	36%
2	6	120	2.0	Pd(OAc) ₂	1.0 mL	45%
3	9	120	2.0	Pd(OAc) ₂	1.0 mL	44%
4	12	120	2.0	Pd(OAc) ₂	1.0 mL	38%
5	6	120	1.5	Pd(OAc) ₂	1.0 mL	46% (50%) ^b
6	6	120	1.2	Pd(OAc) ₂	1.0 mL	38%
7	6	100	1.5	Pd(OAc) ₂	1.0 mL	36%
8	6	80	1.5	Pd(OAc) ₂	1.0 mL	trace
9	6	120	1.5	Pd(OPiv) ₂	1.0 mL	45% ^b
10	6	120	1.5	Pd(MeCN) ₄ [BF ₄] ₂	1.0 mL	42% ^b
11	6	120	1.5	Pd(OBz) ₂	1.0 mL	50% ^b
12	6	120	1.5	Pd(OAc) ₂	2.0 mL	56% ^b
13	6	120	1.5	Pd(OAc) ₂	3.0 mL	60% (62%) ^b
14	6	120	1.5	Pd(OAc) ₂	4.0 mL	53% ^b
15	6	120	1.5	Pd(OAc) ₂	3.0 mL	59% ^{b, c}
16	6	120	1.5	Pd(OAc) ₂	3.0 mL	58% ^{b, d}
17	6	120	1.5	Pd(OAc) ₂	3.0 mL	63% ^{b, e}
18	6	120	2.0	Pd(OAc) ₂	3.0 mL	67% ^{b,e} (64%) ^f
19	6	120	2.0	Pd(OAc) ₂	9.0 mL	32% ^{b,e,g}

Table S1 Screening reaction parameters

^a NMR yield, with 1,3-benzodioxole as the internal standard. ^b Step 2: Ac_2O (2.0 equiv), NEt₃ (0.1 mL), DCM (3.0 mL). rt., 3 h. ^c in N₂ atmosphere. ^d in O₂ atmosphere. ^e The Pd(OAc)₂ and PhI(OAc)₂ were added in two batches. ^f Isolated yield of the combined parallel reactions (3 * 0.1 mmol scale) was obtained. ^g Isolated yield of 0.3 mmol scale reaction was obtained.

Solvents screening did not get the better results, such as the solvents of toluene, PhCF₃, C_6H_6 , MeCN, DCE gave the trace yield of desired product, and the solvents of HFIP, 1,4-dioxone, THF, DMF, Ac₂O using in the reaction, no desired product was detected. Other Pd catalyst like Pd(OTFA)₂ and Pd(PPh₃)Cl₂ gave much worse results which could observe from TLC. Though Pd(OBz)₂ showed comparable catalytic activity with Pd(OAc)₂, we still chose Pd(OAc)₂ as the catalyst for it was more inexpensive and easily

available than $Pd(OBz)_2$. We also tried Ir, Rh and Cu complexes as the catalysts for $C(sp^3)$ -H acetoxylation, but none of them could give the desired product.

3. Preparation and Characterization of Reaction Substrates

Some of the intermediates' molecular ion peaks could not be capatured using HR-MS, e.g. all-carben azide compounds and small molecular compounds ([M] < 200). Thus, these intermediates were characterized by ¹H NMR, ¹³C NMR, IR and GC-MS. IR spectra were recorded on Nicolet iS10 in wave numbers, cm⁻¹. GC-MS analysis was performed at Agilent 5977A series GC/MSD system.

3.1 General Procedure for the Synthesis of amines from ketones

Step 1: To a solution of ketone (100.0 mmol, 1.0 equiv) in 30 mL of THF at 0 °C under N₂ atmosphere, EtMgCl (2.0 mol/L in THF, 50 mL) was injected by syringe. The mixture was warmed up to room temperature and stirred overnight. The reaction was quenched with water and filtered through a celite pad. The filtrate was concentrated under reduced pressure until most of THF was evaporated. The residue was extracted with CH₂Cl₂ (3×30 mL). The organic phase was dried over anhydrous Na₂SO₄ and then concentrated. The residue was purified by distillation under reduced pressure to get the tertiary alcohol.

3-methyloctan-3-ol

¹H NMR (400 MHz, CDCl₃) δ 1.52 – 1.41 (m, 6H), 1.39 (s, 3H), 1.37 – 1.25 (m, 6H), 1.14 (s, 1H), 0.94 – 0.85 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 72.9, 41.3, 34.2, 32.5, 26.4, 23.5, 22.7, 14.0, 8.2. (Known compound: H. Leuser, S. Perrone, F. Liron, F. F. Kneisel, P. Knochel, *Angew. Chem. Int. Ed.* **2005**, *44*, 4627-4631)

3-ethyloctan-3-ol

¹H NMR (400 MHz, CDCl₃) δ 1.46 (q, J = 7.5 Hz, 4H), 1.43 – 1.37 (m, 2H), 1.37 – 1.20 (m, 6H), 1.08 (s, 1H), 0.89 (t, J = 6.8 Hz, 3H), 0.86 (t, J = 7.5 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 74.64, 38.18, 32.53, 31.04, 23.09, 22.69, 14.09, 7.80. (Known compound: B. H. Lipshutz, R. S. Wilhelm, J. A. Kozlowski, D. Parker, *J. Org. Chem.* **1984**, *49*, 3928-3938)

4-ethylheptan-4-ol

¹H NMR (400 MHz, CDCl₃) δ 1.50 – 1.36 (m, 6H), 1.35 – 1.26 (m, 4H), 1.09 (s, 1H), 0.92 (t, *J* = 7.1 Hz, 6H), 0.86 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 74.58, 41.17, 31.60, 16.72, 14.77, 7.85. (Known compound: B. Li, M. Driess, J. F. Hartwig, *J. Am. Chem. Soc.* **2014**, *136*, 6586-6589)

1-ethylcyclohexanol

¹H NMR (400 MHz, CDCl₃) δ 1.65 – 1.34 (m, 11H), 1.33 – 1.16 (m, 2H), 0.90 (t, J = 7.5 Hz, 3H). ¹H NMR (400 MHz, CDCl₃) δ 1.62, 1.60, 1.57, 1.54, 1.52, 1.49, 1.46, 1.45, 1.43, 1.39, 1.37, 1.27, 1.24, 0.91, 0.90, 0.88. ¹³C NMR (100 MHz, CDCl₃) δ 71.46, 36.91, 34.75, 25.90, 22.25, 7.24. (Known compound: D. Guijarro, G. Guillena, B. Manche ño, M. Yus, *Tetrahedron*. **1994**, *50*, 3427-3436)

1-ethylcycloheptanol

¹H NMR (400 MHz, CDCl₃) δ 1.67 – 1.56 (m, 8H), 1.55 – 1.45 (m, 4H), 1.45 – 1.33 (m, 2H), 1.15 (s, 1H), 0.91 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 75.53, 40.70, 35.82, 29.90, 22.49, 7.68. (Known compound: R. P. Kirchen, N. Okazawa, K. Ranganayakulu, A. Rauk, T. S. Sorensen, *J. Am. Chem. Soc.* **1981**, *103*, 597-604)

1-ethylcyclooctanol

¹H NMR (400 MHz, CDCl₃) δ 1.81 – 1.31 (m, 16H), 1.13 (s, 1H), 0.90 (t, J = 7.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 74.87, 35.85, 33.77, 28.30, 25.04, 22.38, 7.43. IR (cm⁻¹): 2921, 959. GC-MS (EI): m/z: (127.2, [M-Et]⁺, 100%), (138.2, [M-H₂O]⁺, 6%).

3-methyl-7-phenylheptan-3-ol

¹H NMR (400 MHz, CDCl₃) δ 7.30 – 7.23 (m, 2H), 7.20 – 7.13 (m, 3H), 2.66 – 2.58 (m, 2H), 1.68 – 1.57 (m, 2H), 1.51 – 1.43 (m, 4H), 1.42 – 1.33 (m, 2H), 1.17 (s, 1H), 1.13 (s, 3H), 0.88 (t, J = 7.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 142.67, 128.40, 128.29, 125.66, 72.89, 41.20, 35.98, 34.27, 32.12, 26.40, 23.60, 8.22. HRMS (ESI): m/z: calculated for C₁₄H₂₆NO [M + NH₄]⁺ 224.20089, found 224.20087.

3-methyl-6-phenylhexan-3-ol

¹H NMR (400 MHz, CDCl₃) δ 7.31 – 7.24 (m, 2H), 7.22 – 7.14 (m, 3H), 2.62 (t, J = 7.7 Hz, 2H), 1.72 – 1.61 (m, 2H), 1.52 – 1.42 (m, 4H), 1.13 (s, 4H), 0.87 (t, J = 7.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 142.49, 128.41, 128.32, 125.76, 72.86, 40.92, 36.42, 34.25, 26.42, 25.85, 8.20. HRMS (ESI): m/z: calculated for C₁₃H₂₄NO [M + NH₄]⁺ 210.18524, found 210.18567.

Step 2: The azidation of tertiary alcohol was conducted according to a reported method with minor modification.¹ The tertiary alcohol (50 mmol, 1.0equiv) and TMSN₃ (6.9 g, 60 mmol, 1.2 equiv) were dissolved into 40 mL of CH_2Cl_2 and the solution was cooled down to 0°C. BF₃•Et₂O (8.5 g, 60 mmol, 1.2 equiv) was added dropwisely to this solution. The mixture was warmed up to room temperature and stirred for 12 h. Then the reaction was quenched with the addition of saturated NaHCO₃ (aq). The mixture was stirred vigorously for 15 min. The separated organic layer was washed by H₂O, brine and dried over anhydrous Na₂SO₄. The crude product of azide was obtained by removing the solvent under reduced pressure, which was used for the next step without further purification.

3-azido-3-methyloctane

¹H NMR (400 MHz, CDCl₃) δ 1.59 – 1.44 (m, 4H), 1.37 – 1.25 (m, 6H), 1.21 (s, 3H), 0.96 – 0.85 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 64.60, 38.83, 32.18, 31.95, 23.56, 22.85, 22.60, 14.03, 8.36. IR (cm⁻¹): 2095. GC-MS (EI): m/z: (112.2, [M-N₃-Me]⁺).

3-azido-3-ethyloctane

¹H NMR (400 MHz, CDCl₃) δ 1.54 (q, *J* = 7.5 Hz, 4H), 1.51 – 1.43 (m, 2H), 1.36 – 1.24 (m, 6H), 0.94 – 0.84 (m, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 67.30, 35.41, 32.23, 28.56,

23.12, 22.59, 14.03, 7.98. IR (cm⁻¹): 2096. GC-MS (EI): m/z: (126.2, [M-N₃-Me]⁺, 100%), (141.3, [M-N₃]⁺, 91%).

4-azido-4-ethylheptane

¹H NMR (400 MHz, CDCl₃) δ 1.54 (q, J = 7.5 Hz, 2H), 1.50 – 1.43 (m, 4H), 1.37 – 1.29 (m, 4H), 0.93 (t, J = 7.2 Hz, 6H), 0.89 (t, J = 7.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 67.07, 38.34, 29.12, 16.85, 14.51, 8.05. IR (cm⁻¹): 2099. GC-MS (EI): m/z: (98.2, [M-N₃-Et]⁺, 27%), (127.3, [M-N₃]⁺, 100%).

1-azido-1-ethylcyclohexane

¹H NMR (400 MHz, CDCl₃) δ 1.70 – 1.64 (m, 2H), 1.62 – 1.50 (m, 7H), 1.39 – 1.30 (m, 2H), 1.28 – 1.19 (m, 1H), 0.94 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 64.42, 34.13, 32.82, 25.55, 22.15, 7.74. IR (cm⁻¹): 2098. GC-MS (EI): m/z: (96.2, [M-N₃-Me]⁺, 100%), (111.2, [M-N₃]⁺, 98%), (124.2, [M-Et]⁺, 10%).

1-azido-1-ethylcycloheptane

¹H NMR (400 MHz, CDCl₃) δ 1.82 – 1.71 (m, 2H), 1.65 – 1.56 (m, 8H), 1.55 – 1.37 (m, 4H), 0.94 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 68.01, 37.69, 33.39, 29.54, 22.52, 8.25. IR (cm⁻¹): 2091. GC-MS (EI): m/z: (110.2, [M-N₃-Me]⁺, 100%), (125.2, [M-N₃]⁺, 86%), (138.2, [M-Et]⁺, 7%).

1-azido-1-ethylcyclooctane

¹H NMR (400 MHz, CDCl₃) δ 1.88 – 1.78 (m, 2H), 1.69 – 1.51 (m, 11H), 1.45 (ddd, J = 10.7, 9.4, 4.8 Hz, 3H), 0.94 (t, J = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 67.98, 32.81, 31.66, 28.22, 24.88, 22.35, 8.14. IR (cm⁻¹): 2090. GC-MS (EI): m/z: (124.2, [M-N₃-Me]⁺, 100%), (139.3, [M-N₃]⁺, 48%), (152.2, [M-Et]⁺, 6%).

(5-azido-5-methylheptyl)benzene

¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.27 (m, 2H), 7.24 – 7.17 (m, 3H), 2.70 – 2.61 (m, 2H), 1.71 – 1.61 (m, 2H), 1.59 – 1.51 (m, 4H), 1.45 – 1.36 (m, 2H), 1.23 (s, 3H), 0.94 (t, J = 7.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 142.45, 128.39, 128.34, 125.75, 64.54, 38.78, 35.89, 32.01, 31.85, 23.63, 22.83, 8.39. IR (cm⁻¹): 2090, 698, 651. GC-MS (EI): m/z: (174.2, [M-N₃-Me]⁺, 100%), (188.3, [M-N₃-H]⁺, 37%), (189.3, [M-N₃]⁺, 20%).

(4-azido-4-methylhexyl)benzene

¹H NMR (400 MHz, CDCl₃) δ 7.32 – 7.25 (m, 2H), 7.21 – 7.15 (m, 3H), 2.61 (t, J = 7.6 Hz, 2H), 1.72 – 1.62 (m, 2H), 1.56 – 1.48 (m, 4H), 1.20 (s, 3H), 0.88 (t, J = 7.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 142.07, 128.39, 125.90, 64.45, 38.49, 36.14, 32.00, 25.81, 22.84, 8.35. IR (cm⁻¹): 2093, 748, 698. GC-MS (EI): m/z: (160.2, [M-N₃-Me]⁺, 100%), (174.2, [M-N₃-H]⁺, 17%).

Step 3: To a solution of azide in 40 mL of Et₂O at 0 °C, LiAlH₄ (1.9 g, 50 mmol, 1.0

equiv) was added into small portions. The reaction was warmed up to room temperature and stirred for 4 h. Then the reaction was quenched with $Na_2SO_4 \cdot 10H_2O$ and filtered through a celite pad. The filtrate was concentrated to get the crude amine product, which was further purified by distillation to give the desired product.

Compound **1b-f**, **3a** and **3j** were prepared though the same procedure in smaller scales. The final amine products were purified by column chromatography (eluent: CH_2Cl_2 : MeOH = 50 : 1 to 20 : 1) instead of distillation. Substrate **1g** was purchased from TCI and used without purification.

3-methyloctan-3-amine (1a)

Colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 1.39-1.33 (m, 3H), 1.32-1.25 (m, 7H), 1.03 (br, 2H), 1.01 (s, 3H), 0.91-0.84 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 51.4, 42.2, 35.0, 32.6, 27.5, 23.6, 22.7, 14.0, 8.2. HRMS(EI): m/z: calculated for C₉H₂₁N 143.1674, found C₉H₂₀N 142.1590.

3-ethyloctan-3-amine (1b).

Colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 1.36-1.25 (m, 12H), 1.01 (br, 2H), 0.89 (t, *J* = 7.1 Hz, 3H), 0.82 (t, *J* = 7.5 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 53.1, 39.1, 32.6, 31.8, 23.0, 22.6, 14.0, 7.7. HRMS(EI): m/z: calculated for C₁₀H₂₃N 157.1830, found C₁₀H₂₂N 156.1749.

 NH_2

4-ethylheptan-4-amine (1c)

Light yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 1.34 (q, J = 7.5 Hz, 2H), 1.27-1.25 (m,

8H), 1.11 (br, 2H), 0.92-0.89 (m, 6H), 0.83 (t, J = 7.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 53.4, 42.1, 32.3, 16.6, 14.8, 7.8. HRMS(EI): m/z: calculated for C₉H₂₁N 143.1674, found C₉H₂₀N 142.1591.

1-ethylcyclohexanamine (1d)

Colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 1.53-1.46 (m, 5H), 1.41-1.29 (m, 7H), 1.07 (br, 2H), 0.87 (t, *J* = 7.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 50.3, 38.2, 34.8, 26.0, 22.2, 7.1. HRMS(EI): m/z: calculated for C₈H₁₇N 127.1361, found C₈H₁₆N 126.1278.

1-ethylcycloheptanamine (1e)

Light yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 1.57-1.53 (m, 10H), 1.46-1.37 (m, 6H), 0.88 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 54.4, 41.4, 36.2, 30.2, 22.7, 7.7. HRMS(EI): m/z: calculated for C₉H₁₉N 141.1518, found C₉H₁₈N 140.1434.

1-ethylcyclooctanamine (1f)

Light yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 1.63-1.61 (m, 3H), 1.55-1.43 (m, 11H), 1.37 (q, *J* = 7.5 Hz, 2H), 1.13 (br, 2H), 0.86 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 53.6, 36.4, 34.6, 28.5, 25.3, 22.7, 7.5. HRMS(EI): m/z: calculated for C₁₀H₂₁N 155.1674, found C₁₀H₂₀N 154.1591.

3-methyl-7-phenylheptan-3-amine (3a)

Light yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.29-7.26 (m, 2H), 7.19-7.15 (m, 3H), 2.63 (t, *J* = 7.8 Hz, 2H), 1.64-1.60 (m, 2H), 1.38-1.33 (m, 6H), 1.25 (br, 2H), 1.00 (s, 3H), 0.85 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 142.7, 128.3, 128.2, 125.6, 51.3, 42.1, 35.9, 35.0, 32.2, 27.5, 23.6, 8.2. HRMS (ESI): m/z: calculated for C₁₄H₂₄N [M + H]⁺ 206.1903, found 206.1904.

3-methyl-6-phenylhexan-3-amine (3j)

Light yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.29-7.25 (m, 2H), 7.19-7.15 (m, 3H), 2.60 (t, *J* = 7.7 Hz, 2H), 1.66-1.57 (m, 2H), 1.39-1.32 (m, 4H), 1.21 (br, 2H), 1.00 (s, 3H), 0.83 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 142.5, 128.3, 128.2, 125.6, 51.3, 41.8, 36.5, 35.0, 27.5, 26.0, 8.2. HRMS(EI): m/z: calculated for C₁₃H₂₁N 191.1674, found C₁₃H₁₈N 188.1435.

3.2 General Procedure for the Synthesis of Aryl-Substituted amines

Step 1: To a oven-dried three-necked flask equipped with stirring bar, Mg chips (2.9 g, 120.0 mmol, 1.2 equiv) was added. Then the flask was purged with N₂ for three times and then 40 mL of THF was injected by syringe. 4-bromobut-1-ene (13.5 g, 100.0 mmol) in THF (60 mL) was slowly added to the reaction. After complete addition, the reaction was heated at reflux temperature for another 0.5 h. Then the solution was cooled down to 0 °C. A THF solution (20 mL) of butanone (7.2 g, 100.0 mmol, 1.0 equiv) was added dropwisely. The mixture was stirred at room temperature overnight. Then it was

quenched with H_2O and filter through a celite pad. THF was removed under reduced pressure. The residue was dissolved into 100 mL of CH_2Cl_2 and washed by H_2O and brine. The solution was dried over anhydrous Na_2SO_4 and concentrated under reduced pressure to give the crude product. Two batches of reactions were run parallel and then combined. The crude product was purified by distillation (b.p. 56-60 °C, 7 mmHg) and followed by column chromatography to afford 3-methylhept-6-en-3-ol (7.0 g, 54.7 mmol).

3-methylhept-6-en-3-ol

¹H NMR (400 MHz, CDCl₃) δ 5.86 (ddt, *J* = 16.8, 10.1, 6.6 Hz, 1H), 5.05 (dd, *J* = 17.1, 1.6 Hz, 1H), 4.96 (d, *J* = 10.1 Hz, 1H), 2.12 (dd, *J* = 16.3, 6.9 Hz, 2H), 1.58 – 1.47 (m, 4H), 1.24 (s, 1H), 1.16 (s, 3H), 0.91 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 139.12, 114.36, 72.85, 40.25, 34.36, 28.35, 26.31, 8.23. (Known compound: A. P. Pulis, D. J. Blair, E. Torres, V. K. Aggarwal, *J. Am. Chem. Soc.* **2013**, *135*, 16054-16057)

Step 2: Following a previously reported procedure², to the solution of 3-methylhept-6-en-3-ol (640 mg, 5.0 mmol, in 2.5 mL THF) was added a solution of 9-BBN (0.5 M in THF, 11.0 mmol, 22 mL) at 0 °C. The mixture was warmed up slowly to room temperature and then stirred for 4 h to give a solution of alkyl-9-BBN. To the above solution were added PdCl₂(dppf) (109.8 mg, 0.15 mmol, 3.0 mol%), ArI (5.0 mmol, 1.0 equiv), additional THF (10 mL), and aqueous NaOH (15.0 mmol, 5 mL of 3.0 M solution) at room temperature. The mixture was refluxed overnight. After the reaction was completed, the reaction was diluted with hexane (10 mL) and H₂O₂ (30 wt%, 2 mL) at 0 °C. The product was extracted with EtOAc (5 mL×3), washed with brine (10 mL), and dried over anhydrous Na₂SO₄. The crude product was purified by column chromatography (eluent: PE : EA = 50 : 1) to give desired tertiary alcohol.

3-methyl-7-(p-tolyl)heptan-3-ol

¹H NMR (400 MHz, CDCl₃) δ 7.12 – 7.01 (m, 4H), 2.62 – 2.54 (m, 2H), 2.31 (s, 3H), 1.65 – 1.56 (m, 2H), 1.51 – 1.43 (m, 4H), 1.41 – 1.34 (m, 2H), 1.26 (s, 1H), 1.13 (s, 3H), 0.88 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 139.58, 135.05, 128.97, 128.26, 72.92, 41.20, 35.51, 34.25, 32.25, 26.39, 23.58, 21.00, 8.21. HRMS (ESI): m/z: calculated for [M + Na]⁺ C₁₅H₂₄NaO: 243.17194, found 243.17173.

7-(4-fluorophenyl)-3-methylheptan-3-ol

¹H NMR (400 MHz, CDCl₃) δ 7.15 – 7.08 (m, 2H), 7.00 – 6.91 (m, 2H), 2.63 – 2.55 (m, 2H), 1.65 – 1.53 (m, 2H), 1.50 – 1.42 (m, 4H), 1.41 – 1.33 (m, 2H), 1.24 (s, 1H), 1.13 (s, 3H), 0.88 (t, J = 7.5 Hz, 3H). ¹⁹F NMR (377 MHz, CDCl₃) δ -118.11. ¹³C NMR (100 MHz, CDCl₃) δ 161.17 (d, J = 242.9 Hz), 138.20 (d, J = 3.1 Hz), 129.64 (d, J = 7.6 Hz), 114.97 (d, J = 21.1 Hz), 72.88, 41.13, 35.11, 34.27, 32.21, 26.39, 23.44, 8.21. HRMS (ESI): m/z: calculated for [M + Na]⁺ C₁₄H₂₁FNaO: 247.14686, found 247.14671.

3-methyl-7-(4-(trifluoromethyl)phenyl)heptan-3-ol

¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, J = 8.0 Hz, 2H), 7.28 (d, J = 8.0 Hz, 2H), 2.71 – 2.64 (m, 2H), 1.68 – 1.60 (m, 2H), 1.50 – 1.44 (m, 4H), 1.43 – 1.35 (m, 2H), 1.14 (s, 3H), 0.89 (t, J = 7.5 Hz, 3H). ¹⁹F NMR (377 MHz, CDCl₃) δ -62.26. ¹³C NMR (100 MHz, CDCl₃) δ 146.75, 128.66, 128.06 (q, J = 32.3 Hz), 125.21 (q, J = 3.7 Hz), 124.41 (q, J = 271.7 Hz), 72.84, 41.08, 35.79, 34.31, 31.80, 26.38, 23.48, 8.20. HRMS (ESI): m/z: calculated for [M + Na]⁺ C₁₅H₂₁F₃NaO: 297.14367, found 297.14332.

7-(4-chlorophenyl)-3-methylheptan-3-ol

¹H NMR (400 MHz, CDCl₃) δ 7.23 (d, *J* = 8.4 Hz, 2H), 7.10 (d, *J* = 8.4 Hz, 2H), 2.62 – 2.56 (m, 2H), 1.63 – 1.56 (m, 2H), 1.48 – 1.42 (m, 4H), 1.40 – 1.33 (m, 2H), 1.25 (s, 1H), 1.13 (s, 3H), 0.88 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 141.04, 131.34, 129.72, 128.36, 72.87, 41.11, 35.28, 34.29, 31.98, 26.39, 23.44, 8.21. HRMS (ESI): m/z: calculated for [M + NH₄]⁺ C₁₄H₂₅ClNO: 258.16192, found 258.16204.

7-(4-methoxyphenyl)-3-methylheptan-3-ol

¹H NMR (400 MHz, CDCl₃) δ 7.09 (d, J = 8.6 Hz, 2H), 6.82 (d, J = 8.6 Hz, 2H), 3.78 (s, 3H), 2.60 – 2.52 (m, 2H), 1.63 – 1.55 (m, 2H), 1.50 – 1.42 (m, 4H), 1.40 – 1.32 (m, 2H), 1.24 (s, 1H), 1.13 (s, 3H), 0.88 (t, J = 7.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 157.65, 134.77, 129.24, 113.71, 72.90, 55.26, 41.19, 35.02, 34.25, 32.36, 26.40, 23.51, 8.22. HRMS (ESI): m/z: calculated for [M + Na]⁺ C₁₅H₂₄NaO₂: 259.16685, found 259.16657.

7-([1,1'-biphenyl]-4-yl)-3-methylheptan-3-ol

¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, *J* = 7.4 Hz, 2H), 7.50 (d, *J* = 8.1 Hz, 2H), 7.40 (t, *J* = 7.6 Hz, 2H), 7.30 (t, *J* = 7.4 Hz, 1H), 7.24 (d, *J* = 8.1 Hz, 2H), 2.65 (t, *J* = 7.6 Hz, 2H), 1.70 – 1.60 (m, 2H), 1.52 – 1.33 (m, 7H), 1.13 (s, 3H), 0.88 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 141.85, 141.19, 138.67, 128.86, 128.77, 127.08, 127.04, 72.94, 41.24, 35.65, 34.32, 32.15, 26.45, 23.68, 8.30. HRMS (ESI): m/z: calculated for [M + Na]⁺ C₂₀H₂₆NaO: 305.18759, found 305.18744.

3-methyl-7-(naphthalen-1-yl)heptan-3-ol

¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, J = 8.2 Hz, 1H), 7.84 – 7.75 (m, 1H), 7.65 (d, J = 8.1 Hz, 1H), 7.49 – 7.37 (m, 2H), 7.37 – 7.29 (m, 1H), 7.26 (d, J = 6.8 Hz, 1H), 3.11 – 2.95 (m, 2H), 1.71 (dd, J = 9.8, 4.7 Hz, 2H), 1.53 – 1.36 (m, 7H), 1.09 (s, 3H), 0.85 (t, J = 7.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 138.86, 134.04, 132.01, 128.89, 126.61, 125.97, 125.79, 125.68, 125.51, 123.97, 72.92, 41.29, 34.39, 33.26, 31.54, 26.45, 24.18, 8.39. HRMS (ESI): m/z: calculated for [M + Na]⁺ C₁₈H₂₄NaO: 279.17194, found 279.17177.

Step 3: A mixture of alcohol (3.8 mmol, 1.0 equiv) and trimethylsilyl azide (520.7 mg, 4.5 mmol, 1.2 equiv) in CH₂Cl₂ (10 mL) were cooled to 0 $^{\circ}$ C, and BF₃•Et₂O (641.5 mg, 4.5 mmol, 1.2 equiv) was added to the mixture. The reaction mixture was allowed to reach room temperature and stirred for 12 h. The mixture was diluted with saturated NaHCO₃ (10 mL), and the organic layer was washed with brine, and dried over anhydrous Na₂SO₄. The desired product was isolated and carried in to the next synthetic transformation without purification.

1-(5-azido-5-methylheptyl)-4-methylbenzene

¹H NMR (400 MHz, CDCl₃) δ 7.14 – 7.04 (m, 4H), 2.65 – 2.55 (m, 2H), 2.34 (s, 3H), 1.67 – 1.58 (m, 2H), 1.58 – 1.49 (m, 4H), 1.44 – 1.35 (m, 2H), 1.22 (s, 3H), 0.93 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 139.36, 135.13, 129.01, 128.25, 64.54, 38.79, 35.41, 32.00, 31.97, 23.62, 22.82, 21.02, 8.37. IR (cm⁻¹): 2090, 1256, 807. GC-MS (EI): m/z: (188.3, [M-N₃-Me]⁺, 100%), (203.3, [M-N₃]⁺, 20%), (202.3, [M-N₃-H]⁺, 27%).

1-(5-azido-5-methylheptyl)-4-fluorobenzene

¹H NMR (400 MHz, CDCl₃) δ 7.12 (dd, J = 8.4, 5.6 Hz, 2H), 6.96 (t, J = 8.7 Hz, 2H), 2.63 – 2.55 (m, 2H), 1.64 – 1.55 (m, 2H), 1.55 – 1.46 (m, 4H), 1.41 – 1.32 (m, 2H), 1.20 (s, 3H), 0.90 (t, J = 7.5 Hz, 3H). ¹⁹F NMR (377 MHz, CDCl₃) δ -117.98. ¹³C NMR (100 MHz, CDCl₃) δ 161.21 (d, J = 243.3 Hz), 137.98 (d, J = 3.1 Hz), 129.64 (d, J = 7.6 Hz), 115.02 (d, J = 21.1 Hz). 64.49, 38.73, 35.01, 31.99, 31.91, 23.47, 22.80, 8.36. IR (cm⁻¹): 2092, 824. GC-MS (EI): m/z: (192.3, [M-N₃-Me]⁺, 100%), (206.3, [M-N₃-H]⁺, 37%), (207.3, [M-N₃]⁺, 21%).

1-(5-azido-5-methylheptyl)-4-(trifluoromethyl)benzene

¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, *J* = 8.1 Hz, 2H), 7.28 (d, *J* = 8.0 Hz, 2H), 2.73 – 2.62 (m, 2H), 1.64 (dt, *J* = 15.4, 7.5 Hz, 2H), 1.56 – 1.47 (m, 4H), 1.44 – 1.34 (m, 2H), 1.20 (s, 3H), 0.91 (t, *J* = 7.5 Hz, 3H). ¹⁹F NMR (377 MHz, CDCl₃) δ -62.29. ¹³C NMR (100 MHz, CDCl₃) δ 146.49, 128.64, 128.16 (q, *J* = 32.3 Hz), 125.25 (q, *J* = 3.8 Hz), 124.44 (q, *J* = 261.8 Hz), 64.42, 38.72, 35.68, 32.02, 31.48, 23.53, 22.78, 8.34. IR (cm⁻¹): 2091, 1162, 1122, 1067. GC-MS (EI): m/z: (242.2, [M-N₃-Me]⁺, 100%), (256.3, [M-N₃-H]⁺, 69%), (257.3, [M-N₃]⁺, 29%).

1-(5-azido-5-methylheptyl)-4-chlorobenzene

¹H NMR (400 MHz, CDCl₃) δ 7.23 (d, *J* = 8.4 Hz, 2H), 7.09 (d, *J* = 8.4 Hz, 2H), 2.63 – 2.53 (m, 2H), 1.64 – 1.46 (m, 6H), 1.40 – 1.30 (m, 2H), 1.19 (s, 3H), 0.90 (t, *J* = 7.5 Hz,

3H). ¹³C NMR (100 MHz, CDCl₃) δ 140.82, 131.43, 129.71, 128.41, 64.45, 38.73, 35.17, 32.01, 31.68, 23.48, 22.79, 8.36. IR (cm⁻¹): 2090, 1492, 1258, 1091. GC-MS (EI): m/z: (208.2, [M-N₃-Me]⁺, 100%), (222.2, [M-N₃-H]⁺, 39%).

1-(5-azido-5-methylheptyl)-4-methoxybenzene

¹H NMR (400 MHz, CDCl₃) δ 7.09 (d, *J* = 8.5 Hz, 2H), 6.83 (d, *J* = 8.6 Hz, 2H), 3.79 (s, 3H), 2.61 – 2.51 (m, 2H), 1.62 – 1.47 (m, 6H), 1.41 – 1.32 (m, 2H), 1.20 (s, 3H), 0.91 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 157.70, 134.53, 129.23, 113.73, 64.55, 55.27, 38.76, 34.91, 32.06, 31.98, 23.53, 22.82, 8.37. HRMS (ESI): m/z: calculated for [M + H]⁺ C₁₅H₂₄N₃O: 262.19139, found 262.19179.

4-(5-azido-5-methylheptyl)-1,1'-biphenyl

¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, *J* = 7.2 Hz, 2H), 7.52 (d, *J* = 8.1 Hz, 2H), 7.42 (t, *J* = 7.6 Hz, 2H), 7.32 (t, *J* = 7.4 Hz, 1H), 7.25 (d, *J* = 8.1 Hz, 2H), 2.72 – 2.61 (m, 2H), 1.70 – 1.61 (m, 2H), 1.58 – 1.49 (m, 4H), 1.46 – 1.36 (m, 2H), 1.21 (s, 3H), 0.92 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 141.57, 141.13, 138.72, 128.79, 128.72, 127.07, 127.00, 64.53, 38.79, 35.48, 32.01, 31.79, 23.65, 22.83, 8.37. IR (cm⁻¹): 2090, 761, 697. GC-MS (EI): m/z: (250.2, [M-N₃-Me]⁺, 100%), (264.3, [M-N₃-H]⁺, 14%), (279.3, [M-N₂]⁺, 73%).

 N_3

1-(5-azido-5-methylheptyl)naphthalene

¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, J = 8.3 Hz, 1H), 7.89 – 7.83 (m, 1H), 7.72 (d, J = 8.2 Hz, 1H), 7.55 – 7.44 (m, 2H), 7.43 – 7.36 (m, 1H), 7.33 (d, J = 6.8 Hz, 1H), 3.15 – 3.03 (m, 2H), 1.82 – 1.71 (m, 2H), 1.59 – 1.48 (m, 6H), 1.23 (s, 3H), 0.93 (t, J = 7.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 138.51, 133.92, 131.84, 128.79, 126.57, 125.87, 125.72, 125.55, 125.42, 123.79, 64.53, 38.84, 33.05, 32.06, 31.12, 24.12, 22.81, 8.39. HRMS (m/z): calculated for [M + Na]⁺ C₁₈H₂₃N₃Na: 304.17842, found 304.17804.

Step 4: The solution of azide in Et₂O (10 mL) was cooled to 0 °C, and the LiAlH₄ (170 mg, 1.2 equiv) was slowly added to the mixture. The reaction mixture was warmed up slowly to room temperature and stirred for 4 h. After the reaction was completed, the reaction was quenched with Na₂SO₄•10H₂O. The organic layer was filtered and concentrated. The crude product was purified by column chromatography (eluent : CH_2Cl_2 : MeOH = 50 : 1) to give the compound **3f** (333.0 mg, 1.4 mmol).

3-methyl-7-p-tolylheptan-3-amine (3b)

Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.13-7.01 (m, 4H), 2.58 (t, *J* = 7.6 Hz, 2H), 2.31 (s, 3H), 1.60 (m, 2H), 1.40-1.23 (m, 8H), 1.00 (s, 3H), 0.85 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 139.6, 135.0, 128.9, 128.2, 51.4, 42.1, 35.5, 35.0, 32.3, 27.5, 23.6, 20.9, 8.2. HRMS (ESI): m/z: calculated for C₁₅H₂₆N [M + H]⁺ 220.2060, found 220.2057.

7-(4-fluorophenyl)-3-methylheptan-3-amine (3c)

Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.11 (dd, J = 8.5, 5.6 Hz, 2H), 6.95 (t, J = 8.7 Hz, 2H), 2.59 (t, J = 7.5 Hz, 2H), 1.63-1.52 (m, 4H), 1.40-1.29 (m, 6H), 1.01 (s, 3H), 0.85 (t, J = 7.5 Hz, 3H). ¹⁹F NMR (377 MHz, CDCl₃) δ -118.14. ¹³C NMR (100 MHz,

CDCl₃) δ 161.1 (d, *J* = 242.9 Hz), 138.2 (d, *J* = 3.2 Hz), 129.6 (d, *J* = 7.7 Hz), 114.9 (d, *J* = 21.0 Hz), 51.6, 41.8, 35.0, 34.8, 32.2, 27.3, 23.4, 8.2. HRMS (ESI): m/z: calculated for C₁₄H₂₃FN [M + H]⁺ 224.1809, found 224.1810.

3-methyl-7-(4-(trifluoromethyl)phenyl)heptan-3-amine (3d)

Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, *J* = 8.1 Hz, 2H), 7.28 (d, *J* = 8.1 Hz, 2H), 2.73-2.61 (m, 2H), 1.71 (br, 2H), 1.67-1.59 (m, 2H), 1.44-1.30 (m, 6H), 1.03 (s, 3H), 0.86 (t, *J* = 7.5 Hz, 3H). ¹⁹F NMR (377 MHz, CDCl₃) δ -62.24. ¹³C NMR (100 MHz, CDCl₃) δ 146.7, 128.6, 128.0 (q, *J* = 32.2 Hz), 125.1 (q, *J* = 3.7 Hz), 124.4 (q, *J* = 271.7 Hz), 51.6, 41.8, 35.7, 34.9, 31.8, 27.4, 23.5, 8.2. HRMS (ESI): m/z: calculated for C₁₅H₂₃F₃N [M + H]⁺ 274.1777, found 274.1783.

7-(4-methoxyphenyl)-3-methylheptan-3-amine (3f)

Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.08 (d, *J* = 8.6 Hz, 2H), 6.81 (d, *J* = 8.6 Hz, 2H), 3.76 (s, 3H), 2.56 (t, *J* = 7.5 Hz, 2H), 1.62-1.53 (m, 2H), 1.51 (br, 2H), 1.39-1.28 (m, 6H), 1.00 (s, 3H), 0.85 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 157.5, 134.6, 129.0, 113.5, 55.0, 51.4, 41.8, 34.8, 34.8, 32.3, 27.2, 23.4, 8.1. HRMS (ESI): m/z: calculated for C₁₅H₂₆NO [M + H]⁺ 236.2009, found 236.2011.

7-(biphenyl-4-yl)-3-methylheptan-3-amine (3h) Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, *J* = 8.1 Hz, 2H), 7.51 (d, *J* = 7.8 Hz, 2H), 7.42 (t, J = 7.6 Hz, 2H), 7.32 (t, J = 7.8 Hz, 1H), 7.24 (d, J = 7.6 Hz, 2H), 2.71-2.62 (t, J = 7.6 Hz, 2H), 2.30 (br, 2H), 1.70-1.61 (m, 2H), 1.48-1.33 (m, 6H), 1.06 (s, 3H), 0.88 (t, J = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 141.8, 141.1, 138.5, 128.8, 128.7, 127.0 (2C), 126.9, 51.4, 42.1, 35.6, 35.1, 32.2, 27.6, 23.7, 8.3. HRMS (ESI): m/z: calculated for C₂₀H₂₈N [M + H]⁺ 282.2216, found 282.2219.

3-methyl-7-(naphthalen-1-yl)heptan-3-amine (3i)

Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, *J* = 8.2 Hz, 1H), 7.84 (d, *J* = 8.9 Hz, 1H), 7.70 (d, *J* = 8.1 Hz, 1H), 7.54-7.42 (m, 2H), 7.38 (t, *J* = 7.6 Hz, 1H), 7.31 (d, *J* = 6.9 Hz, 1H), 3.13-3.05 (m, 2H), 1.80-1.68 (m, 2H), 1.48-1.36 (m, 6H), 1.21-1.26 (m, 2H), 1.02 (s, 3H), 0.86 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 138.8, 133.8, 131.8, 128.7, 126.4, 125.8, 125.6, 125.5, 125.3, 123.8, 51.4, 42.1, 35.1, 33.1, 31.5, 27.5, 24.2, 8.3. HRMS (ESI): m/z: calculated for C₁₈H₂₆N [M + H]⁺ 256.2060, found 256.2061.

The preparation for compound **3e** followed the general steps except the reduction of the azide. The procedure for this reaction was described as follows:

The azide (700.0 mg, 2.6 mmol) and 10% Pd/C (35 mg) were added into the mixed solvents of pyridine/MeOH (1 : 5, 15 mL). The mixture was stirred at room temperature under 1.0 atm of H_2 for 2 h. The reaction mixture was filtered through a short pad of celite pad, and then the celite pad was washed by MeOH (20 mL). The solvents were removed *in vacuo* to give the crude product, which was purified by column chromatography to afford Compound **3e** (373.7 mg, 1.6 mmol).

7-(4-chlorophenyl)-3-methylheptan-3-amine (3e)

Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.23 (d, *J* = 8.3 Hz, 2H), 7.09 (d, *J* = 8.3 Hz, 2H), 2.59 (t, *J* = 7.6 Hz, 2H), 1.90 (br, 2H), 1.62-1.55 (m, 2H), 1.39-1.31 (m, 6H), 1.03 (s, 3H), 0.86 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 141.0, 131.3, 129.7, 128.3, 51.9, 41.6, 35.2, 34.6, 32.0, 27.1, 23.4, 8.2. HRMS (ESI): m/z: calculated for C₁₄H₂₃ClN [M + H]⁺ 240.1514, found 240.1520.

The procedure for preparation of compound 3g was the same as general procedure for cross-coupling except the powered NaOMe (1.5 equiv) as the base.

Following a previously reported procedure², to the solution of 3-methylhept-6-en-3-ol (640 mg, 5.0 mmol, in 2.5 mL THF) was added a solution of 9-BBN (0.5 M in THF, 11.0 mmol, 22 mL) at 0 °C. The mixture was warmed up slowly to room temperature and then stirred for 4 h to give a solution of alkyl-9-BBN. To the above solution were added PdCl₂(dppf) (109.8 mg, 0.15 mmol, 3.0 mol%), Methyl 4-iodobenzoate (1.31 g, 5.0 mmol, 1.0 equiv), additional THF (10 mL), and powered NaOMe (0.81 g, 15.0 mmol, 3.0 equiv) at room temperature. The mixture was refluxed overnight. After the reaction was completed, the reaction was diluted with hexane (10 mL) and H₂O₂ (30 wt%, 2 mL) at 0 °C. The product was extracted with EtOAc (5 mL×3), washed with brine (10 mL), and dried over anhydrous Na₂SO₄. The crude product was purified by column chromatography to give desired tertiary alcohol.

methyl 4-(5-hydroxy-5-methylheptyl)benzoate

¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, J = 8.2 Hz, 2H), 7.22 (d, J = 8.2 Hz, 2H), 3.87 (s, 3H), 2.70 – 2.59 (m, 2H), 1.79 (s, 1H), 1.62 (dt, J = 15.0, 7.5 Hz, 2H), 1.51 – 1.42 (m, 4H), 1.42 – 1.33 (m, 2H), 1.12 (s, 3H), 0.87 (t, J = 7.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.12, 148.23, 129.63, 128.36, 127.58, 72.59, 51.89, 41.05, 35.93, 34.19, 31.69, 26.27, 23.48, 8.21. HRMS (ESI): m/z: calculated for [M + Na]⁺ C₁₆H₂₄NaO₃: 287.16177, found 287.16144.

The azidation of tertiary aliphatic alcohols was prepared according to the reported procedure³. To a reaction tube containing the alcohol (2.1 g, 8.0 mmol) in nitromethane (4 mL) was added TMSN₃ (2.8 g, 24 mmol, 3.0 equiv), followed by $B(C_6H_5)_3$ (0.2 g, 0.4 mmol, 5.0 mol %). The mixture was stirred for 1 h at room temperature. After the reaction was completed, the volatiles of the reaction mixture were removed *in vacuo*. The crude product was purified by column chromatography (eluent: PE : EA = 50 : 1) to give the azide (1.4 g, 6.3 mmol).

methyl 4-(5-azido-5-methylheptyl)benzoate

¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, *J* = 8.2 Hz, 2H), 7.24 (d, *J* = 8.2 Hz, 2H), 3.90 (s, 3H), 2.74 – 2.61 (m, 2H), 1.68 – 1.59 (m, 2H), 1.57 – 1.47 (m, 4H), 1.42 – 1.33 (m, 2H), 1.20 (s, 3H), 0.90 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.18, 147.95, 129.71, 128.41, 127.79, 64.45, 51.99, 38.71, 35.87, 31.99, 31.41, 23.53, 22.80, 8.36. HRMS (ESI): m/z: calculated for [M + H]⁺ C₁₆H₂₄N₃O₂: 290.18630, found 290.18660.

A mixture of alkyl azide (1.4 g, 6.3 mmol) and 10% Pd/C (100 mg) in MeOH (10 mL) was stirred under 1.0 atm of H₂ at room temperature for 3 h. Then, the solution was filtered and the filtrate was concentrated under reduced pressure. The crude product was purified by column chromatography (eluent: CH_2Cl_2 : MeOH = 50 : 1) to give Compound **3g** (780 mg, 3.0 mmol).

methyl 4-(5-amino-5-methylheptyl)benzoate (3g)

Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, *J* = 8.2 Hz, 2H), 7.24 (d, *J* = 8.1 Hz, 2H), 3.90 (s, 3H), 2.67 (t, *J* = 7.7 Hz, 2H), 1.67-1.58 (m, 2H), 1.39-1.29 (m, 6H), 1.24 (br, 2H), 1.00 (s, 3H), 0.85 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.1, 148.2, 129.6, 128.3, 127.6, 51.9, 51.3, 42.0, 35.9, 35.0, 31.8, 27.4, 23.5, 8.2. HRMS (ESI): m/z: calculated for C₁₆H₂₆NO₂ [M + H]⁺ 264.1958, found 264.1962.

3.3 Procedure for the Synthesis of Compound 5a

2-amino-2-methylbutanoic acid (1.8 g, 15 mmol) was suspended in EtOH (30 mL) at 0 °C. SOCl₂ (2.1 g, 18.0 mmol, 1.2 equiv) was added into the mixture dropwisely. Then the reaction was heated to reflux for 24 h. The mixture was cooled down to room temperature and concentrated *in vacuo* to afford the titled hydrochloride salt. The salt was stirred at saturated K₂CO₃ (aq) (20 mL) at room temperature for 1 h. The aqueous phase was extracted with Et₂O (3×20 mL). The organic phase was dried over Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by column chromatography (eluent: CH₂Cl₂: MeOH = 50 : 1 to 20 : 1) to get compound **5a** (785.2 mg, 5.4 mmol).

ethyl 2-amino-2-methylbutanoate (5a)

Light yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 4.17 (q, J = 6.9 Hz, 2H), 1.80-1.71 (m, 1H), 1.63-1.56 (m, 3H), 1.31 (s, 3H), 1.28 (t, J = 7.1 Hz, 3H), 0.87 (t, J = 7.5 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 177.6, 60.8, 57.9, 33.8, 25.9, 14.2, 8.4. HRMS (EI): m/z: calculated for $C_7H_{16}NO_2$ [M + H]⁺ 146.1181, found 146.1177.

3.4 Procedure for the Synthesis of Compound 5b

Step 1: Following a previously reported method of C—H azidation,⁴ a 100 mL Schlenk tube was charged with 4-methylbenzenesulfonyl azide (3.5 g, 18.0 mmol, 1.5 equiv), NaHCO₃ (756.0 mg, 9.0 mmol, 1.0 equiv) and K₂S₂O₈ (9.7 g, 36.0 mmol, 3.0 equiv). The Schlenk tube was evacuated and filled with N₂ thrice, followed by addition of 57 mL of solvent (MeCN/H₂O = 3 : 2) and 3-methylpentanoic acid (1.4 g, 12.0 mmol, 1.0 equiv). The system was stirred for 4 h at 85 °C. After cooling to room temperature, the reaction mixture was evaporated the MeCN under reduced pressure, and then diluted with EtOAc (50 mL) and H₂O (50 mL), then extracted with EtOAc (3×50 mL). The combined organic layer was dried over Na₂SO₄. The filtrate was concentrated *in vacuo* and the residue was used for next step without purification (The reaction was run for two times, and then treatment together).

3-azido-3-methylpentanoic acid

¹H NMR (400 MHz, CDCl₃) δ 11.39 (s, 1H), 2.54 (d, *J* = 1.6 Hz, 2H), 1.72 (q, *J* = 7.4 Hz, 2H), 1.42 (s, 3H), 0.98 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 176.67, 62.23, 43.22, 32.45, 22.96, 8.32. IR (cm⁻¹): 2109, 1710, 1255. GC-MS (EI): m/z: (115.1, [M-N₃]⁺, 100%), (128.1, [M-Et]⁺, 32%).

Step 2: Thionyl chloride (2 mL) was added to an ice-cooled stirred solution of 3-azido-3-methylpentanoic acid mixture in MeOH (80 mL) over a period of 10 min. The mixture was allowed to warm to reflux and was stirred for 12 h. The solvent was removed and the residual brown oil was distilled under reduced pressure to get the desired product as colorless liquid (613.0 mg, 3.6 mmol, b.p. 65 $^{\circ}$ C, 4 mmHg).

methyl 3-azido-3-methylpentanoate

¹H NMR (400 MHz, CDCl₃) δ 3.67 (s, 3H), 2.47 (d, *J* = 2.4 Hz, 2H), 1.65 (q, *J* = 7.4 Hz, 2H), 1.35 (s, 3H), 0.93 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.46, 62.36, 51.67, 43.21, 32.45, 22.91, 8.25. IR (cm⁻¹): 2107, 1740, 1262, 1213. GC-MS (EI): m/z: (129.2, [M-N₃]⁺, 100%), (142.1, [M-Et]⁺, 19%).

Step 3: To a solution of 5% Pd/C (100 mg) in MeOH (30 mL) was added the solution of methyl 3-azido-3-methylpentanoate (613 mg, 3.6 mmol) in MeOH (10 mL) at room temperature under 1.0 atm of H₂. After being stirred for 12 h at 35 °C, the reaction mixture was filtered through a short pad of celite and the celite was washed for 20 mL of MeOH. The reaction mixture was concentrated under reduced pressure. The crude residue was purified by flash column chromatography (eluent: $CH_2Cl_2 : MeOH = 100 : 1 \text{ to } 20 : 1$) to get the desired product as colorless liquid (210.0 mg, 1.5 mmol).

methyl 3-amino-3-methylpentanoate (5b)

Light yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 3.85 (br, 2H), 3.70 (s, 3H), 2.53-2.49 (m, 2H), 1.58 (q, *J* = 7.5 Hz, 2H), 1.22 (s, 3H), 0.93 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 172.6, 51.6, 51.4, 45.6, 35.4, 27.0, 8.3. HRMS (ESI): m/z: calculated for C₇H₁₆NO₂ [M + H]⁺ 146.1176, found 146.1169.

3.5 Procedure for the Synthesis of Compound 5c and 5d

Step 1: To a solution of 3-methylhept-6-en-3-ol (3.9 g, 30.7 mmol) in 10 mL of dry THF under N₂ atmosphere, BH₃•THF complex (1.0 mol/L in THF, 37 mL, 1.2 equiv) was added slowly at 0 °C during 1 h. Then the mixture was warmed up to room temperature and stirred for another 3 h. The reaction was quenched with 5 M NaOH (aq) (36 mL) at 0 °C, and H₂O₂ (30 wt%, 30 mL) was added to the above solution. The mixture was stirred at room temperature for 4 h. Then the reaction was quenched with saturated Na₂SO₃ (aq). The aqueous phase was extracted by CH₂Cl₂ (4×50 mL). The organic phase was washed by saturated Na₂SO₃ (aq), H₂O₂ and brine, and then dried over anhydrous Na₂SO₄. The solution was concentrated under reduced pressure and the residue was purified by column chromatography (eluent: PE : EtOAc = 1 : 1) to afford 5-methylheptane-1,5-diol (3.4 g, 23.0 mmol).

5-methylheptane-1,5-diol

¹H NMR (400 MHz, CDCl₃) δ 3.67 (t, *J* = 6.2 Hz, 2H), 1.66 – 1.33 (m, 10H), 1.15 (s, 3H), 0.90 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 72.94, 62.74, 40.82, 34.31, 33.16, 26.36, 20.01, 8.26. HRMS (ESI): m/z: calculated for [M + Na]⁺ C₈H₁₈NaO₂: 169.11990, found 169.11995.

Step 2: 5-methylheptane-1,5-diol (3.4 g, 23.0 mmol) and TMSN₃ (3.2 g, 27.6 mmol, 1.2 equiv) were dissolved into 30 mL of benzene and the solution was cooled down to 0 °C.

 $BF_3 \cdot Et_2O$ (3.9 g, 27.6 mmol, 1.2 equiv) was added dropwisely to the above solution. The mixture was warmed up to room temperature and stirred for 24 h. The reaction was quenched with the addition of saturated NaHCO₃ (aq). The mixture was stirred vigorously for 15 min. The mixture was diluted by 100 mL of CH_2Cl_2 . The separated organic layer was washed by H_2O and brine, and then concentrated under reduced pressure. The residue was purified by column chromatography (eluent: PE : EtOAc = 10 : 1 to 5 : 1) to obtain the 5-azido-5-methylheptanol (2.0 g, 12 mmol). These two steps of reactions were conducted in multiple runs to accumulate enough amount of intermediate for substrate synthesis.

5-azido-5-methylheptan-1-ol

¹H NMR (400 MHz, CDCl₃) δ 3.67 (t, *J* = 6.4 Hz, 2H), 1.62 – 1.49 (m, 7H), 1.46 – 1.38 (m, 2H), 1.22 (s, 3H), 0.92 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 64.50, 62.75, 38.65, 32.97, 31.98, 22.79, 20.22, 8.38. HRMS (ESI): m/z: calculated for [M + H]⁺ C₈H₁₈NO₃: 172.14444, found 172.14450.

Step 3: To a solution of 5-azido-5-methylheptanol (1.0 g, 6.0 mmol), NEt₃ (910.7 mg, 9.0 mmol, 1.5 equiv) and 4-*N*,*N*-dimethylaminopyridine (146.6 mg, 1.2 mmol, 0.2 equiv) in 10 mL of CH₂Cl₂ at 0 °C, Acyl Chloride (7.2 mmol, 1.2 equiv) was added slowly. The mixture was warmed up to room temperature and stirred for 3 h. The reaction was diluted to 50 mL and quenched with H₂O. The organic layer was washed by H₂O and brine, dried over anhydrous Na₂SO₄. The solvent was removed and the resulting residue was purified by column chromatography (eluent: PE : EtOAc = 100 : 1) to obtain desired products.

5-azido-5-methylheptyl acetate

¹H NMR (400 MHz, CDCl₃) δ 4.08 (t, J = 6.6 Hz, 2H), 2.06 (s, 3H), 1.68 – 1.60 (m, 2H), 1.58 – 1.48 (m, 4H), 1.45 – 1.34 (m, 2H), 1.22 (s, 3H), 0.92 (t, J = 7.5 Hz, 3H). ¹³C NMR $(100 \text{ MHz}, \text{CDCl}_3) \delta 171.23, 64.36, 64.25, 38.50, 32.00, 28.88, 22.75, 21.03, 20.41, 8.36.$ HRMS (ESI): m/z: calculated for $[M + H]^+ C_{10}H_{20}N_3O_2$: 214.15500, found 214.15490.

5-azido-5-methylheptyl benzoate

¹H NMR (400 MHz, CDCl₃) δ 8.09 – 8.00 (m, 2H), 7.56 (t, J = 7.4 Hz, 1H), 7.44 (t, J = 7.6 Hz, 2H), 4.34 (t, J = 6.6 Hz, 2H), 1.82 – 1.75 (m, 2H), 1.62 – 1.44 (m, 6H), 1.23 (s, 3H), 0.92 (t, J = 7.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 166.63, 132.89, 130.40, 129.55, 128.37, 64.70, 64.34, 38.55, 32.02, 29.04, 22.75, 20.51, 8.35. HRMS (ESI): m/z: calculated for [M + H]⁺ C₁₅H₂₂N₃O₂: 276.17065, found 276.17061.

Step 4: To a solution of 10% Pd/C (77 mg) in MeOH (5 mL) was added the solution of 5-azido-5-methylheptyl benzoate (1.5 g, 5.6 mmol) in MeOH (5 mL) at room temperature under 1.0 atm of H₂. After being stirred for 12 h at the same temperature, the reaction mixture was filtered through a short pad of celite and the celite pad was washed for 20 mL of MeOH. The reaction mixture was concentrated under reduced pressure. The crude residue was purified by column chromatography (eluent: $CH_2Cl_2 : MeOH = 50 : 1 \text{ to } 20 : 1$) to get the desired product **5d** as light yellow oil (779.5 mg, 3.1 mmol).

By using Ac_2O to protect 5-azido-5-methylheptanol, Compound **5c** could be obtained though the same synthetic route.

5-amino-5-methylheptyl acetate (5c)

Light yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 4.08 (t, *J* = 6.7 Hz, 2H), 2.05 (s, 3H), 1.64-1.61 (m, 2H), 1.40-1.32 (m, 6H), 1.27 (br, 2H), 1.02 (s, 3H), 0.87 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.2, 64.4, 51.4, 41.8, 35.0, 29.2, 27.4, 21.0, 20.4, 8.2. HRMS (EI): m/z: calculated for C₁₀H₂₂NO₂ [M + H]⁺ 188.1650, found 188.1646.

5-amino-5-methylheptyl benzoate (5d)

Light yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 8.05-8.03 (m, 2H), 7.58-7.53 (m, 1H), 7.46-7.42 (m, 2H), 4.34 (t, *J* = 6.6 Hz, 2H), 1.89 (br, 2H), 1.82-1.75 (m, 2H), 1.50-1.35 (m, 6H), 1.06 (s, 3H), 0.88 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 166.6, 132.8, 130.4, 129.5, 128.3, 64.9, 51.8, 41.5, 34.7, 29.4, 27.2, 20.4, 8.2. HRMS (ESI): m/z: calculated for C₁₅H₂₄NO₂ [M + H]⁺ 250.1802, found 250.1803.

3.6 Procedure for the Synthesis of Compound 5e

Step 1: To a stirring solution of 5-azido-5-methylheptanol (864.9 mg, 5.0 mol) in THF (5 mL) was added tetrabutylammonium iodide (184.7 mg, 0.5 mmol, 0.1 equiv) followed by methyl iodide (1.1g, 7.5 mmol, 1.5 equiv) and the reaction was cooled to 0° . Sodium hydride (60% in mineral oil, 300.0 mg, 7.5 mmol, 1.5 equiv) was added in small portions and the reaction was stirred overnight with warming up to room temperature. The reaction was quenched with H₂O, filtered through a short celite pad, and washed with Et₂O. The organic solvent was removed under reduced pressure to give an oily residue, which purified column chromatography afford was by to 5-azido-1-methoxy-5-methylheptane (862.4 mg, 4.7 mmol).

5-azido-1-methoxy-5-methylheptane

¹H NMR (400 MHz, CDCl₃) δ 3.39 (t, *J* = 6.4 Hz, 2H), 3.34 (s, 3H), 1.61 – 1.48 (m, 6H), 1.44 – 1.34 (m, 2H), 1.22 (s, 3H), 0.91 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 72.61, 64.52, 58.65, 38.72, 31.94, 29.97, 22.80, 20.67, 8.36. IR (cm⁻¹): 2092. GC-MS (EI): $m/z: (128.2, [M-N_3-Me]^+, 39\%), (143.2, [M-N_3]^+, 100\%).$

Step 2: The hydrogenation was carried out *via* the procedure described above to give the Compound **5e** (330.3 mg, 2.1 mmol).

7-methoxy-3-methylheptan-3-amine (5e)

Light yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 3.39 (t, *J* = 7.5 Hz, 2H), 3.33 (s, 3H), 1.88 (br, 2H), 1.59-1.55 (m, 2H), 1.43-1.35 (m, 6H), 1.04 (s, 3H), 0.87 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 72.7, 58.5, 51.8, 41.7, 34.6, 30.2, 27.2, 20.6, 8.2. HRMS (ESI): m/z: calculated for C₉H₂₂NO [M + H]⁺ 160.1701, found 160.1697.

3.7 Procedure for the Synthesis of Compound 5f

Step 1: To a stirring solution of 5-azido-5-methylheptanol (1.7 g, 10.0 mmol) and NEt₃ (1.5 g, 15.0 mmol, 1.5 equiv) in 10 mL of CH_2Cl_2 , MsCl (1.4 g, 12.0 mmol, 1.2 equiv) was added dropwisely. The mixture was warmed up to room temperature and stirred for 2 h. The reaction was diluted by CH_2Cl_2 to 30 mL and quenched with saturated NaHCO₃ (aq). The organic layer was washed by H_2O , brine and dried over anhydrous Na₂SO₄. The crude product was obtained by removing the solvent under reduced pressure, which was used for the next step without further purification.

5-azido-5-methylheptyl methanesulfonate

¹H NMR (400 MHz, CDCl₃) δ 4.24 (t, *J* = 6.4 Hz, 2H), 3.02 (s, 3H), 1.81 – 1.72 (m, 2H), 1.60 – 1.44 (m, 6H), 1.23 (s, 3H), 0.93 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 69.72, 64.24, 38.26, 37.34, 31.98, 29.37, 22.67, 19.96, 8.33. HRMS (ESI): m/z: calculated for [M + H]⁺ C₉H₂₀N₃O₃S: 250.12199, found 250.12160.

Step 2: The fluorination reaction followed a previous reported literature. The crude product of 5-azido-5-methylheptyl methylsulfonate was dissolved into 10 mL of THF and TBAF•3H₂O (6.3 g, 20.0 mmol, 2.0 equiv) was added to this solution. The reaction was stirred at reflux temperature for 1 h and then cooled down to room temperature. The mixture was extracted by Et_2O (3×20 mL). The organic phase was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography (eluent: pentane : $Et_2O = 100 : 1$) to give the volatile compound 5-azido-1-fluoro-5-methylheptane (1.6 g, containing small amount of impurity).

5-azido-1-fluoro-5-methylheptane

¹H NMR (400 MHz, CDCl₃) δ 4.52 (t, *J* = 6.0 Hz, 1H), 4.40 (t, *J* = 6.0 Hz, 1H), 1.82 – 1.62 (m, 2H), 1.61 – 1.38 (m, 6H), 1.23 (s, 3H), 0.92 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 83.88 (d, *J* = 164.6 Hz), 64.37, 38.49, 31.96, 30.68 (d, *J* = 19.6 Hz), 22.75, 19.79, 8.35. IR (cm⁻¹): 2093. GC-MS (EI): m/z: (116.1, [M-N₃-Me]⁺, 60%), (131.2, [M-N₃]⁺, 100%).

Step 3: The reduction of 5-azido-1-fluoro-5-methylheptane with LiAlH₄ *via* the procedure described above could finally afford the Compound **5f** (371.0 mg, 2.5 mmol).

NH₂

7-fluoro-3-methylheptan-3-amine (5f)

Light yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 4.52 (t, *J* = 6.1 Hz, 1H), 4.40 (t, *J* = 6.1 Hz, 1H), 1.69 (ddd, *J* = 25.4, 13.9, 6.2 Hz, 2H), 1.43-1.33 (m, 6H), 1.19 (br, 2H), 1.03 (s, 3H), 0.87 (t, *J* = 7.5 Hz, 3H). ¹⁹F NMR (377 MHz, CDCl₃) δ -218.24. ¹³C NMR (100 MHz, CDCl₃) δ 84.04 (d, *J* = 163.2 Hz), 51.4, 41.7, 35.0, 31.0 (d, *J* = 19.4 Hz), 27.4, 19.7 (d, *J* = 5.4 Hz), 8.2. HRMS(EI): m/z: calculated for C₈H₁₈FN 147.1423, found C₈H₁₇FN 146.1341.

3.8 Procedure for the Synthesis of Compound 5g and 5h

Step 1: 5-azido-5-methylheptyl methanesulfonate (623.3 mg, 2.5 mmol) was dissolved in 5 mL of DMF. Potassium phthalimide (463.1 mg, 2.5 mmol, 1.0 equiv) and potassium iodide (41.5 mg, 0.25 mmol, 0.1 equiv) were added in this solution. The mixture was heated at 80 °C for 6 h and then cooled down to room temperature. Then 20 mL of H₂O and 20 mL of CH₂Cl₂ were added to the mixture. The two phases were separated and the aqueous phase was extracted with CH₂Cl₂ (3×15 mL). The combined organic layer was washed with H₂O and brine then dried over anhydrous Na₂SO₄. The solution was concentrated under reduced pressure and the residue was purified by column chromatography (eluent: PE : EtOAc = 10 : 1) to afford the product (521.1 mg, 1.7 mmol).

PhthN

2-(5-azido-5-methylheptyl)isoindoline-1,3-dione

¹H NMR (400 MHz, CDCl₃) δ 7.85 (dd, J = 5.4, 3.0 Hz, 2H), 7.72 (dd, J = 5.4, 3.0 Hz,

2H), 3.70 (t, J = 7.3 Hz, 2H), 1.74 – 1.63 (m, 2H), 1.57 – 1.47 (m, 4H), 1.44 – 1.34 (m, 2H), 1.21 (s, 3H), 0.91 (t, J = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.42, 133.92, 132.15, 123.23, 64.32, 38.47, 37.79, 31.98, 28.90, 22.70, 21.24, 8.35. HRMS (ESI): m/z: calculated for [M + H]⁺ C₁₆H₂₁N₄O₂: 301.16590, found 301.16601.

Step 2: The hydrogenation was carried out *via* the procedure described above to give the Compound **5g** (443.8 mg, 1.6 mmol).

N-2-(5-amino-5-methylheptyl)phthalimide (5g)

Light yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.84 (dd, J = 4.5, 3.4 Hz, 2H), 7.71 (dd, J = 4.6, 3.1 Hz, 2H), 3.70 (t, J = 7.3 Hz, 2H), 1.71-1.64 (m, 2H), 1.54 (br, 2H), 1.40-1.32 (m, 6H), 1.02 (s, 3H), 0.86 (t, J = 7.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.4, 133.8, 132.1, 123.1, 51.6, 41.6, 37.9, 34.9, 29.2, 27.2, 21.2, 8.2. HRMS (ESI): m/z: calculated for C₁₆H₂₃N₂O₂ [M + H]⁺ 275.1754, found 275.1758.

By using saccharin sodium dehydrate as the nucleophilic reagent, Compound **5h** could be obtained though the same synthetic route.

2-(5-azido-5-methylheptyl)benzo[d]isothiazol-3(2H)-one 1,1-dioxide

¹H NMR (400 MHz, CDCl₃) δ 8.10 – 8.02 (m, 1H), 7.96 – 7.90 (m, 1H), 7.90 – 7.80 (m, 2H), 3.79 (t, *J* = 7.5 Hz, 2H), 1.92 – 1.82 (m, 2H), 1.59 – 1.51 (m, 4H), 1.51 – 1.42 (m, 2H), 1.22 (s, 3H), 0.92 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 158.96, 137.69, 134.74, 134.33, 127.41, 125.17, 120.93, 64.29, 39.20, 38.35, 31.98, 28.70, 22.69, 21.23, 8.35. HRMS (ESI): m/z: calculated for [M + H]⁺ C₁₅H₂₁N₄O₃S: 337.13289, found 337.13386.

N-2-(5-amino-5-methylheptyl)saccharin (5h)

Light yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 8.06 (d, *J* = 7.1 Hz, 1H), 7.92 (d, *J* = 6.9 Hz, 1H), 7.89 – 7.79 (m, 2H), 3.79 (t, *J* = 7.5 Hz, 2H), 3.19 (br, 2H), 1.90-1.83 (m, 2H), 1.49-1.44 (m, 6H), 1.11 (s, 3H), 0.90 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 158.9, 137.6, 134.6, 134.2, 127.4, 125.1, 120.8, 52.8, 40.5, 39.2, 34.0, 28.9, 26.4, 21.1, 8.1. HRMS (ESI): m/z: calculated for C₁₅H₂₃N₂O₃S [M + H]⁺ 311.1424, found 311.1425.

4. Pd-Catalyzed C(sp³)-H Acetoxylation of Primary Amines

Three batches of $C(sp^3)$ —H Acetoxylation reaction were conducted parallel in 0.1 mmol scale. For each reaction, primary amine (0.1 mmol, 1.0 equiv) and Pd(OAc)₂ (1.1 mg, 0.005 mmol, 5.0 mol%) were added into 25 mL reaction tube. AcOH (2 mL) was injected. Then, PhI(OAc)₂ (32.2 mg, 0.1 mmol, 1.0 equiv) was added into the above solution. The mixture was heated at 120 °C under air atmosphere for 3 h. And another batch of Pd(OAc)₂ (1.1 mg, 0.005 mmol, 5.0 mol%) and PhI(OAc)₂ (32.2 mg, 0.1 mmol, 1.0 equiv) dissolved in 1 mL AcOH was injected into the above mixture. The reaction was stirred at 120 °C for another 3 h. After cooled down to room temperature, the reaction mixture was collected together and filtered through a short celite pad, which was washed by 5 mL CH₂Cl₂ (3×3 mL). NEt₃ (3×0.1 mL) and Ac₂O (61.2 mg, 0.6 mmol, 3×2.0 equiv) were added sequentially. The mixture was stirred at room temperature for 3 h and then concentrated. The crude product was purified by column chromatography to obtain the corresponding product.

3-acetamido-3-methyloctyl acetate (2a)

Light yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 5.41 (s, 1H), 4.11 (t, *J* = 6.9 Hz, 2H), 2.20 (dt, *J* = 14.0, 7.0 Hz, 1H), 2.04 (s, 3H), 1.99 (dd, *J* = 14.2, 7.0 Hz, 1H), 1.93 (s, 3H), 1.82-1.76 (m, 1H), 1.61-1.55 (m, 1H), 1.32-1.23 (m, 9H), 0.88 (t, *J* = 6.9 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.1, 169.5, 61.2, 55.3, 38.9, 36.1, 32.0, 24.5, 24.3, 23.2, 22.6, 21.0, 13.9. HRMS (ESI): m/z: calculated for C₁₃H₂₆NO₃ [M + H]⁺ 244.1907, found 244.1909.

3-acetamido-3-ethyloctyl acetate (2b)

Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 5.13 (s, 1H), 4.09 (t, J = 7.1 Hz, 2H), 2.12 (dt, J = 14.1, 7.2 Hz, 2H), 2.04 (s, 3H), 1.94 (s, 3H), 1.81 (dt, J = 14.8, 7.4 Hz, 1H), 1.75-1.67 (m, 1H), 1.64-1.49 (m, 2H), 1.34-1.28 (m, 3H), 1.26-1.20 (m, 3H), 0.89 (t, J = 7.0 Hz, 3H), 0.82 (t, J = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.2, 169.4, 61.0, 58.2, 34.8, 32.8, 32.0, 27.7, 24.4, 22.6, 22.6, 21.0, 14.0, 7.4. HRMS (ESI): m/z: calculated for C₁₄H₂₈NO₃ [M + H]⁺ 258.2064, found 258.2067.

3-acetamido-3-pentylpentane-1,5-diyl diacetate (2b')

Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 5.42 (s, 1H), 4.11 (t, *J* = 6.9 Hz, 4H), 2.25 (dt, *J* = 13.9, 6.8 Hz, 2H), 2.07-1.98 (m, 2H), 2.04 (s, 6H), 1.95 (s, 3H), 1.66-1.62 (m, 2H), 1.34-1.29 (m, 2H), 1.28-1.26 (m, 4H), 0.89 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.0, 169.6, 60.6, 57.1, 36.0, 33.5, 32.0, 24.3, 22.8, 22.6, 21.0, 14.0. HRMS (ESI): m/z: calculated for C₁₆H₃₀NO₅ [M + H]⁺ 316.2118, found 316.2120.

3-acetamido-3-propylhexyl acetate (2c)
Light yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 5.13 (s, 1H), 4.09 (t, J = 7.0 Hz, 2H), 2.12 (t, J = 7.1 Hz, 2H), 2.04 (s, 3H), 1.93 (s, 3H), 1.76-1.68 (m, 2H), 1.56-1.49 (m, 2H), 1.29-1.25 (m, 2H), 1.24-1.19 (m, 2H), 0.91 (t, J = 7.3 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 171.2, 169.3, 61.0, 58.0, 37.7, 33.2, 24.4, 21.0, 16.3, 14.3. HRMS (ESI): m/z: calculated for C₁₃H₂₆NO₃ [M + H]⁺ 244.1907, found 244.1907.

2-(1-acetamidocyclohexyl)ethyl acetate (2d)

Light yellow wax. ¹H NMR (400 MHz, CDCl₃): δ 5.19 (s, 1H), 4.11 (t, J = 7.0 Hz, 2H), 2.17 (t, J = 7.0 Hz, 2H), 2.09-2.04 (m, 2H), 2.03 (s, 3H), 1.97 (s, 3H), 1.55-1.52 (m, 3H), 1.44-1.39 (m, 4H), 1.31-1.26 (m, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 171.2, 169.6, 61.0, 54.9, 35.8, 35.0, 25.5, 24.4, 21.6, 21.0. HRMS (ESI): m/z: calculated for C₁₂H₂₂NO₃ [M + H]⁺ 228.1594, found 228.1598.

2-(1-acetamidocycloheptyl)ethyl acetate (2e)

Light yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 5.16 (s, 1H), 4.08 (t, J = 7.1 Hz, 2H), 2.20 (t, J = 7.1 Hz, 2H), 2.03 (s, 3H), 1.95 (s, 3H), 1.95-1.90 (m, 2H), 1.76-1.70 (m, 2H), 1.57-1.55 (m, 4H), 1.49-1.47 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 171.2, 169.6, 61.3, 58.7, 38.6, 36.0, 29.4, 24.5, 22.2, 21.1. HRMS (ESI): m/z: calculated for C₁₃H₂₄NO₃ [M + H]⁺ 242.1751, found 242.1751.

2-(1-acetamidocyclooctyl)ethyl acetate (2f)

This compound could not be isolated from unknown impurities. 1,3-benzodioxale (12.2 mg, 0.1 mmol) was added as the internal standard for NMR analysis. HRMS (ESI): m/z:

calculated for $C_{14}H_{26}NO_3 [M + H]^+ 256.1907$, found 256.1908.

3-acetamido-3-methyl-7-phenylheptyl acetate (4a)

Light yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.29-7.25 (m, 2H), 7.19-7.15 (m, 3H), 5.34 (s, 1H), 4.11 (td, *J* = 7.0, 1.7 Hz, 2H), 2.61 (t, *J* = 7.6 Hz, 2H), 2.21 (dt, *J* = 14.0, 6.9 Hz, 1H), 2.03 (s, 3H), 1.97 (dd, *J* = 14.2, 7.1 Hz, 1H), 1.91 (s, 3H), 1.88-1.82 (m, 1H), 1.66-1.58 (m, 3H), 1.34-1.27 (m, 2H), 1.26 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.1, 169.5, 142.3, 128.3, 128.2, 125.6, 61.1, 55.2, 38.6, 36.2, 35.7, 31.5, 24.5, 24.3, 23.1, 21.0. HRMS (ESI): m/z: calculated for C₁₈H₂₈NO₃ [M + H]⁺ 306.2064, found 306.2061.

3-acetamido-3-methyl-7-p-tolylheptyl acetate (4b)

Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.07 (q, *J* = 8.1 Hz, 4H), 5.27 (s, 1H), 4.11 (t, *J* = 7.0 Hz, 2H), 2.57 (t, *J* = 7.8 Hz, 2H), 2.31 (s, 3H), 2.21 (dt, *J* = 14.1, 6.9 Hz, 1H), 2.03 (s, 3H), 1.97 (dt, *J* = 14.2, 7.0 Hz, 1H), 1.92 (s, 3H), 1.88-1.81 (m, 1H), 1.65-1.56 (m, 3H), 1.36-1.28 (m, 2H), 1.26 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.1, 169.5, 139.3, 135.1, 128.9, 128.2, 61.2, 55.3, 38.7, 36.2, 35.3, 31.7, 24.6, 24.4, 23.1, 21.0 (2C). HRMS (ESI): m/z: calculated for C₁₉H₃₀NO₃ [M + H]⁺ 320.2220, found 320.2222.

3-acetamido-7-(4-fluorophenyl)-3-methylheptyl acetate (4c)

Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.11 (dd, *J* = 8.5, 5.6 Hz, 2H), 6.59 (t, *J* = 8.7 Hz, 2H), 5.40 (s, 1H), 4.11 (td, *J* = 7.0, 2.5 Hz, 2H), 2.58 (t, *J* = 7.8 Hz, 2H), 2.22 (dt, *J* = 14.0, 6.9 Hz, 1H), 2.03 (s, 3H), 1.95 (dd, *J* = 14.3, 7.2 Hz, 1H), 1.92 (s, 3H), 1.88-1.84

(m, 1H), 1.66-1.55 (m, 3H), 1.33-1.27 (m, 2H), 1.25 (s, 3H). ¹⁹F NMR (377 MHz, CDCl₃) δ -117.99. ¹³C NMR (100 MHz, CDCl₃) δ 171.1, 169.5, 161.1 (d, *J* = 241.5 Hz), 137.9 (d, *J* = 3.2 Hz), 129.6 (d, *J* = 7.7 Hz), 114.9 (d, *J* = 20.9 Hz), 61.1, 55.2, 38.5, 36.2, 34.8, 31.6, 24.5, 24.3, 23.0, 21.0. HRMS (ESI): m/z: calculated for C₁₈H₂₇FNO₃ [M + H]⁺ 324.1969, found 324.1967.

3-acetamido-3-methyl-7-(4-(trifluoromethyl)phenyl)heptyl acetate (4d)

Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.52 (d, *J* = 7.8 Hz, 2H), 7.27 (d, *J* = 7.8 Hz, 2H), 5.36 (s, 1H), 4.11 (td, *J* = 6.9, 2.5 Hz, 2H), 2.67 (t, *J* = 7.7 Hz, 2H), 2.23 (dt, *J* = 14.0, 6.9 Hz, 1H), 2.03 (s, 3H), 1.97-1.87 (m, 2H), 1.92 (s, 3H), 1.68-1.59 (m, 3H), 1.35-1.29 (m, 2H), 1.25 (s, 3H). ¹⁹F NMR (377 MHz, CDCl₃) δ -62.26. ¹³C NMR (100 MHz, CDCl₃) δ 171.1, 169.6, 146.5, 128.6, 128.0 (q, *J* = 32.0 Hz), 125.1 (q, *J* = 3.7 Hz), 124.3 (q, *J* = 270.0 Hz), 61.1, 55.2, 38.4, 36.3, 35.5, 31.2, 24.5, 24.3, 23.0, 21.0. HRMS (ESI): m/z: calculated for C₁₉H₂₇F₃NO₃ [M + H]⁺ 374.1938, found 374.1934.

3-acetamido-7-(4-chlorophenyl)-3-methylheptyl acetate (4e)

Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.23 (d, *J* = 8.3 Hz, 2H), 7.09 (d, *J* = 8.3 Hz, 2H), 5.35 (s, 1H), 4.11 (td, *J* = 6.9, 2.2 Hz, 2H), 2.58 (t, *J* = 7.8 Hz, 2H), 2.25-2.17 (m, 1H), 2.03 (s, 3H), 1.97-1.94 (m, 1H), 1.92 (s, 3H), 1.90-1.84 (m, 1H), 1.66-1.55 (m, 3H), 1.31-1.28 (m, 2H), 1.25 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.1, 169.5, 140.8, 131.3, 129.6, 128.3, 61.1, 55.2, 38.5, 36.2, 35.0, 31.4, 24.5, 24.3, 23.0, 21.0. HRMS (ESI): m/z: calculated for C₁₈H₂₇ClNO₃ [M + H]⁺ 340.1674, found 340.1677.

3-acetamido-7-(4-methoxyphenyl)-3-methylheptyl acetate (4f)

Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.08 (d, *J* = 8.4 Hz, 2H), 6.82 (d, *J* = 8.4 Hz, 2H), 5.34 (s, 1H), 4.11 (t, *J* = 6.3 Hz, 2H), 3.78 (s, 3H), 2.55 (t, *J* = 7.7Hz, 2H), 2.21 (dt, *J* = 14.0, 6.8 Hz, 1H), 2.03 (s, 3H), 1.97 (dd, *J* = 14.3, 7.2 Hz, 1H), 1.92 (s, 3H), 1.89-1.81 (m, 1H), 1.65-1.54 (m, 3H), 1.32-1.29 (m, 2H), 1.26 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.1, 169.5, 157.6, 134.4, 129.2, 113.6, 61.1, 55.2 (2C), 38.6, 36.2, 34.8, 31.8, 24.5, 24.3, 23.0, 21.0. HRMS (ESI): m/z: calculated for C₁₉H₃₀NO₄ [M + H]⁺ 336.2169, found 336.2165.

methyl 4-(5-acetamido-7-acetoxy-5-methylheptyl)benzoate (4g)

Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.94 (d, *J* = 8.2 Hz, 2H), 7.23 (d, *J* = 8.2 Hz, 2H), 5.41 (s, 1H), 4.11 (td, *J* = 7.0, 2.5 Hz, 2H), 3.90 (s, 3H), 2.66 (t, *J* = 7.6 Hz, 2H), 2.23 (dt, *J* = 13.9, 6.8 Hz, 1H), 2.03 (s, 3H), 1.97-1.86 (m, 2H), 1.92 (s, 3H), 1.67-1.60 (m, 3H), 1.34-1.26 (m, 2H), 1.25 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.1, 169.5, 167.1, 147.9, 129.6, 128.3, 127.6, 61.1, 55.2, 51.9, 38.5, 36.2, 35.7, 31.1, 24.5, 24.3, 23.0, 21.0. HRMS (ESI): m/z: calculated for C₂₀H₃₀NO₅ [M + H]⁺ 364.2118, found 364.2121.

3-acetamido-7-(biphenyl-4-yl)-3-methylheptyl acetate (4h)

Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.58 (d, *J* = 7.3 Hz, 2H), 7.51 (d, *J* = 8.1 Hz, 2H), 7.42 (t, *J* = 7.6 Hz, 2H), 7.32 (t, *J* = 7.3 Hz, 1H), 7.24 (d, *J* = 8.1 Hz, 2H), 5.27 (s, 1H), 4.12 (td, *J* = 7.0, 1.3 Hz, 2H), 2.66 (t, *J* = 7.8 Hz, 2H), 2.22 (dt, *J* = 13.9, 6.9 Hz, 1H), 2.03 (s, 3H), 1.97 (dt, *J* = 14.3, 7.1 Hz, 1H), 1.92 (s, 3H), 1.87-1.85 (m, 1H),

1.70-1.61 (m, 3H), 1.35-1.29 (m, 2H), 1.27 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.1, 169.5, 141.5, 141.1, 138.6, 128.8, 128.7, 127.0, 127.0, 126.9, 61.2, 55.3, 38.7, 36.3, 35.4, 31.5, 24.6, 24.4, 23.2, 21.0. HRMS (ESI): m/z: calculated for C₂₄H₃₂NO₃ [M + H]⁺ 382.2377, found 382.2372.

3-acetamido-3-methyl-7-(naphthalen-1-yl)heptyl acetate (4i)

Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 8.01 (d, *J* = 8.2 Hz, 1H), 7.84 (d, *J* = 7.5 Hz, 1H), 7.70 (d, *J* = 8.1 Hz, 1H), 7.52-7.44 (m, 2H), 7.38 (t, *J* = 7.6 Hz, 1H), 7.30-7.29 (m, 1H), 5.41 (s, 1H), 4.11 (t, *J* = 6.9 Hz, 2H), 3.06 (t, *J* = 7.8 Hz, 2H), 2.23 (dt, *J* = 14.0, 6.9 Hz, 1H), 2.01 (s, 3H), 1.99-1.85 (m, 2H), 1.91 (s, 3H), 1.78-1.61 (m, 3H), 1.43-1.34 (m, 2H), 1.26 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.1, 169.6, 138.4, 133.8, 131.7, 128.7, 126.4, 125.8, 125.6, 125.4, 125.3, 123.7, 61.1, 55.2, 38.7, 36.1, 32.9, 30.8, 24.5, 24.3, 23.6, 21.0. HRMS (ESI): m/z: calculated for C₂₂H₃₀NO₃ [M + H]⁺ 356.2220, found 356.2215.

3-acetamido-3-methyl-6-phenylhexyl acetate (4j)

Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.30-7.26 (m, 2H), 7.20-7.16 (m, 3H), 5.32 (s, 1H), 4.09 (t, *J* = 6.9 Hz, 2H), 2.60 (t, *J* = 6.8 Hz, 2H), 2.21 (dt, *J* = 14.0, 6.9 Hz, 1H), 2.02 (s, 3H), 1.97 (dd, *J* = 14.2, 7.1 Hz, 1H), 1.91 (s, 3H), 1.89-1.85 (m, 1H), 1.70-1.55 (m, 3H), 1.26 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.1, 169.5, 142.2, 128.3, 128.3, 125.8, 61.1, 55.2, 38.6, 36.2, 36.0, 25.7, 24.5, 24.3, 21.0. HRMS (ESI): m/z: calculated for C₁₇H₂₆NO₃ [M + H]⁺ 292.1907, found 292.1911.

ethyl 2-acetamido-4-acetoxy-2-methylbutanoate (6a)

Light yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 6.50 (s, 1H), 4.31-4.15 (m, 2H), 4.05 (dd, J = 7.6, 4.8 Hz, 2H), 2.70 (dt, J = 14.6, 4.8 Hz, 1H), 2.29 (dt, J = 14.9, 7.6 Hz, 1H), 2.01 (s, 3H), 1.98 (s, 3H), 1.62 (s, 3H), 1.31 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 174.5, 170.6, 169.4, 61.9, 60.6, 58.5, 34.2, 24.0, 23.6, 20.7, 14.0. HRMS (ESI): m/z: calculated for C₁₁H₂₀NO₅ [M + H]⁺ 246.1336, found 246.1337.

methyl 3-acetamido-5-acetoxy-3-methylpentanoate (6b)

Light yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 6.05 (s, 1H), 4.14 (t, *J* = 6.7 Hz, 2H), 3.68 (s, 3H), 2.95 (d, *J* = 15.0 Hz, 1H), 2.63 (d, *J* = 15.0 Hz, 1H), 2.35-2.28 (m, 1H), 2.16-2.09 (m, 1H), 2.05 (s, 3H), 1.96 (s, 3H), 1.42 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.6, 171.0, 170.1, 60.7, 53.6, 51.6, 42.4, 36.6, 24.7, 24.3, 21.0. HRMS (ESI): m/z: calculated for C₁₁H₁₉NNaO₅ [M + Na]⁺ 268.1155, found 268.1150.

3-acetamido-3-methylheptane-1,7-diyl diacetate (6c)

Light yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 5.47 (s, 1H), 4.12 (t, J = 7.0, 1.8 Hz, 2H), 4.07 (t, J = 6.5 Hz, 2H), 2.23 (dt, J = 13.9, 6.8 Hz, 1H), 2.05 (s, 3H), 2.04 (s, 3H), 1.99-1.96 (m, 1H), 1.94 (s, 3H), 1.92-1.84 (m, 1H), 1.67-1.59 (m, 3H), 1.36-1.29 (m, 2H), 1.28 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.2, 171.1, 169.6, 64.2, 61.0, 55.1, 38.4, 36.2, 28.8, 24.4, 24.2, 21.0, 20.9, 20.0. HRMS (ESI): m/z: calculated for C₁₄H₂₆NO₅ [M + H]⁺ 288.1805, found 288.1806.

5-acetamido-7-acetoxy-5-methylheptyl benzoate (6d)

Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 8.04 (d, *J* = 7.4 Hz, 2H), 7.56 (t, *J* = 7.4 Hz, 1H), 7.45 (t, *J* = 7.7 Hz, 2H), 5.45 (s, 1H), 4.34 (td, *J* = 6.4, 2.1 Hz, 2H), 4.13 (td, *J* = 6.9,

1.5 Hz, 2H), 2.25 (dt, J = 14.0, 6.9 Hz, 1H), 2.04 (s, 3H), 2.00-1.90 (m, 2H), 1.93 (s, 3H), 1.81-1.74 (m, 2H), 1.72-1.64 (m, 1H), 1.46-1.35 (m, 2H), 1.28 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.1, 169.6, 166.6, 132.9, 130.3, 129.5, 128.3, 64.6, 61.1, 55.1, 38.4, 36.3, 28.9, 24.5, 24.3, 21.0, 20.0. HRMS (ESI): m/z: calculated for C₁₉H₂₈NO₅ [M + H]⁺ 350.1962, found 350.1958.

3-acetamido-7-methoxy-3-methylheptyl acetate (6e)

This compound could not be isolated from unknown impurities. 1,3-benzodioxale (12.2 mg, 0.1 mmol) was added as the internal standard for NMR analysis. HRMS (ESI): m/z: calculated for $C_{13}H_{26}NO_4 [M + H]^+$ 260.1856, found 260.1855.

3-acetamido-7-fluoro-3-methylheptyl acetate (6f)

Light yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 5.42 (s, 1H), 4.51 (t, J = 5.9 Hz, 1H), 4.39 (t, J = 5.9 Hz, 1H), 4.13 (td, J = 6.9, 2.4 Hz, 2H), 2.25 (dt, J = 13.9, 6.8 Hz, 1H), 2.04 (s, 3H), 1.98-1.87 (m, 2H), 1.94 (s, 3H), 1.75-1.62 (m, 3H), 1.44-1.33 (m, 2H), 1.28 (s, 3H). ¹⁹F NMR (377 MHz, CDCl₃) δ -218.75. ¹³C NMR (100 MHz, CDCl₃) δ 171.1, 169.6, 83.9 (d, J = 163.2 Hz), 61.0, 55.2, 38.2, 36.3, 30.5 (d, J = 19.6 Hz), 24.5, 24.3, 21.0, 19.4 (d, J = 5.0 Hz). HRMS (ESI): m/z: calculated for C₁₂H₂₃FNO₃ [M + H]⁺ 248.1656, found 248.1655.

PhthN OAc

3-acetamido-7-(1,3-dioxoisoindolin-2-yl)-3-methylheptyl acetate (6g)

Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.84 (dd, J = 5.4, 3.0 Hz, 2H), 7.73 (dd, J = 5.4, 3.0 Hz, 2H), 5.57 (s, 1H), 4.12 (t, J = 7.0 Hz, 2H), 3.70 (t, J = 6.8 Hz, 2H), 2.21 (dt, J = 13.9, 6.9 Hz, 1H), 2.06-2.01 (m, 1H), 2.04 (s, 3H), 1.95 (s, 3H), 1.88 (td, J = 13.1, 4.6 Hz, 1H), 1.73-1.57 (m, 3H), 1.38-1.32 (m, 2H), 1.29 (s, 3H). ¹³C NMR (100 MHz, CDCl₃)

δ 171.1, 169.7, 168.5, 133.9, 132.0, 123.2, 61.1, 55.0, 38.3, 37.3, 36.3, 28.6, 24.3, 24.2, 21.0, 20.5. HRMS (ESI): m/z: calculated for C₂₀H₂₇N₂O₅ [M + H]⁺ 375.1914, found 375.1908.

3-acetamido-7-saccharinyl-3-methylheptyl acetate (6h)

Light yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 8.07-8.05 (m, 1H), 7.94-7.83 (m, 3H), 5.49 (s, 1H), 4.12 (t, *J* = 6.9 Hz, 2H), 3.79 (t, *J* = 7.1 Hz, 2H), 2.23 (dt, *J* = 13.9, 6.9 Hz, 1H), 2.04 (s, 3H), 2.00 (dd, *J* = 14.2, 7.1 Hz, 1H), 1.94 (s, 3H), 1.91-1.78 (m, 3H), 1.68-1.60 (m, 1H), 1.46-1.35 (m, 2H), 1.29 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.1, 169.7, 159.1, 137.6, 134.8, 134.3, 127.3, 125.1, 120.9, 61.1, 55.1, 39.0, 38.2, 36.3, 28.4, 24.4, 24.3, 21.0, 20.6. HRMS (ESI): m/z: calculated for C₁₉H₂₇N₂O₆S [M + H]⁺ 411.1584, found 411.1576.

Inferior Results in the Substrate Investigation

Substrates which gave negative results were listed in the following figure.

Figure S1

We investigated the substrates with aryl group at α , β or γ position to the amino group. When the aromatic ring was close to the amino group, the substrates became easily decomposed. And the C(sp²)—H bond on the aromatic ring was susceptible to Pd catalysts and oxidants. For **S1**, no desired C(sp³)—H acetoxylation product was found and 24% of C(sp²)—H di-acetoxylation product was tested. For **S2**, 18% *N*-Ac protected starting material was recovered, and less than 10% of C(sp²)—H di-acetoxylation product was isolated. However, no desired C(sp³)—H acetoxylation product was found. For **S3**, 21% N-Ac protected starting material was recovered. Both C(sp³)—H and C(sp²)—H acetoxylation product were generated in a total yield of ca. 30%, which could be hardly separated from each other.

Control experiments

According to control experiments, the limited yield of C—H acetoxylation product was mainly attributed to the decomposition of both primary amines and desired products in this reaction system.

5. Transformations of the γ -Amino Alcohol Derivatives

NH_2 NHAc 3 N HCl/dioxane (1:1), 4.0 mL i-Pr2NEt (2.5 equiv) DCM.0 2a, 0.5 mmol 7

Procedure for the Synthesis of Compound 8

8, 74% for 2 steps

Compound 2a (121.7 mg, 0.5 mmol) was dissolved in 3 N HCl (aq) and 1,4-dioxane (1 : 1 mixture, 4 mL) and the solution was heated at 120 °C for 12 h. The reaction mixture was then cooled down to room temperature and basified with excess saturated K_2CO_3 (aq). The aqueous phase was extracted with CH₂Cl₂ (3×20 mL). The organic layer was combined and dried over anhydrous Na₂SO₄. The solvent was then removed to get the crude product of amino alcohol **7**, which was used without purification for the next step. Amino alcohol **7** and diisopropylethylamine (161.6 mg, 1.25 mmol, 2.5 equiv) were dissolved in 10 mL of CH₂Cl₂. The solution was cooled down to 0 °C in ice bath. The triphosgene (74.2 mg, 0.25 mmol, 0.5 equiv) was added slowly. The mixture was then warmed up to room temperature and stirred for 12 h. Then the reaction was diluted to 30 mL and quenched with H₂O. The organic layer was separated and washed with H₂O, 0.1 N HCl (aq) and brine. The solution was dried over anhydrous Na₂SO₄ and concentrated in vacuo. The residue was purified by column chromatography (eluent: PE: EtOAc = 3 : 2 to 1 : 1) to obtain the desired product **8** (68.3 mg, 74% for 2 steps) as light yellow oil.

4-methyl-4-pentyl-1,3-oxazinan-2-one (8)

Light yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 6.56 (s, 1H), 4.28 (dd, *J* = 6.6, 4.6 Hz, 2H), 1.87 (dt, *J* = 6.7, 5.8 Hz, 1H), 1.72 (dt, *J* = 14.0, 5.0 Hz, 1H), 1.59-1.45 (m, 2H), 1.34-1.29 (m, 6H), 1.26 (s, 3H), 0.89 (t, *J* = 6.7 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 154.6, 63.4, 53.0, 42.4, 32.3, 31.9, 27.4, 23.1, 22.4, 13.9. HRMS (ESI): m/z: calculated for C₁₀H₂₀NO₂ [M + H]⁺ 186.1489, found 186.1484.

Procedure for the Synthesis of Compound 9 and 10

According to a reported literature,⁵ Compound **2a** (121.7 mg, 0.5 mmol) was dissolved in EtOH/H₂O (4 : 1, 5 mL), K₂CO₃ (138.2 mg, 1.0 mmol, 2.0 equiv) was added into the above solution. The mixture was stirred at 35 °C for 24 h. The reaction mixture was diluted with H₂O and then extracted with CH₂Cl₂ (3×20 mL). The organic phase was dried over anhydrous Na₂SO₄ and concentrated *in vacuo*. The residue was purified by column chromatography (eluent: CH₂Cl₂: MeOH = 50 : 1) to get **9** (97.8 mg, 97%) as white wax.

The oxidation of *N*-Ac amino alcohol **9** to corresponding amino acid **10** was referred to literature procedure.⁶ To a solution of **9** (88.0 mg, 0.44 mmol) in MeCN (2 mL) / phosphate buffer (pH = 6.4) (2.4 mL) were added PhI(OAc)₂ (14.2 mg, 0.044 mmol, 0.1 equiv) and TEMPO (13.8 mg, 0.088 mmol, 0.2 equiv) at room temperature, then the mixture was cooled down to 0 °C. To the stirring mixture was added NaClO₂ (75 wt%, 159.2 mg, 1.32 mmol, 3.3 equiv) at the same temperature and the resulting solution was warmed up to room temperature. After stirring at same temperature for 12 h, the mixture was quenched with saturated aqueous NH₄Cl, and extracted with ethyl acetate (5×15 mL). The organic layer was washed with 1 N HCl (aq), brine and dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure. The residue was purified by column chromatography (eluent: CH₂Cl₂ : MeOH = 25 : 1) to afford **10** (90.8 mg, 96%) as white wax.

N-(1-hydroxy-3-methyloctan-3-yl)acetamide (9)

White wax. ¹H NMR (400 MHz, CDCl₃): δ 5.95 (s, 1H), 3.78 (d, *J* = 4.3 Hz, 2H), 2.26 (s, 1H), 2.01 (dt, *J* = 12.7, 6.3 Hz, 1H), 1.92 (s, 3H), 1.80-1.70 (m, 3H), 1.34 (s, 3H), 1.32-1.28 (m, 2H), 1.27-1.24 (m, 4H), 0.88 (t, *J* = 6.9 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.0, 59.2, 55.9, 41.0, 39.0, 32.1, 24.6, 24.5, 23.4, 22.6, 14.0. HRMS (ESI): m/z: calculated for C₁₁H₂₃NNaO₂ [M + Na]⁺ 224.1621, found 224.1615.

3-acetamido-3-methyloctanoic acid (10)

White wax. ¹H NMR (400 MHz, CDCl₃): δ 11.43 (br, 1H), 6.22 (s, 1H), 2.86 (d, *J* = 14.8 Hz, 1H), 2.62 (d, *J* = 14.8 Hz, 1H), 1.97 (s, 3H), 1.87-1.81 (m, 1H), 1.76-1.71 (m, 1H), 1.40 (s, 3H), 1.31-1.27 (m, 6H), 0.88 (t, *J* = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 175.4, 171.0, 54.8, 42.4, 38.8, 31.9, 24.4, 24.0, 23.2, 22.5, 13.9. HRMS (ESI): m/z: calculated for C₁₁H₂₂NO₃ [M + H]⁺ 216.1594, found 216.1591.

6. Mechanistic Studies

Pd-Catalyzed C(sp³)-H Acetoxylation of Acetamide 11

Acetamide **11** (18.5 mg, 0.1 mmol, 1.0 equiv) and $Pd(OAc)_2$ (2.2 mg, 0.01 mmol, 10 mol%) were added into 25 mL reaction tube. AcOH (3 mL) was injected. Then, PhI(OAc)_2 (48.3 mg, 0.15 mmol, 1.5 equiv) was added into the above solution. The mixture was heated at 120 °C under air atmosphere for 6 h. After cooled down to room temperature, the reaction mixture was filtered through a short celite pad, which was washed by 5 mL of CH₂Cl₂ for 3 times. The solvents were removed *in vacuo*. The residue was dissolved into 20 mL of CH₂Cl₂ and the organic phase was washed by saturated

NaHCO₃ (aq). The solution was dried over anhydrous Na₂SO₄. The solvent was then removed under reduced pressure. To the resulting residue, 1,3-benzodioxale (12.2 mg, 0.1 mmol) was added as the internal standard for NMR analysis. No $C(sp^3)$ —H acetoxylation product **2a** was detected. However, 94% (NMR yield) of starting material was recovered, which indicated that the amide group could not function as the directing group for this reaction.

N-(3-methyloctan-3-yl)acetamide (11)

¹H NMR (400 MHz, CDCl₃) δ 5.10 (s, 1H), 1.93 (s, 3H), 1.81-1.56 (m, 4H), 1.33 -1.22 (m, 9H), 0.88 (t, *J* = 6.9 Hz, 3H), 0.82 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 169.4, 56.5, 37.9, 32.2, 30.6, 24.4, 23.8, 23.3, 22.6, 14.0, 8.0. HRMS (ESI): m/z: calculated for C₁₁H₂₄NO [M + H]⁺ 186.1852, found 186.1848.

Procedure for the Synthesis of Compound 12

Step 1: Compound 2a (860.3 mg, 3.5 mmol) was dissolved in 3 N HCl (aq) and 1,4-dioxane (1 : 1 mixture, 20 mL) and the solution was heated at 120 °C for 12 h. The reaction mixture was then cooled down to room temperature and basified with excess saturated K_2CO_3 (aq). The aqueous phase was extracted with CH_2Cl_2 (5×20 mL). The organic layer was combined and dried over anhydrous Na₂SO₄. The solvent was then removed to get the crude product of amino alcohol, which was used without purification for the next step.

Step 2: To a solution of crude amino alcohol and NEt₃ (430.0 mg, 4.2 mmol, 1.2 equiv) in 10 mL of THF, Boc₂O (849.0 mg, 3.9 mmol, 1.1 equiv) was added dropwisely. The mixture was stirred at room temperature for 3 h. Then it was quenched with the addition of water. Then the solution was concentrated under reduced pressure to remove most of THF. The aqueous phase was extracted by CH_2Cl_2 (3×20 mL). The organic phase was dried over anhydrous Na₂SO₄ and concentrated to afford the crude product, which was used directly in the next step.

Step 3: To a solution of crude *N*-Boc-protected amino alcohol, NEt₃ (537.3 mg, 5.3 mmol, 1.5 equiv) and 4-*N*,*N*-dimethylaminopyridine (86.7 mg, 0.7 mmol, 0.2 equiv) in 10 mL of CH₂Cl₂ at 0 °C, Ac₂O (397.5 mg, 3.9 mmol, 1.1 equiv) was added dropwisely. Then the mixture was warmed up to room temperature and stirred for 3 h. The reaction was quenched with water and diluted with 50 mL of CH₂Cl₂. The organic phase was washed with H₂O and brine. Then the solution was dried over anhydrous Na₂SO₄ and concentrated to afford the crude product, which was used directly in the next step.

Step 4: The protected amino alcohol was dissolved in 4 mL of CH_2Cl_2 . The solution was cooled down to 0 °C and TFA (4 mL) was added dropwisely. The mixture was warmed up to room temperature and stirred for 3 h. Then the solvents were removed under reduced pressure. The residue was dissolved in 5 mL saturated K_2CO_3 (aq) and stirred for about 10 min. The solution was diluted by H_2O and extracted with CH_2Cl_2 (3×20 mL). The organic phase was dried over anhydrous Na_2SO_4 and concentrated. The residue was purified by column chromatography (eluent: CH_2Cl_2 : MeOH = 50 : 1 to 20 : 1) to afford the desire product **12** as yellow oil (268.9 mg, 1.3 mmol).

3-amino-3-methyloctyl acetate (12)

Yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 4.18 (t, *J* = 7.3 Hz, 2H), 2.05 (s, 3H), 1.70 (t, *J* = 7.3 Hz, 2H), 1.37-1.26 (m, 10H), 1.08 (s, 3H), 0.89 (t, *J* = 6.9 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.1, 61.6, 50.8, 43.4, 40.4, 32.4, 28.3, 23.6, 22.6, 21.1, 14.0. HRMS (ESI): m/z: calculated for C₁₁H₂₄NO₂ [M + H]⁺ 202.1802, found 202.1795.

Compound **12** (40.2 mg, 0.2 mmol) was dissolved into 3 mL of AcOH. The solution was stirred at 120 °C for 6 h. Then AcOH was removed *in vacuo* and the residue was dissolved in 20 mL CH₂Cl₂. The organic phase was washed by saturated NaHCO₃ (aq). The solution was dried over anhydrous Na₂SO₄. The solvent was then removed under reduced pressure. The residue was purified by column chromatography (eluent: CH₂Cl₂ : MeOH = 50 : 1) to get product **2a** (38.5 mg, 79%).

7. References

- 1. Dokli, I.; Gredičak, M. Eur. J. Org. Chem. 2015, 2015, 2727.
- 2. Koziara, A.; Zwierzak, A. Tetrahedron Lett. 1987, 28, 6513.
- 3. Francavilla, C.; Low, E.; Nair,S.; Kim,B.; Shiau, T. P.; Debabov, D.; Celeri, C.; Alvarez, N.; Houchin, A.; Xu, P.; Najafi, R.; Jain, R. *Bioorg. Med. Chem. Lett.* **2009**, *19*, 2731.
- 4. Zhang, X.-F.; Yang H.-D.; Tang, P.-P. Org. Lett. 2015, 17, 5828.
- 5. Niiro, H.; Azuma, H.; Tanago, S.; Matsumura, K.; Shikata, K.; Tachibana, T.; Ogino,
- K. Bioorg. Med. Chem. 2004, 12, 45.
- 6. Wakimoto, T.; Asakawa, T.; Akahoshi, S.; Suzuki, T.; Nagai, K.; Kawagishi, H.; Kan, T. Angew. Chem., Int. Ed. 2011, 50, 1168.

8. NMR Spectra

90 80 70 50 40 30 20 10 ò -10

60

-2.00E+07 -1.00E+07

-0.00E+00 -1.00E+07 L-2. 00E+07

S120

S121

S134

S140

S142

