Supporting Information

Supporting Online Material for

Silver-Mediated Fluorination of Alkyl Iodide with TMSCF₃ as the Fluorinating Agent

Liyan Wang, Xiaohuan Jiang and Pingping Tang*

*To whom correspondence should be addressed. E-mail: ptang@nankai.edu.cn

Table of Contents

Materials and Methods	S5
Experimental Data	
Experimental Procedures and Compound Characterization	S6
Effect of bases on the reaction	S6
Effect of silver salts on the reaction	S6
Effect of additives on the reaction	S7
Effect of solvents on the reaction	
Effect of Ag ₂ O amount on the reaction	S9
Effect of calcium salts amount on the reaction	S10
Effect of [bmim][NTf ₂] amount on the reaction	S11
Effect of TMSCF ₃ amount on the reaction	
Effect of concentration on the reaction	
Effect of concentration on the reaction	S13
Effect of CaF ₂ surface area	S14
5-Iodopentyl 4-fluorobenzoate (1a)	S15
1-((5-Iodopentyl)oxy)-4-(trifluoromethyl)benzene (1b)	S15
1-((5-Iodopentyl)oxy)-4-nitrobenzene (1c)	S16
4-(4-Iodobutoxy)benzonitrile (1d)	S17
1-(4-Iodobutoxy)-4-(trifluoromethoxy)benzene (1e)	S17
1-((5-Iodopentyl)oxy)-4-fluorobenzene (1f)	S18
1-((5-Iodopentyl)oxy)-4-chlorobenzene (1g)	S19
1-((5-Iodopentyl)oxy)-4-bromobenzene (1h)	S19
1-((5-Iodopentyl)oxy)-4-iodobenzene (1i)	
1-(4-((5-Iodopentyl)oxy)phenyl)ethanone (1j)	
((5-Iodopentyl)oxy)benzene (1k)	
4-((5-Iodopentyl)oxy)-1,1'-biphenyl (11)	
1-((5-Iodopentyl)oxy)-4-isopropylbenzene (1m)	
1-(<i>tert</i> -Butyl)-4-((5-iodopentyl)oxy)benzene (1n)	
1-((5-Iodopentyl)oxy)-4-methoxybenzene (10)	
5-Iodopentyl thiophene-3-carboxylate (1p)	
2-(4-Iodobutoxy)- 1-bromobenzene (1q)	S25
3-(4-Iodobutoxy)- 1-bromobenzene (1r)	S26
2,4-Dibromo-1-(4-iodobutoxy)benzene (1s)	

2-(4-Iodobutyl)isoindoline-1,3-dione (1t)	S27
<i>N</i> -(5-Iodopentyl)saccharine (1u)	S28
7-(4-Iodobutoxy)-4-methyl-2H-chromen-2-one (1v)	S28
5-Iodohexan-2-yl 4-fluorobenzoate (1x)	S29
5-Iodohexan-2-yl benzoate (1y)	S30
(S)-tert-Butyl-2-(1,3-dioxoisoindolin-2-yl)-3-(4-((5-iodopentyl)oxy)phenyl)p	oropanoate
(1z)	S31
3,12-Dimethoxy cholan-24-iodo (1aa)	S32
7-O-acetyl-13-O-(5-iodopentanoate)baccatine III (1bb)	S33
5-Fluoropentyl 4-fluorobenzoate (3a)	S35
1-((5-Fluoropentyl)oxy)-4-(trifluoromethyl)benzene (3b)	S35
1-((5-Fluoropentyl)oxy)-4-nitrobenzene (3c)	S36
4-(4-Fluorobutoxy)benzonitrile (3d)	S36
1-(4-Fluorobutoxy)-4-(trifluoromethoxy)benzene (3e)	S37
1-((5-Fluoropentyl)oxy)-4-fluorobenzene (3f)	S37
1-((5-Fluoropentyl)oxy)-4-chlorobenzene (3g)	S38
1-((5-Fluoropentyl)oxy)-4-bromobenzene (3h)	S39
1-((5-Fluoropentyl)oxy)-4-iodobenzene (3i)	S39
1-(4-((5-Fluoropentyl)oxy)phenyl)ethanone (3j)	S40
((5-Fluoropentyl)oxy)benzene (3k)	S40
4-((5-Fluoropentyl)oxy)-1,1'-biphenyl (3 I)	S41
1-((5-Fluoropentyl)oxy)-4-isopropylbenzene (3m)	S42
1-(<i>tert</i> -Butyl)-4-((5-fluoropentyl)oxy)benzene (3n)	S42
1-((5-Fluoropentyl)oxy)-4-methoxybenzene (30)	S43
5-Fluoropentyl thiophene-3-carboxylate (3p)	S43
2-(4-Fluorobutoxy)-1-bromobenzene (3q)	S44
3-(4-Fluorobutoxy)-1-bromobenzene (3r)	S44
2,4-Dibromo-1-(4-fluorobutoxy)benzene (3s)	S45
2-(4-Fluorobutyl)isoindoline-1,3-dione (3t)	S46
N-(5-Fluoropentyl)saccharine (3u)	S46
7-(4-Fluorobutoxy)-4-methyl-2H-chromen-2-one (3v)	S47
1-Fluorododecane (3 w)	S47
5-Fluorohexan-2-yl 4-fluorobenzoate (3x)	S48
5-Fluorohexan-2-yl 4-fluorobenzoate (3 y)	S49
(S)-tert-Butyl 2-(1,3-dioxoisoindolin-2-yl)-3-(4-((5-fluoropentyl)oxy)phenyl)propanoate
(3z)	S49
3,12-Dimethoxy cholan-24-fluoro (3aa)	S50

7-O-acetyl-13-O-(5-fluoropentanoate)baccatine III (3bb)	S51
Gram-scale synthesis of $1-((5-fluoropentyl)oxy)-4-(trifluoromethyl)$ benzene $(3b)$.	S51
The study of Mechanism	S52
The preparation of TMSF	S52
Effect of TMSF on the reaction	S54
Spectroscopic Data	S56

Materials and Methods

All reactions were conducted in oven- or flame-dried glassware under an atmosphere of nitrogen unless otherwise noted. CH₃CN used in reactions was dried by distillation over CaH₂. Toluene was dried by distillation over sodium/benzophenone. Other solvents were purified according to the purification handbook Purification of Laboratory Chemicals before using. Ag_2O (brownish black powder) and CaF_2 were purchased from Alfa and stored in the glovebox. TMSCF₃ (Trimethyl(trifluoromethyl)silane) (98%) and 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl) (98%) were purchased from J&K. Deuterated solvents were purchased from Sigma-Aldrich. TLC was performed on silica gel Huanghai HSGF₂₅₄ plates and visualized by quenching of UV fluorescence (λ_{max} = 254 nm). 200-300 mesh silica gel was purchased from Qingdao Haiyang Chemical Co., China. Unless otherwise noted, all other reagents and starting materials were purchased from commercial sources and used without further purification. The data for NMR spectra (¹H NMR, ¹³C NMR and ¹⁹F NMR) were recorded at 293 K on a Bruker AVANCE AV 400 (400MHz, 101MHz and 376MHz) and chemical shifts were recorded relative to the solvent resonance. Signal positions were recorded in ppm and the following abbreviations are used singularly or in combination to indicate the multiplicity of signals: s singlet, d doublet, t triplet, q quartet, m multiplet, Hz Hertz. For ¹H NMR: CDCl₃ = δ 7.26 ppm. For ¹³C NMR: CDCl₃ = δ 77.16 ppm. spectra were obtained on Agilent 6520 Q-TOF LC/MS and Aligent Mass 7890/5975C-GS/MSD. HRMS were obtained on Varian 7.0T FTMS (ESI) and GCT Premier (EI).

Experimental Data

Experimental Procedures and Compound Characterization

Effect of bases on the reaction

In an N₂ glovebox, to Ag₂O (11.6 mg, 0.0500 mmol, 1.00 equiv), base (0.150 mmol, 3.00 equiv) in a 2.00 mL sealed vial were added CH₃CN (0.400 mL) and toluene (0.100 mL). 1-((5-iodopentyl)oxy)-4-(trifluoromethyl)benzene (1b) (17.9 mg, 0.0500 mmol, 1.00 equiv) was added to the reaction and the resulting mixture was stirred for 30 min at 25 °C, TMSCF₃ $(22.5 \ \mu L, 0.150 \ mmol, 3.00 \ equiv)$ was added and then the reaction mixture was stirred at 90 °C for a further 12 h. After cooling to room temperature, styrene (6.00 µL, 0.0524 mmol), The $CDCl_3$ (1.50 mL) was added to the reaction mixture. vield of 1-((5-fluoropentyl)oxy)-4-(trifluoromethyl)benzene (3b) was determined by comparing the integration of the ¹H NMR resonance of 1-((5-fluoropentyl)oxy)-4-(trifluoromethyl)benzene (4.54 ppm, t) with that of styrene (5.25 ppm, d). Yields are reported in Table S1.

Bases	Yield [%] (¹ HNMR)	Bases	Yield [%] (¹ HNMR)
none	none	CaO	none
Et ₃ N	none	NaHCO ₃	none
CaF_2	17	K ₂ CO ₃	none
CaCO ₃	7	NaOH	none
Cs_2CO_3	none	KO'Bu	none

Table S1: Effect of bases on the reaction

Effect of silver salts on the reaction

In an N₂ glovebox, to silver salt (0.100 mmol, 2.00 equiv), CaF₂ (11.7 mg, 0.150 mmol, 3.00 equiv) in a 2.00 mL sealed vial were added CH₃CN (0.400 mL) and toluene (0.100 mL). 1-((5-iodopentyl)oxy)-4-(trifluoromethyl)benzene (1b) (17.9 mg, 0.0500 mmol, 1.00 equiv) was added to the reaction and the resulting mixture was stirred for 12 h at 90 °C. After cooling to room temperature, styrene (6.00 µL, 0.0524 mmol), CDCl₃ (1.50 mL) was added to the reaction mixture. The yield of 1-((5-fluoropentyl)oxy)-4-(trifluoromethyl)benzene (3b) was determined comparing the integration of the $^{1}\mathrm{H}$ NMR by resonance of 1-((5-fluoropentyl)oxy)-4-(trifluoromethyl)benzene (4.54 ppm, t) with that of styrene (5.25 ppm, d). Yields are reported in Table S2.

Silver salt	Yield [%] (¹ HNMR)	Silver salt	Yield [%] (¹ HNMR)
none	none	AgSCN	none
Ag_2SO_4	6	Ag ₂ O	17
Ag ₂ CO ₃	none	AgNO ₃	none
AgOTf	none	AgOBz	none

Table S2: Effect of silver salts on the reaction

Effect of additives on the reaction

In an N2 glovebox, to Ag2O (11.6 mg, 0.0500 mmol, 1.00 equiv), CaF2 (11.7 mg, 0.150 mmol, 3.00 equiv) in a 2.00 mL sealed vial were added CH₃CN (0.400 mL) and toluene (0.100 mL). Additive (0.0250 mmol, 0.500 equiv), 1-((5-iodopentyl)oxy)-4-(trifluoromethyl)benzene (1b) (17.9 mg, 0.0500 mmol, 1.00 equiv) were added to the reaction and the resulting mixture was stirred for 30 min at 25 °C, TMSCF₃ (22.5 µL, 0.150 mmol, 3.00 equiv) was added and then the reaction mixture was stirred at 90 °C for a further 12 h. After cooling to room temperature, styrene (6.00 µL, 0.0524 mmol), CDCl₃ (1.50 mL) was added to the reaction mixture. The yield of 1-((5-fluoropentyl)oxy)-4-(trifluoromethyl)benzene (3b) was determined by 1 H the integration of the NMR comparing resonance of 1-((5-fluoropentyl)oxy)-4-(trifluoromethyl)benzene (4.54 ppm, t) with that of styrene (5.25 ppm, d). Yields are reported in Table S3.

Table S3: Effect of additives on the reaction

Additives	Yield [%] (¹ HNMR)
18-crown-6	15
15-crown-5	14
	none
N N N	2

Effect of solvents on the reaction

In an N₂ glovebox, to Ag₂O (11.6 mg, 0.0500 mmol, 1.00 equiv), CaF₂ (11.7 mg, 0.150 mmol, 3.00 equiv) in a 2.00 mL sealed vial were added solvent (0.500 mL). [bmim][NTf₂] (1-Butyl-3-methylimidazoliumBis(trifluoromethanesulfonyl)) (10.5 mg, 0.0250 mmol, 0.500 equiv), 1-((5-iodopentyl)oxy)-4-(trifluoromethyl)benzene (**1b**) (17.9 mg, 0.0500 mmol, 1.00 equiv) were added to the reaction and the resulting mixture was stirred for 30 min at 25 °C, TMSCF₃ (22.5 μ L, 0.150 mmol, 3.00 equiv) was added and then the reaction mixture was stirred at 90 °C for a further 12 h. After cooling to room temperature, styrene (6.00 μ L, 0.0524 mmol), CDCl₃ (1.50 mL) was added to the reaction mixture. The yield of 1-((5-fluoropentyl)oxy)-4-(trifluoromethyl)benzene (**3b**) was determined by comparing the integration of the ¹H NMR resonance of 1-((5-fluoropentyl)oxy)-4-(trifluoromethyl)benzene (4.54 ppm, t) with that of styrene (5.25 ppm, d). Yields are reported in Table S4.

Table S4: Effect of solvents on the reaction

Solvent (0.1 M)	Yield [%] (¹ HNMR)	Solvent (0.1 M)	Yield [%] (¹ HNMR)
CH ₃ CN	77	Dioxane	none
DMSO	none	DCE	4
DMF	none	Toluene	5
THF	none	CH ₃ CN/Toluene 4:1(v:v)	83

Effect of Ag₂O amount on the reaction

In an N₂ glovebox, to Ag₂O, CaF₂ (11.7 mg, 0.150 mmol, 3.00 equiv) in a 2.00 mL sealed vial were added CH₃CN (0.400)mL) and toluene (0.100 mL). [bmim][NTf₂] (1-Butyl-3-methylimidazoliumBis(trifluoromethanesulfonyl)) (10.5 mg, 0.0250 mmol, 0.500 equiv), 1-((5-iodopentyl)oxy)-4-(trifluoromethyl)benzene (1b) (17.9 mg, 0.0500 mmol, 1.00 equiv) were added to the reaction and the resulting mixture was stirred for 30 min at 25 °C, TMSCF₃ (22.5 µL, 0.150 mmol, 3.00 equiv) was added and then the reaction mixture was stirred at 90 °C for a further 12 h. After cooling to room temperature, styrene (6.00 µL, 0.0524 mmol), CDCl₃ (1.50 mL) was added to the reaction mixture. The yield of 1-((5-fluoropentyl)oxy)-4-(trifluoromethyl)benzene (3b) was determined by comparing the of the ^{1}H NMR integration resonance of 1-((5-fluorope ntyl)oxy)-4-(trifluoromethyl)benzene (4.54 ppm, t) with that of styrene (5.25 ppm, d). Yields are reported in Table S5.

Amount of Ag ₂ O (equiv)	Yield [%] (¹ H NMR)
0.0	0
0.5	40
1.0	83
2.0	65
3.0	47

Table S5: Effect of Ag₂O amount on the reaction

Effect of calcium salts amount on the reaction

In an N₂ glovebox, to Ag₂O (11.6 mg, 0.0500 mmol, 1.00 equiv), calcium salt in a 2.00 mL sealed vial were added CH₃CN (0.400 mL) and toluene (0.100 mL). [bmim][NTf₂] (1-Butyl-3-methylimidazoliumBis(trifluoromethanesulfonyl)) (10.5 mg, 0.0250 mmol, 0.500 equiv), 1-((5-iodopentyl)oxy)-4-(trifluoromethyl)benzene (1b) (17.9 mg, 0.0500 mmol, 1.00 equiv) were added to the reaction and the resulting mixture was stirred for 30 min at 25 °C, TMSCF₃ (22.5 µL, 0.150 mmol, 3.00 equiv) was added and then the reaction mixture was stirred at 90 °C for a further 12 h. After cooling to room temperature, styrene (6.00 µL, 0.0524 mmol), CDCl₃ (1.50 mL) was added to the reaction mixture. The yield of 1-((5-fluoropentyl)oxy)-4-(trifluoromethyl)benzene (3b) was determined by comparing the integration ^{1}H of the NMR of 1-((5-fluorope resonance ntyl)oxy)-4-(trifluoromethyl)benzene (4.54 ppm, t) with that of styrene (5.25 ppm, d). Yields are reported in Table S6

Amount of calcium salt (equiv)	Yield [%] (¹ H NMR)	
CaF ₂ (0.0 equiv)	0	
CaF ₂ (1.0 equiv)	40	
CaF_2 (3.0 equiv)	83	
CaF_2 (5.0 equiv)	76	
CaCO ₃ (1.0 equiv)	1	
CaCO ₃ (3.0 equiv)	5	
CaCO ₃ (5.0 equiv)	11	
CaCO ₃ (10.0 equiv)	21	

Table S6: Effect of calcium salts amount on the reaction

$CaCO_3$ (milled once; 3.0 equiv) ^a	15	
CaCO ₃ (milled once; 5.0 equiv)	33	
CaCO ₃ (milled once; 10.0 equiv)	22	
CaCO ₃ (milled twice; 3.0 equiv)	18	
CaO (3.0 equiv)	5	
CaO (5.0 equiv)	5	

Effect of [bmim][NTf₂] amount on the reaction

In an N₂ glovebox, to Ag₂O (11.6 mg, 0.0500 mmol, 1.00 equiv), CaF₂ (11.7 mg, 0.150 mmol, 3.00 equiv) in a 2.00 mL sealed vial were added CH₃CN (0.400 mL) and toluene (0.100 mL). [bmim][NTf₂] (1-Butyl-3-methylimidazoliumBis(trifluoromethanesulfonyl)), 1-((5-iodopentyl)oxy)-4-(trifluoromethyl)benzene (1b) (17.9 mg, 0.0500 mmol, 1.00 equiv) were added to the reaction and the resulting mixture was stirred for 30 min at 25 °C, TMSCF₃ (22.5 µL, 0.150 mmol, 3.00 equiv) was added and then the reaction mixture was stirred at 90 °C for a further 12 h. After cooling to room temperature, styrene (6.00 µL, 0.0524 mmol), CDCl₃ (1.50 mL) added yield was to the reaction mixture. The of 1-((5-fluoropentyl)oxy)-4-(trifluoromethyl)benzene (3b) was determined by comparing the ^{1}H integration of the NMR resonance of 1-((5-fluorope ntyl)oxy)-4-(trifluoromethyl)benzene (4.54 ppm, t) with that of styrene (5.25 ppm, d). Yields are reported in Table S7

Table S7: Effect of [bmim][NTf2] amount on the reaction

Amount of [bmim][NTf ₂] (equiv)	Yield [%] (¹ H NMR)
0.25	80
0.50	83

^a Milled by QM-3SP2 planetary ball mill (Nanjing NanDa Instrument Plant)

Effect of TMSCF₃ amount on the reaction

In an N₂ glovebox, to Ag₂O (11.6 mg, 0.0500 mmol, 1.00 equiv), CaF₂ (11.7 mg, 0.150 mmol, 3.00 equiv) in a 2.00 mL sealed vial were added CH₃CN (0.400 mL) and toluene (0.100 mL). [bmim][NTf₂] (1-Butyl-3-methylimidazoliumBis(trifluoromethanesulfonyl)) (10.5 mg, 0.0250 mmol, 0.500 equiv), 1-((5-iodopentyl)oxy)-4-(trifluoromethyl)benzene (1b) (17.9 mg, 0.0500 mmol, 1.00 equiv) were added to the reaction and the resulting mixture was stirred for 30 min at 25 °C, TMSCF₃ was added and then the reaction mixture was stirred at 90 °C for a further 12 h. After cooling to room temperature, styrene (6.00 µL, 0.0524 mmol), CDCl₃(1.50 mL) reaction was added to the mixture. The yield of 1-((5-fluoropentyl)oxy)-4-(trifluoromethyl)benzene (3b) was determined by comparing the integration of the $^{1}\mathrm{H}$ NMR resonance 1-((5-fluorope of ntyl)oxy)-4-(trifluoromethyl)benzene (4.54 ppm, t) with that of styrene (5.25 ppm, d). Yields are reported in Table S8

Amount of TMSCF ₃ (equiv)	Yield [%] (¹ H NMR)
1.0	63
3.0	83
5.0	83

Table S8: Effect of TMSCF₃ amount on the reaction

Effect of concentration on the reaction

In an N₂ glovebox, to Ag₂O (11.6 mg, 0.0500 mmol, 1.00 equiv), CaF₂ (11.7 mg, 0.150 mmol , 3.00 equiv) in a 2.00 mL sealed vial were added solvent (CH₃CN/toluene = 4:1 (v/v)). [bmim][NTf₂] (1-Butyl-3-methylimidazoliumBis(trifluoromethanesulfonyl)) (10.5 mg, 0.0250 mmol, 0.500 equiv), 1-((5-iodopentyl)oxy)-4-(trifluoromethyl)benzene (**1b**) (17.9 mg, 0.0500 mmol, 1.00 equiv) were added to the reaction and the resulting mixture was stirred for 30 min at 25 °C, TMSCF₃ (22.5 μ L, 0.150 mmol, 3.00 equiv) was added and then the reaction

mixture was stirred at 90 °C for a further 12 h. After cooling to room temperature, styrene (6.00 μ L, 0.0524 mmol), CDCl₃(1.50 mL) was added to the reaction mixture. The yield of 1-((5-fluoropentyl)oxy)-4-(trifluoromethyl)benzene (**3b**) was determined by comparing the integration of the ¹H NMR resonance of 1-((5-fluorope ntyl)oxy)-4-(trifluoromethyl)benzene (4.54 ppm, t) with that of styrene (5.25 ppm, d). Yields are reported in Table S9

Concentration	Yield [%] (¹ H NMR)
0.05 M (in 1.00 mL)	78
0.10 M (in 0.50 mL)	83
0.20 M (in 0.25 mL)	81

Table S9: Effect of concentration on the reaction

Effect of concentration on the reaction

In an N₂ glovebox, to Ag₂O (116 mg, 0.500 mmol, 1.00 equiv), CaF₂ (117 mg, 1.50 mmol, 3.00 equiv) in a 10.0 mL sealed vial were added solvent (CH₃CN/toluene = 4:1 (v/v)). [bmim][NTf₂] (1-Butyl-3-methylimidazoliumBis(trifluoromethanesulfonyl)) (105 mg, 0.250 mmol, 0.500 equiv), 1-((5-iodopentyl)oxy)-4-(trifluoromethyl)benzene (**1b**) (179 mg, 0.500 mmol, 1.00 equiv) were added to the reaction and the resulting mixture was stirred for 30 min at 25 °C, TMSCF₃ (225 μ L, 1.50 mmol, 3.00 equiv) was added and then the reaction mixture was stirred at 90 °C for a further 12 h. After cooling to room temperature, styrene (60.0 μ L, 0.524 mmol). The yield of 1-((5-fluoropentyl)oxy)-4-(trifluoromethyl)benzene (**3b**) was determined by comparing the integration of the ¹H NMR resonance of 1-((5-fluorope ntyl)oxy)-4-(trifluoromethyl)benzene (5.25 ppm, d). Yields are reported in Table S10.

Table S10: Effect of concentration on the reaction
--

Concentration	Yield [%] (¹ H NMR)
0.10 M (in 5.00 mL)	80

0.20 M (in 2.50 mL)	83
0.40 M (in 1.25 mL)	70

Effect of CaF₂ surface area

In an N₂ glovebox, to Ag₂O (11.6 mg, 0.0500 mmol, 1.00 equiv), CaF₂ (11.7 mg, 0.150 mmol, 3.00 equiv) in a 2.00 mL sealed vial were added CH₃CN (0.400 mL) and toluene (0.100 mL). [bmim][NTf₂] (1-Butyl-3-methylimidazoliumBis(trifluoromethanesulfonyl)) (10.5 mg, 0.0250 mmol, 0.500 equiv), 1-((5-iodopentyl)oxy)-4-(trifluoromethyl)benzene (1b) (17.9 mg, 0.0500 mmol, 1.00 equiv) were added to the reaction and the resulting mixture was stirred for 30 min at 25 °C, TMSCF₃ (22.5 µL, 0.150 mmol, 3.00 equiv) was added and then the reaction mixture was stirred at 90 °C for a further 12 h. After cooling to room temperature, styrene (6.00 μ L, 0.0524 mmol), CDCl₃(1.50 mL) was added to the reaction mixture. The yield of 1-((5-fluoropentyl)oxy)-4-(trifluoromethyl)benzene (3b) was determined by comparing the $^{1}\mathrm{H}$ of integration the NMR resonance of 1-((5-fluorope ntyl)oxy)-4-(trifluoromethyl)benzene (4.54 ppm, t) with that of styrene (5.25 ppm, d). Yields are reported in Table S11.

CaF ₂ (source)	BET results Surface area (m ² /g)	Yield [%] (¹ H NMR)
Alfa (99.99%)	26.3	83
Aladdin (99.99%)	20.4	81
Fluorite (milled twice)	13.6	70
Fluorite (milled once)	8.4	29
Alfa (99.5%) (milled once)	10.7	41
Alfa (99.5%)	2.8	10
Fluorite		0

Table S11: Effect of CaF₂ surface area

5-Iodopentyl 4-fluorobenzoate (1a)

To a solution of 4-fluorobenzoic acid (1.40 g, 10.0 mmol, 1.00 equiv), DMAP (4-dimethylaminepyridine) (610 mg, 5.00 mmol, 0.500 equiv) and Et_3N (4.17 mL, 30.0 mmol, 3.00 equiv) in dry DCM (15.0 mL) at 23 °C under N₂ were added EDCI (2.88 g, 15.0 mmol, 1.50 equiv) and 5-chloropentan-1-ol (2.31 mL, 30.0 mmol, 3.00 equiv). The reaction was refluxed for 12 h before diluted with DCM (10.0 mL) and quenched with H₂O (10.0 mL). The mixture was stirred for 15 min and extracted 3 times with DCM (25.0 mL). The combined organic layers were dried over magnesium sulfate, filtered and concentrated *in vacuo*. The residue was dissolved with DCM (2.00 ml), passed through a pad of silica gel, washed with hexanes/EtOAc 5:1 (v/v), the filtrate was concentrated *in vacuo* and the crude product 5-chloropentyl 4-fluorobenzoate was used for next step directly.

The crude 5-chloropentyl 4-fluorobenzoate was dissolved with dry acetone (15.0 mL), sodium iodide (4.50 g, 30.0 mmol, 3.00 equiv) was added at 23 °C. Subsequently, the reaction mixture was refluxed for 24 h. Afterwards the cooled mixture was filtrated and concentrated *in vacuo*. The residue was dissolved in EtOAc (50.0 mL) and washed successively with water (30.0 mL) and a saturated solution of sodium chloride (30.0 mL). The organic phase was dried over magnesium sulfate, filtered and and concentrated *in vacuo*. The residue was purified by chromatography on silica gel, eluting with hexanes/EtOAc 25:1 (v/v) to afford 2.68 g 5-iodopentyl 4-fluorobenzoate (**1a**) as a colorless liquid (80% yield).

 R_f =0.3 (hexanes/EtOAc 25:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) ¹H NMR (400 MHz, CDCl₃) δ 8.09 − 8.02 (m, 2H), 7.15 − 7.08 (m, 2H), 4.32 (t, *J* = 6.5 Hz, 2H), 3.22 (t, *J* = 6.9 Hz, 2H), 1.94 − 1.85 (m, 2H), 1.84 − 1.75 (m, 2H), 1.61 − 1.51 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 166.0 (d, *J* = 253.7 Hz), 165.9, 132.4 (d, *J* = 9.3 Hz), 126.9 (d, *J* = 3.1 Hz), 115.8 (d, *J* = 22.0 Hz), 65.1, 33.3, 28.0, 27.3, 6.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -105.5 − -105.6 (m, 1F). Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₂H₁₄FIO₂Na [M+Na]⁺, 358.9920. Found, 358.9918.

1-((5-Iodopentyl)oxy)-4-(trifluoromethyl)benzene (1b)

Potassium carbonate (2.76 g, 20.0 mmol, 2.00 equiv) was suspended in dry acetone (15.0 mL), 4-trifluoromethylphenol (1.62 g, 10.0 mmol, 1.00 equiv) and 1-bromo-5-chloropentane (1.32 ml, 10.0 mmol, 1.00 equiv) were added. Subsequently, the reaction mixture was refluxed for 12 h. Afterwards the cooled mixture was concentrated *in vacuo*. The residue was dissolved in EtOAc (50.0 mL) and washed successively with 1 M aqueous NaOH solution (30.0 ml), water (30.0 mL) and a saturated solution of sodium chloride (30.0 mL). The organic phase was dried over magnesium sulfate, filtered and concentrated *in vacuo*. The crude product 1-((5-chloropentyl)oxy)-4-(trifluoromethyl)benzene was taken on to the next reaction without

further purification.

The crude 1-((5-chloropentyl)oxy)-4-(trifluoromethyl)benzene was dissolved with dry acetone (15.0 mL), sodium iodide (6.00 g, 40.0 mmol, 4.00 equiv) was added at 23 °C. Subsequently, the reaction mixture was refluxed for 24 h. Afterwards the cooled mixture was filtrated and concentrated *in vacuo*. The residue was dissolved in EtOAc (50.0 mL) and washed successively with water (30.0 mL) and a saturated solution of sodium chloride (30.0 mL). The organic phase was dried over magnesium sulfate, filtered and and concentrated *in vacuo*. The residue was purified by chromatography on silica gel, eluting with hexanes/EtOAc 50:1 (v/v) to afford 2.50 g 1-((5-iodopentyl)oxy)-4-(trifluoromethyl)benzene (**1b**) as a colorless liquid (70% yield).

R_f = 0.4 (hexanes/EtOAc 25:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, J = 8.5 Hz, 2H), 6.94 (d, J = 8.5 Hz, 2H), 4.01 (t, J = 6.3 Hz, 2H), 3.23 (t, J = 6.9 Hz, 2H), 1.96 – 1.87 (m, 2H), 1.87 – 1.79 (m, 2H), 1.64 – 1.55 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 161.7, 127.2 (q, J = 3.7 Hz), 124.8 (q, J = 271.1 Hz), 123.1 (q, J = 33.2 Hz), 114.7, 68.1, 33.4, 28.4, 27.4, 6.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -61.4 (s, 3F). Mass Spectrometry: HRMS-EI (m/z): Calcd for C₁₂ H₁₄F₃IO [M], 358.0041. Found, 358.0045.

1-((5-Iodopentyl)oxy)-4-nitrobenzene (1c)

Potassium carbonate (2.76 g, 20.0 mmol, 2.00 equiv) was suspended in dry acetone (15.0 mL), 4-nitrophenol (1.39 g, 10.0 mmol, 1.00 equiv) and 1-bromo-5-chloropentane (1.32 ml, 10.0 mmol, 1.00 equiv) were added. Subsequently, the reaction mixture was refluxed for 12 h. Afterwards the cooled mixture was concentrated *in vacuo*. The residue was dissolved in EtOAc (50.0 mL) and washed successively with 1 M aqueous NaOH solution (30.0 ml), water (30.0 mL) and a saturated solution of sodium chloride (30.0 mL). The organic phase was dried over magnesium sulfate, filtered and concentrated *in vacuo*. The crude product 1-((5-chloropentyl)oxy)-4-nitrobenzene was taken on to the next reaction without further purification.

The crude 1-((5-chloropentyl)oxy)-4-nitrobenzene was dissolved with dry acetone (15.0 mL), sodium iodide (6.00 g, 40.0 mmol, 4.00 equiv) was added at 23 °C. Subsequently, the reaction mixture was refluxed for 24 h. Afterwards the cooled mixture was filtrated and concentrated *in vacuo*. The residue was dissolved in EtOAc (50.0 mL) and washed successively with water (30.0 mL) and a saturated solution of sodium chloride (30.0 mL). The organic phase was dried over magnesium sulfate, filtered and and concentrated *in vacuo*. The residue was purified by chromatography on silica gel, eluting with hexanes/EtOAc 20:1 (v/v) to afford 2.34 g 1-((5-iodopentyl)oxy)-4-nitrobenzene (**1c**) as a white solid (70% yield).

 R_f = 0.2 (hexanes/EtOAc 20:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 8.23 – 8.15 (m, 2H), 6.99 – 6.88 (m, 2H), 4.06 (t, *J* = 6.3 Hz, 2H), 3.23 (t, *J* = 6.9 Hz, 2H), 1.96 – 1.79 (m, 4H), 1.67 – 1.55 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 164.4, 141.7, 126.3, 114.7, 68.8, 33.3, 28.3, 27.3, 6.9. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₁H₁₄INO₃Na [M+Na]⁺, 357.9916. Found, 357.9916.

4-(4-Iodobutoxy)benzonitrile (1d)

Potassium carbonate (2.76 g, 20.0 mmol, 2.00 equiv) was suspended in dry acetone (15.0 mL), 4-hydroxybenzonitrile (1.19 g, 10.0 mmol, 1.00 equiv) and 1-bromo-4-chlorobutane (1.15 ml, 10.0 mmol, 1.00 equiv) were added. Subsequently, the reaction mixture was refluxed for 12 h. Afterwards the cooled mixture was concentrated *in vacuo*. The residue was dissolved in EtOAc (50.0 mL) and washed successively with 1 M aqueous NaOH solution (30.0 ml), water (30.0 mL) and a saturated solution of sodium chloride (30.0 mL). The organic phase was dried over magnesium sulfate, filtered and concentrated *in vacuo*. The crude product 4-(4-chlorobutoxy)benzonitrile was taken on to the next reaction without further purification.

The crude 4-(4-chlorobutoxy)benzonitrile was dissolved with dry acetone (15.0 mL), sodium iodide (6.00 g, 40.0 mmol, 4.00 equiv) was added at 23 °C. Subsequently, the reaction mixture was refluxed for 24 h. Afterwards the cooled mixture was filtrated and concentrated *in vacuo*. The residue was dissolved in EtOAc (50.0 mL) and washed successively with water (30.0 mL) and a saturated solution of sodium chloride (30.0 mL). The organic phase was dried over magnesium sulfate, filtered and and concentrated *in vacuo*. The residue was purified by chromatography on silica gel, eluting with hexanes/EtOAc 20:1 (v/v) to afford 2.50 g 4-(4-iodobutoxy)benzonitrile (1d) as a white solid (83% yield).

 R_f = 0.2 (hexanes/EtOAc 20:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.61 – 7.54 (m, 2H), 6.96 – 6.89 (m, 2H), 4.03 (t, *J* = 5.9 Hz, 2H), 3.26 (t, *J* = 6.7 Hz, 2H), 2.07 – 2.00 (m, 2H), 1.98 – 1.89 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 162.4, 134.3, 119.5, 115.4, 104.3, 67.4, 30.2, 30.2, 6.4. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₁H₁₂INONa [M+Na]⁺, 323.9861. Found, 323.9859.

1-(4-Iodobutoxy)-4-(trifluoromethoxy)benzene (1e)

1e, two steps 53%

Potassium carbonate (2.76 g, 20.0 mmol, 2.00 equiv) was suspended in dry acetone (15.0 mL), 4-(trifluoromethoxy)phenol (1.78 g, 10.0 mmol, 1.00 equiv) and 1-bromo-4-chlorobutane (1.15 ml, 10.0 mmol, 1.00 equiv) were added. Subsequently, the reaction mixture was refluxed for 12 h. Afterwards the cooled mixture was concentrated *in vacuo*. The residue was dissolved in EtOAc (50.0 mL) and washed successively with 1 M aqueous NaOH solution (30.0 ml), water (30.0 mL) and a saturated solution of sodium chloride (30.0 mL). The organic phase was dried over magnesium sulfate, filtered and concentrated *in vacuo*. The rest reaction without further purification.

The crude 1-(4-chlorobutoxy)-4-(trifluoromethoxy)benzene was dissolved with dry acetone (15.0 mL), sodium iodide (6.00 g, 40.0 mmol, 4.00 equiv) was added at 23 °C. Subsequently, the reaction mixture was refluxed for 24 h. Afterwards the cooled mixture was filtrated and

concentrated *in vacuo*. The residue was dissolved in EtOAc (50.0 mL) and washed successively with water (30.0 mL) and a saturated solution of sodium chloride (30.0 mL). The organic phase was dried over magnesium sulfate, filtered and and concentrated *in vacuo*. The residue was purified by chromatography on silica gel, eluting with hexanes/EtOAc 25:1 (v/v) to afford 1.91 g 1-(4-iodobutoxy)-4-(trifluoromethoxy)benzene (**1e**) as a colorless liquid (53% yield).

 $R_f = 0.25$ (hexanes/EtOAc 25:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.16 – 7.11 (m, 2H), 6.89 – 6.84 (m, 2H), 3.97 (t, J = 6.0 Hz, 2H), 3.26 (t, J = 6.8 Hz, 2H), 2.08 – 2.00 (m, 2H), 1.96 – 1.86 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 157.7, 143.0, 122.8, 120.9 (q, J = 256.0 Hz), 115.5, 67.4, 30.4, 30.4, 6.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -58.4 (s, 3F). Mass Spectrometry: HRMS-EI (m/z): Calcd for C₁₁H₁₂F₃IO₂, [M] 359.9834. Found, 359.9850.

1-((5-Iodopentyl)oxy)-4-fluorobenzene (1f)

Potassium carbonate (2.76 g, 20.0 mmol, 2.00 equiv) was suspended in dry acetone (15.0 mL), 4-fluorophenol (1.12 g, 10.0 mmol, 1.00 equiv) and 1-bromo-5-chloropentane (1.32 ml, 10.0 mmol, 1.00 equiv) were added. Subsequently, the reaction mixture was refluxed for 12 h. Afterwards the cooled mixture was concentrated *in vacuo*. The residue was dissolved in EtOAc (50.0 mL) and washed successively with 1 M aqueous NaOH solution (30.0 ml), water (30.0 mL) and a saturated solution of sodium chloride (30.0 mL). The organic phase was dried over magnesium sulfate, filtered and concentrated *in vacuo*. The crude product 1-((5-chloropentyl)oxy)-4-fluorobenzene was taken on to the next reaction without further purification.

The crude 1-((5-chloropentyl)oxy)-4-fluorobenzene was dissolved with dry acetone (15.0 mL), sodium iodide (6.00 g, 40.0 mmol, 4.00 equiv) was added at 23 °C. Subsequently, the reaction mixture was refluxed for 24 h. Afterwards the cooled mixture was filtrated and concentrated *in vacuo*. The residue was dissolved in EtOAc (50.0 mL) and washed successively with water (30.0 mL) and a saturated solution of sodium chloride (30.0 mL). The organic phase was dried over magnesium sulfate, filtered and and concentrated *in vacuo*. The residue was purified by chromatography on silica gel, eluting with hexanes/EtOAc 25:1 (v/v) to afford 2.15 g 1-((5-iodopentyl)oxy)-4-fluorobenzene (**1f**) as a colorless liquid (70% yield).

 R_f = 0.25 (hexanes/EtOAc 25:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.00 − 6.92 (m, 2H), 6.85 − 6.78 (m, 2H), 3.92 (t, *J* = 6.3 Hz, 2H), 3.22 (t, *J* = 7.0 Hz, 2H), 1.96 − 1.84 (m, 2H), 1.83 − 1.75 (m, 2H), 1.63 − 1.52 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 157.5 (d, *J* = 238.0 Hz), 155.4 (d, *J* = 1.3 Hz), 116.1 (d, *J* = 23.0 Hz), 115.7 (d, *J* = 7.9 Hz), 68.5, 33.5, 28.5, 27.4, 7.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -124.2 − -124.3 (m, 1F). Mass Spectrometry: HRMS-EI (m/z): Calcd for C₁₁H₁₄FIO [M], 308.0073. Found, 308.0077.

1-((5-Iodopentyl)oxy)-4-chlorobenzene (1g)

Potassium carbonate (2.76 g, 20.0 mmol, 2.00 equiv) was suspended in dry acetone (15.0 mL), 4-chlorophenol (1.28 g, 10.0 mmol, 1.00 equiv) and 1-bromo-5-chloropentane (1.32 ml, 10.0 mmol, 1.00 equiv) were added. Subsequently, the reaction mixture was refluxed for 12 h. Afterwards the cooled mixture was concentrated *in vacuo*. The residue was dissolved in EtOAc (50.0 mL) and washed successively with 1 M aqueous NaOH solution (30.0 ml), water (30.0 mL) and a saturated solution of sodium chloride (30.0 mL). The organic phase was dried over magnesium sulfate, filtered and concentrated *in vacuo*. The crude product 1-((5-chloropentyl)oxy)-4-chlorobenzene was taken on to the next reaction without further purification.

The crude 1-((5-chloropentyl)oxy)-4-chlorobenzene was dissolved with dry acetone (15.0 mL), sodium iodide (6.00 g, 40.0 mmol, 4.00 equiv) was added at 23 °C. Subsequently, the reaction mixture was refluxed for 24 h. Afterwards the cooled mixture was filtrated and concentrated *in vacuo*. The residue was dissolved in EtOAc (50.0 mL) and washed successively with water (30.0 mL) and a saturated solution of sodium chloride (30.0 mL). The organic phase was dried over magnesium sulfate, filtered and and concentrated *in vacuo*. The residue was purified by chromatography on silica gel, eluting with hexanes/EtOAc 25:1 (v/v) to afford 1.75 g 1-((5-iodopentyl)oxy)-4-chlorobenzene (**1g**) as a colorless liquid (54% yield). R_f = 0.25 (hexanes/EtOAc 25:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.25 – 7.20 (m, 2H), 6.84 – 6.79 (m, 2H), 3.93 (t, *J* = 6.3 Hz, 2H), 3.22 (t, *J* = 7.0 Hz, 2H), 1.94 – 1.86 (m, 2H), 1.84 – 1.76 (m, 2H), 1.62 – 1.54 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 157.9, 129.6, 125.7, 116.0, 68.2, 33.5, 28.5, 27.4, 7.0. Mass Spectrometry: HRMS-EI (m/z): Calcd for C₁₁H₁₄CIIO [M], 323.9778. Found, 323.9773.

1-((5-Iodopentyl)oxy)-4-bromobenzene (1h)

Potassium carbonate (2.76 g, 20.0 mmol, 2.00 equiv) was suspended in dry acetone (15.0 mL), 4-bromophenol (1.72 g, 10.0 mmol, 1.00 equiv) and 1-bromo-5-chloropentane (1.32 ml, 10.0 mmol, 1.00 equiv) were added. Subsequently, the reaction mixture was refluxed for 12 h. Afterwards the cooled mixture was concentrated *in vacuo*. The residue was dissolved in EtOAc (50.0 mL) and washed successively with 1 M aqueous NaOH solution (30.0 ml), water (30.0 mL) and a saturated solution of sodium chloride (30.0 mL). The organic phase was dried over magnesium sulfate, filtered and concentrated *in vacuo*. The crude product 1-((5-chloropentyl)oxy)-4-bromobenzene was taken on to the next reaction without further purification.

The crude 1-((5-chloropentyl)oxy)-4-bromobenzene was dissolved with dry acetone (15.0 mL), sodium iodide (6.00 g, 40.0 mmol, 4.00 equiv) was added at 23 °C. Subsequently, the

reaction mixture was refluxed for 24 h. Afterwards the cooled mixture was filtrated and concentrated *in vacuo*. The residue was dissolved in EtOAc (50.0 mL) and washed successively with water (30.0 mL) and a saturated solution of sodium chloride (30.0 mL). The organic phase was dried over magnesium sulfate, filtered and and concentrated *in vacuo*. The residue was purified by chromatography on silica gel, eluting with hexanes/EtOAc 25:1 (v/v) to afford 2.70 g 1-((5-iodopentyl)oxy)-4-bromobenzene (**1h**) as a colorless liquid (73% yield). R_f = 0.3 (hexanes/EtOAc 25:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.34 (m, 2H), 6.79 – 6.74 (m, 2H), 3.93 (t, *J* = 6.3 Hz, 2H), 3.22 (t, *J* = 7.0 Hz, 2H), 1.94 – 1.86 (m, 2H), 1.84 – 1.76 (m, 2H), 1.62 – 1.53 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 158.4, 132.5, 116.6, 113.0, 68.1, 33.4, 28.4, 27.4, 7.0. Mass Spectrometry: HRMS-EI (m/z): Calcd for C₁₁H₁₄BrIO [M], 367.9273. Found, 367.9275.

1-((5-Iodopentyl)oxy)-4-iodobenzene (1i)

Potassium carbonate (2.76 g, 20.0 mmol, 2.00 equiv) was suspended in dry acetone (15.0 mL), 4-iodophenol (2.20 g, 10.0 mmol, 1.00 equiv) and 1-bromo-5-chloropentane (1.32 ml, 10.0 mmol, 1.00 equiv) were added. Subsequently, the reaction mixture was refluxed for 12 h. Afterwards the cooled mixture was concentrated *in vacuo*. The residue was dissolved in EtOAc (50.0 mL) and washed successively with 1 M aqueous NaOH solution (30.0 ml), water (30.0 mL) and a saturated solution of sodium chloride (30.0 mL). The organic phase was dried over magnesium sulfate, filtered and concentrated *in vacuo*. The crude product 1-((5-chloropentyl)oxy)-4-iodobenzene was taken on to the next reaction without further purification.

The crude 1-((5-chloropentyl)oxy)-4-iodobenzene was dissolved with dry acetone (15.0 mL), sodium iodide (6.00 g, 40.0 mmol, 4.00 equiv) was added at 23 °C. Subsequently, the reaction mixture was refluxed for 24 h. Afterwards the cooled mixture was filtrated and concentrated *in vacuo*. The residue was dissolved in EtOAc (50.0 mL) and washed successively with water (30.0 mL) and a saturated solution of sodium chloride (30.0 mL). The organic phase was dried over magnesium sulfate, filtered and and concentrated *in vacuo*. The residue was purified by chromatography on silica gel, eluting with hexanes/EtOAc 25:1 (v/v) to afford 2.10 g 1-((5-iodopentyl)oxy)-4-iodobenzene (**1i**) as a white solid (50% yield).

 R_f = 0.2 (hexanes/EtOAc 25:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.58 − 7.51 (m, 2H), 6.70 − 6.63 (m, 2H), 3.92 (t, *J* = 6.3 Hz, 2H), 3.22 (t, *J* = 7.0 Hz, 2H), 1.94 − 1.85 (m, 2H), 1.84 − 1.75 (m, 2H), 1.62 − 1.52 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 159.1, 138.5, 117.2, 82.4, 68.0, 33.4, 28.4, 27.4, 7.0. Mass Spectrometry: HRMS-EI (m/z): Calcd for C₁₁H₁₄I₂O [M], 415.9134. Found, 415.9138.

1-(4-((5-Iodopentyl)oxy)phenyl)ethanone (1j)

Potassium carbonate (2.76 g, 20.0 mmol, 2.00 equiv) was suspended in dry acetone (15.0 mL), 1-(4-hydroxyphenyl)ethanone (1.36 g, 10.0 mmol, 1.00 equiv) and 1-bromo-5-chloropentane (1.32 ml, 10.0 mmol, 1.00 equiv) were added. Subsequently, the reaction mixture was refluxed for 12 h. Afterwards the cooled mixture was concentrated *in vacuo*. The residue was dissolved in EtOAc (50.0 mL) and washed successively with 1 M aqueous NaOH solution (30.0 ml), water (30.0 mL) and a saturated solution of sodium chloride (30.0 mL). The organic phase was dried over magnesium sulfate, filtered and concentrated *in vacuo*. The reaction without further purification.

The crude 1-(4-((5-chloropentyl)oxy)phenyl)ethanone was dissolved with dry acetone (15.0 mL), sodium iodide (6.00 g, 40.0 mmol, 4.00 equiv) was added at 23 °C. Subsequently, the reaction mixture was refluxed for 24 h. Afterwards the cooled mixture was filtrated and concentrated *in vacuo*. The residue was dissolved in EtOAc (50.0 mL) and washed successively with water (30.0 mL) and a saturated solution of sodium chloride (30.0 mL). The organic phase was dried over magnesium sulfate, filtered and and concentrated *in vacuo*. The residue was purified by chromatography on silica gel, eluting with hexanes/EtOAc 20:1 (v/v) to afford 3.00 g 1-(4-((5-iodopentyl)oxy)phenyl)ethanone (**1j**) as a white solid (90% yield).

 R_f = 0.2 (hexanes/EtOAc 20:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.96 – 7.89 (m, 2H), 6.94 – 6.89 (m, 2H), 4.03 (t, *J* = 6.3 Hz, 2H), 3.22 (t, *J* = 6.9 Hz, 2H), 2.56 (s, 3H), 1.95 – 1.79 (m, 4H), 1.65 – 1.55 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 197.0, 163.2, 130.9, 130.5, 114.4, 68.1, 33.4, 28.3, 27.3, 26.6, 6.9. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₃H₁₈IO₂ [M+H]⁺, 333.0351. Found, 333.0350.

((5-Iodopentyl)oxy)benzene (1k)

Potassium carbonate (2.76 g, 20.0 mmol, 2.00 equiv) was suspended in dry acetone (15.0 mL), phenol (940 mg, 10.0 mmol, 1.00 equiv) and 1-bromo-5-chloropentane (1.32 ml, 10.0 mmol, 1.00 equiv) were added. Subsequently, the reaction mixture was refluxed for 12 h. Afterwards the cooled mixture was concentrated in vacuo. The residue was dissolved in EtOAc (50.0 mL) and washed successively with 1 M aqueous NaOH solution (30.0 ml), water (30.0 mL) and a saturated solution of sodium chloride (30.0 mL). The organic phase was dried over magnesium sulfate, filtered and concentrated in vacuo. The crude product ((5-chloropentyl)oxy)benzene was taken on to the next reaction without further purification. The crude ((5-chloropentyl)oxy)benzene was dissolved with dry acetone (15.0 mL), sodium iodide (6.00 g, 40.0 mmol, 4.00 equiv) was added at 23 °C. Subsequently, the reaction

mixture was refluxed for 24 h. Afterwards the cooled mixture was filtrated and concentrated *in vacuo*. The residue was dissolved in EtOAc (50.0 mL) and washed successively with water (30.0 mL) and a saturated solution of sodium chloride (30.0 mL). The organic phase was dried over magnesium sulfate, filtered and and concentrated *in vacuo*. The residue was purified by chromatography on silica gel, eluting with hexanes/EtOAc 25:1 (v/v) to afford 1.73 g ((5-iodopentyl)oxy)benzene (**1k**) as a colorless liquid (60% yield).

 R_f = 0.35 (hexanes/EtOAc 25:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.31 – 7.24 (m, 2H), 6.97 – 6.86 (m, 3H), 3.97 (t, *J* = 6.3 Hz, 2H), 3.22 (t, *J* = 7.0 Hz, 2H), 1.95 – 1.86 (m, 2H), 1.85 – 1.76 (m, 2H), 1.64 – 1.55 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 159.2, 129.8, 120.9, 114.8, 67.7, 33.5, 28.5, 27.5, 7.1. Mass Spectrometry: HRMS-EI (m/z): Calcd for C₁₁H₁₅IO [M], 290.0168. Found, 290.0169.

4-((5-Iodopentyl)oxy)-1,1'-biphenyl (11)

Potassium carbonate (2.76 g, 20.0 mmol, 2.00 equiv) was suspended in dry acetone (15.0 mL), [1,1'-biphenyl]-4-ol (1.70 g, 10.0 mmol, 1.00 equiv) and 1-bromo-5-chloropentane (1.32 ml, 10.0 mmol, 1.00 equiv) were added. Subsequently, the reaction mixture was refluxed for 12 h. Afterwards the cooled mixture was concentrated *in vacuo*. The residue was dissolved in EtOAc (50.0 mL) and washed successively with 1 M aqueous NaOH solution (30.0 ml), water (30.0 mL) and a saturated solution of sodium chloride (30.0 mL). The organic phase was dried over magnesium sulfate, filtered and concentrated *in vacuo*. The crude product 4-((5-chloropentyl)oxy)-1,1'-biphenyl was taken on to the next reaction without further purification.

The crude 4-((5-chloropentyl)oxy)-1,1'-biphenyl was dissolved with dry acetone (15.0 mL), sodium iodide (6.00 g, 40.0 mmol, 4.00 equiv) was added at 23 °C. Subsequently, the reaction mixture was refluxed for 24 h. Afterwards the cooled mixture was filtrated and concentrated *in vacuo*. The residue was dissolved in EtOAc (50.0 mL) and washed successively with water (30.0 mL) and a saturated solution of sodium chloride (30.0 mL). The organic phase was dried over magnesium sulfate, filtered and and concentrated *in vacuo*. The residue was purified by chromatography on silica gel, eluting with hexanes/EtOAc 25:1 (v/v) to afford 2.96 g 4-((5-iodopentyl)oxy)-1,1'-biphenyl (**1**) as a white solid (81% yield).

 $R_f = 0.25$ (hexanes/EtOAc 25:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.57 – 7.49 (m, 4H), 7.44 – 7.38 (m, 2H), 7.32 – 7.27 (m, 1H), 6.98 – 6.94 (m, 2H), 4.01 (t, *J* = 6.3 Hz, 2H), 3.23 (t, *J* = 7.0 Hz, 2H), 1.96 – 1.88 (m, 2H), 1.88 – 1.80 (m, 2H), 1.66 – 1.57 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 158.8, 141.1, 134.0, 129.1, 128.5, 127.0, 127.0, 115.1, 67.9, 33.5, 28.6, 27.5, 7.1. Mass Spectrometry: HRMS-EI (m/z): Calcd for C₁₇H₁₉IO [M], 366.0481, Found, 366.0483.

1-((5-Iodopentyl)oxy)-4-isopropylbenzene (1m)

Potassium carbonate (2.76 g, 20.0 mmol, 2.00 equiv) was suspended in dry acetone (15.0 mL), 4-isopropylphenol (1.36 g, 10.0 mmol, 1.00 equiv) and 1-bromo-5-chloropentane (1.32 ml, 10.0 mmol, 1.00 equiv) were added. Subsequently, the reaction mixture was refluxed for 12 h. Afterwards the cooled mixture was concentrated *in vacuo*. The residue was dissolved in EtOAc (50.0 mL) and washed successively with 1 M aqueous NaOH solution (30.0 ml), water (30.0 mL) and a saturated solution of sodium chloride (30.0 mL). The organic phase was dried over magnesium sulfate, filtered and concentrated *in vacuo*. The crude product 1-((5-chloropentyl)oxy)-4-isopropylbenzene was taken on to the next reaction without further purification.

The crude 1-((5-chloropentyl)oxy)-4-isopropylbenzene was dissolved with dry acetone (15.0 mL), sodium iodide (6.00 g, 40.0 mmol, 4.00 equiv) was added at 23 °C. Subsequently, the reaction mixture was refluxed for 24 h. Afterwards the cooled mixture was filtrated and concentrated *in vacuo*. The residue was dissolved in EtOAc (50.0 mL) and washed successively with water (30.0 mL) and a saturated solution of sodium chloride (30.0 mL). The organic phase was dried over magnesium sulfate, filtered and and concentrated *in vacuo*. The residue was purified by chromatography on silica gel, eluting with hexanes/EtOAc 25:1 (v/v) to afford 2.06 g 1-((5-iodopentyl)oxy)-4-isopropylbenzene (**1m**) as a colorless liquid (62% yield).

 R_f = 0.3 (hexanes/EtOAc 25:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.16 − 7.11 (m, 2H), 6.85 − 6.80 (m, 2H), 3.95 (t, *J* = 6.3 Hz, 2H), 3.22 (t, *J* = 7.0 Hz, 2H), 2.91 − 2.80 (m, 1H), 1.95 − 1.86 (m, 2H), 1.84 − 1.76 (m, 2H), 1.62 − 1.54 (m, 2H), 1.22 (d, *J* = 6.9 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 157.3, 141.3, 127.5, 114.6, 67.8, 33.6, 33.5, 28.6, 27.5, 24.6, 7.1. Mass Spectrometry: HRMS-EI (m/z): Calcd for C₁₄H₂₁IO [M], 332.0637. Found, 332.0633.

1-(tert-Butyl)-4-((5-iodopentyl)oxy)benzene (1n)

Potassium carbonate (2.76 g, 20.0 mmol, 2.00 equiv) was suspended in dry acetone (15.0 mL), 4-(*tert*-butyl)phenol (1.50 g, 10.0 mmol, 1.00 equiv) and 1-bromo-5-chloropentane (1.32 ml, 10.0 mmol, 1.00 equiv) were added. Subsequently, the reaction mixture was refluxed for 12 h. Afterwards the cooled mixture was concentrated *in vacuo*. The residue was dissolved in EtOAc (50.0 mL) and washed successively with 1 M aqueous NaOH solution (30.0 ml), water (30.0 mL) and a saturated solution of sodium chloride (30.0 mL). The organic phase was dried over magnesium sulfate, filtered and concentrated *in vacuo*. The crude product 1-(*tert*-butyl)-4-((5-chloropentyl)oxy)benzene was taken on to the next reaction without

further purification.

The crude 1-(*tert*-butyl)-4-((5-chloropentyl)oxy)benzene was dissolved with dry acetone (15.0 mL), sodium iodide (6.00 g, 40.0 mmol, 4.00 equiv) was added at 23 °C. Subsequently, the reaction mixture was refluxed for 24 h. Afterwards the cooled mixture was filtrated and concentrated *in vacuo*. The residue was dissolved in EtOAc (50.0 mL) and washed successively with water (30.0 mL) and a saturated solution of sodium chloride (30.0 mL). The organic phase was dried over magnesium sulfate, filtered and and concentrated *in vacuo*. The residue was purified by chromatography on silica gel, eluting with hexanes/EtOAc 25:1 (v/v) to afford 2.73 g 1-(*tert*-butyl)-4-((5-iodopentyl)oxy)benzene (**1n**) as a colorless liquid (79% yield).

 $R_f = 0.25$ (hexanes/EtOAc 25:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.29 (m, 2H), 6.88 – 6.83 (m, 2H), 3.97 (t, J = 6.3 Hz, 2H), 3.23 (t, J = 7.0 Hz, 2H), 1.96 – 1.88 (m, 2H), 1.86 – 1.78 (m, 2H), 1.64 – 1.55 (m, 2H), 1.32 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 157.0, 143.6, 126.5, 114.2, 67.8, 34.4, 33.5, 31.9, 28.6, 27.5, 7.1. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₅H₂₃IONa [M+Na]⁺, 369.0691, Found, 369.0688.

1-((5-Iodopentyl)oxy)-4-methoxybenzene (10)

Potassium carbonate (2.76 g, 20.0 mmol, 2.00 equiv) was suspended in dry acetone (15.0 mL), 4-methoxyphenol (1.24 g, 10.0 mmol, 1.00 equiv) and 1-bromo-5-chloropentane (1.32 ml, 10.0 mmol, 1.00 equiv) were added. Subsequently, the reaction mixture was refluxed for 12 h. Afterwards the cooled mixture was concentrated *in vacuo*. The residue was dissolved in EtOAc (50.0 mL) and washed successively with 1 M aqueous NaOH solution (30.0 ml), water (30.0 mL) and a saturated solution of sodium chloride (30.0 mL). The organic phase was dried over magnesium sulfate, filtered and concentrated *in vacuo*. The crude product 1-((5-chloropentyl)oxy)-4-methoxybenzene was taken on to the next reaction without further purification.

The crude 1-((5-chloropentyl)oxy)-4-methoxybenzene was dissolved with dry acetone (15.0 mL), sodium iodide (6.00 g, 40.0 mmol, 4.00 equiv) was added at 23 °C. Subsequently, the reaction mixture was refluxed for 24 h. Afterwards the cooled mixture was filtrated and concentrated *in vacuo*. The residue was dissolved in EtOAc (50.0 mL) and washed successively with water (30.0 mL) and a saturated solution of sodium chloride (30.0 mL). The organic phase was dried over magnesium sulfate, filtered and and concentrated *in vacuo*. The residue was purified by chromatography on silica gel, eluting with hexanes/EtOAc 20:1 (v/v) to afford 2.25 g 1-((5-iodopentyl)oxy)-4-methoxybenzene (**10**) as a colorless liquid (70% yield).

 $R_f = 0.25$ (hexanes/EtOAc 15:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 6.83 (s, 4H), 3.92 (t, J = 6.4 Hz, 2H), 3.77 (s, 3H), 3.22 (t, J = 7.0 Hz, 2H), 1.94 – 1.85 (m, 2H), 1.83 – 1.73 (m, 2H), 1.63 – 1.53 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 154.0, 153.4, 115.7, 114.9, 68.5, 56.0, 33.5, 28.6, 27.5, 7.1. Mass Spectrometry: HRMS-EI (m/z): Calcd for C₁₂H₁₇IO₂ [M], 320.0273. Found, 320.0271.

5-Iodopentyl thiophene-3-carboxylate (1p)

To a solution of thiophene-3-carboxylic acid (1.28 g, 10.0 mmol, 1.00 equiv), DMAP (4-dimethylaminepyridine) (610 mg, 5.00 mmol, 0.50 equiv) and Et_3N (4.17 mL, 30.0 mmol, 3.00 equiv) in dry DCM (15.0 mL) at 23 °C under N₂ were added EDCI (2.88 g, 15.0 mmol, 1.50 equiv) and 5-chloropentan-1-ol (2.31 mL, 30.0 mmol, 3.00 equiv). The reaction was refluxed for 12 h before diluted with DCM (10.0 mL) and quenched with H₂O (10.0 mL). The mixture was stirred for 15 min and extracted 3 times with DCM (25.0 mL). The combined organic layers were dried over magnesium sulfate, filtered and concentrated *in vacuo*. The residue was dissolved with DCM (2.00 ml), passed through a pad of silica gel, washed with hexanes/EtOAc 5:1 (v/v), the filtrate was concentrated *in vacuo* and the crude product 5-chloropentyl thiophene-3-carboxylate was used for next step directly.

The crude 5-chloropentyl thiophene-3-carboxylate was dissolved with dry acetone (15.0 mL), sodium iodide (4.50 g, 30.0 mmol, 3.00 equiv) was added at 23 °C. Subsequently, the reaction mixture was refluxed for 24 h. Afterwards the cooled mixture was filtrated and concentrated *in vacuo*. The residue was dissolved in EtOAc (50.0 mL) and washed successively with water (30.0 mL) and a saturated solution of sodium chloride (30.0 mL). The organic phase was dried over magnesium sulfate, filtered and and concentrated *in vacuo*. The residue was purified by chromatography on silica gel, eluting with hexanes/EtOAc 20:1 (v/v) to afford 1.86 g 5-iodopentyl thiophene-3-carboxylate (**1p**) as a light yellow liquid (80% yield).

 R_f =0.3 (hexanes/EtOAc 20:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 8.11 (dd, *J* = 3.0, 1.0 Hz, 1H), 7.53 (dd, *J* = 5.1, 1.0 Hz, 1H), 7.31 (dd, *J* = 5.0, 3.1 Hz, 1H), 4.28 (t, *J* = 6.5 Hz, 2H), 3.21 (t, *J* = 6.9 Hz, 2H), 1.93 – 1.84 (m, 2H), 1.81 – 1.72 (m, 2H), 1.60 – 1.51 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 163.1, 134.1, 132.9, 128.2, 126.3, 64.6, 33.3, 28.0, 27.3, 6.9. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₀H₁₃IO₂SNa [M+Na]⁺, 346.9579. Found, 346.9578.

2-(4-Iodobutoxy)- 1-bromobenzene (1q)

Potassium carbonate (2.76 g, 20.0 mmol, 2.00 equiv) was suspended in dry acetone (15.0 mL), 2-bromophenol (1.73 g, 10.0 mmol, 1.00 equiv) and 1-bromo-4-chlorobutane (1.15 ml, 10.0 mmol, 1.00 equiv) were added. Subsequently, the reaction mixture was refluxed for 12 h. Afterwards the cooled mixture was concentrated *in vacuo*. The residue was dissolved in EtOAc (50.0 mL) and washed successively with 1 M aqueous NaOH solution (30.0 ml), water

(30.0 mL) and a saturated solution of sodium chloride (30.0 mL). The organic phase was dried over magnesium sulfate, filtered and concentrated *in vacuo*. The crude product 2-(4-chlorobutoxy)-1-bromobenzene was taken on to the next reaction without further purification.

The crude 2-(4-chlorobutoxy)-1-bromobenzene was dissolved with dry acetone (15.0 mL), sodium iodide (6.00 g, 40.0 mmol, 4.00 equiv) was added at 23 °C. Subsequently, the reaction mixture was refluxed for 24 h. Afterwards the cooled mixture was filtrated and concentrated *in vacuo*. The residue was dissolved in EtOAc (50.0 mL) and washed successively with water (30.0 mL) and a saturated solution of sodium chloride (30.0 mL). The organic phase was dried over magnesium sulfate, filtered and and concentrated *in vacuo*. The residue was purified by chromatography on silica gel, eluting with hexanes/EtOAc 30:1 (v/v) to afford 2.29 g 2-(4-iodobutoxy)-1-bromobenzene (**1g**) as a colorless liquid (65% yield).

 R_f = 0.35 (hexanes/EtOAc 25:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.53 (dd, *J* = 7.9, 1.5 Hz, 1H), 7.28 – 7.22 (m, 1H), 6.90 – 6.80 (m, 2H), 4.05 (t, *J* = 5.9 Hz, 2H), 3.31 (t, *J* = 6.8 Hz, 2H), 2.13 – 2.05 (m, 2H), 2.00 – 1.92 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 155.4, 133.6, 128.7, 122.2, 113.4, 112.5, 68.1, 30.4, 30.2, 7.1. Mass Spectrometry: HRMS-EI (m/z): Calcd for C₁₀H₁₂BrIO [M], 353.9116. Found, 353.9117.

3-(4-Iodobutoxy)- 1-bromobenzene (1r)

Potassium carbonate (2.76 g, 20.0 mmol, 2.00 equiv) was suspended in dry acetone (15.0 mL), 3-bromophenol (1.73 g, 10.0 mmol, 1.00 equiv) and 1-bromo-4-chlorobutane (1.15 ml, 10.0 mmol, 1.00 equiv) were added. Subsequently, the reaction mixture was refluxed for 12 h. Afterwards the cooled mixture was concentrated *in vacuo*. The residue was dissolved in EtOAc (50.0 mL) and washed successively with 1 M aqueous NaOH solution (30.0 ml), water (30.0 mL) and a saturated solution of sodium chloride (30.0 mL). The organic phase was dried over magnesium sulfate, filtered and concentrated *in vacuo*. The crude product 3-(4-chlorobutoxy)-1-bromobenzene was taken on to the next reaction without further purification.

The crude 3-(4-chlorobutoxy)-1-bromobenzene was dissolved with dry acetone (15.0 mL), sodium iodide (6.00 g, 40.0 mmol, 4.00 equiv) was added at 23 °C. Subsequently, the reaction mixture was refluxed for 24 h. Afterwards the cooled mixture was filtrated and concentrated *in vacuo*. The residue was dissolved in EtOAc (50.0 mL) and washed successively with water (30.0 mL) and a saturated solution of sodium chloride (30.0 mL). The organic phase was dried over magnesium sulfate, filtered and and concentrated *in vacuo*. The residue was purified by chromatography on silica gel, eluting with hexanes/EtOAc 25:1 (v/v) to afford 1.91 g 3-(4-iodobutoxy)-1-bromobenzene (**1r**) as a colorless liquid (54% yield).

 $R_f = 0.3$ (hexanes/EtOAc 20:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.16 - 7.02 (m, 3H), 6.85 - 6.78 (m, 1H), 3.96 (t, J = 6.0 Hz, 2H), 3.26 (t, J = 6.8 Hz, 2H), 2.07 - 1.97 (m, 2H), 1.94 - 1.85 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 159.9, 130.9, 124.1, 123.1, 118.0, 113.8, 67.2, 30.3, 30.3, 6.7. Mass Spectrometry: HRMS-EI (m/z): Calcd for C₁₀H₁₂BrIO [M], 353.9116. Found, 353.9115.

2,4-Dibromo-1-(4-iodobutoxy)benzene (1s)

Potassium carbonate (2.76 g, 20.0 mmol, 2.00 equiv) was suspended in dry acetone (15.0 mL), 2,4-dibromophenol (2.51 g, 10.0 mmol, 1.00 equiv) and 1-bromo-4-chlorobutane (1.15 ml, 10.0 mmol, 1.00 equiv) were added. Subsequently, the reaction mixture was refluxed for 12 h. Afterwards the cooled mixture was concentrated *in vacuo*. The residue was dissolved in EtOAc (50.0 mL) and washed successively with 1 M aqueous NaOH solution (30.0 ml), water (30.0 mL) and a saturated solution of sodium chloride (30.0 mL). The organic phase was dried over magnesium sulfate, filtered and concentrated *in vacuo*. The crude product 2,4-dibromo-1-(4-chlorobutoxy)benzene was taken on to the next reaction without further purification.

The crude 2,4-dibromo-1-(4-chlorobutoxy)benzene was dissolved with dry acetone (15.0 mL), sodium iodide (6.00 g, 40.0 mmol, 4.00 equiv) was added at 23 °C. Subsequently, the reaction mixture was refluxed for 24 h. Afterwards the cooled mixture was filtrated and concentrated *in vacuo*. The residue was dissolved in EtOAc (50.0 mL) and washed successively with water (30.0 mL) and a saturated solution of sodium chloride (30.0 mL). The organic phase was dried over magnesium sulfate, filtered and and concentrated *in vacuo*. The residue was purified by chromatography on silica gel, eluting with hexanes/EtOAc 20:1 (v/v) to afford 2.20 g 2,4-dibromo-1-(4-iodobutoxy)benzene (**1s**) as a colorless liquid (51% yield).

 R_f = 0.3 (hexanes/EtOAc 20:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, *J* = 2.4 Hz, 1H), 7.37 – 7.32 (m, 1H), 6.74 (d, *J* = 8.7 Hz, 1H), 4.01 (t, *J* = 5.9 Hz, 2H), 3.30 (t, *J* = 6.7 Hz, 2H), 2.12 – 2.02 (m, 2H), 2.00 – 1.90 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 154.8, 135.8, 131.5, 114.5, 113.4, 113.3, 68.5, 30.4, 30.1, 6.9. Mass Spectrometry: HRMS-EI (m/z): Calcd for C₁₀H₁₁Br₂IO [M], 431.8221. Found, 431.8227.

2-(4-Iodobutyl)isoindoline-1,3-dione (1t)

2-(4-Bromobutyl)isoindoline-1,3-dione was dissolved with dry acetone (15.0 mL), sodium iodide (4.50 g, 30.0 mmol, 3.00 equiv) was added at 23 °C. Subsequently, the reaction mixture was refluxed for 24 h. Afterwards the cooled mixture was filtrated and concentrated *in vacuo*. The residue was dissolved in EtOAc (50.0 mL) and washed successively with water (30.0 mL) and a saturated solution of sodium chloride (30.0 mL). The organic phase was dried over magnesium sulfate, filtered and and concentrated *in vacuo*. The residue was purified by chromatography on silica gel, eluting with hexanes/EtOAc 8:1 (v/v) to afford 3.05 g 2-(4-iodobutyl)isoindoline-1,3-dione (**1t**) as a white solid (93% yield).

 $R_f = 0.3$ (hexanes/EtOAc 5:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.87

-7.82 (m, 2H), 7.75 -7.69 (m, 2H), 3.72 (t, *J* = 6.7 Hz, 2H), 3.22 (t, *J* = 6.6 Hz, 2H), 1.92 -1.76 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 168.7, 134.4, 132.4, 123.6, 37.1, 30.9, 29.9, 5.9. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₂H₁₃INO₂ [M+H]⁺, 329.9991. Found, 329.9987.

N-(5-iodopentyl)saccharine (1u)

Potassium carbonate (2.76 g, 20.0 mmol, 2.00 equiv) was suspended in dry MeCN (15.0 mL), saccharin (1.82 g, 10.0 mmol, 1.00 equiv) and 1,5-dibromopentane (2.72 ml, 10.0 mmol, 1.00 equiv) were added. Subsequently, the reaction mixture was refluxed for 24 h. Afterwards the cooled mixture was concentrated *in vacuo*. The residue was purified by chromatography on silica gel eluting with hexanes/DCM 1:1 (v/v), to afford 1.50 g N-(5-bromopentyl)saccharine as a white solid (45% yield).

N-(5-Bromopentyl)saccharine was dissolved with dry acetone (15.0 mL), sodium iodide (6.00 g, 40.0 mmol, 4.00 equiv) was added at 23 °C. Subsequently, the reaction mixture was refluxed for 24 h. Afterwards the cooled mixture was filtrated and concentrated *in vacuo*. The residue was dissolved in EtOAc (50.0 mL) and washed successively with water (30.0 mL) and a saturated solution of sodium chloride (30.0 mL). The organic phase was dried over magnesium sulfate, filtered and and concentrated *in vacuo*. The residue was purified by chromatography on silica gel, eluting with hexanes/EtOAc 5:1 (v/v) to afford 1.25 g N-(5-iodopentyl)saccharine (**1u**) as a white solid (33% yield).

 R_f = 0.2 (hexanes/EtOAc 5:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 8.09 – 8.03 (m, 1H), 7.95 – 7.80 (m, 3H), 3.79 (t, *J* = 7.4 Hz, 2H), 3.19 (t, *J* = 6.9 Hz, 2H), 1.95 – 1.82 (m, 4H), 1.60 – 1.48 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 159.3, 137.9, 135.1, 134.7, 127.7, 125.5, 121.3, 39.4, 33.1, 28.0, 27.7, 6.6. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₂ H₁₄INO₃SNa [M+Na]⁺, 401.9637. Found, 401.9635.

7-(4-Iodobutoxy)-4-methyl-2H-chromen-2-one (1v)

Potassium carbonate (2.76 g, 20.0 mmol, 2.00 equiv) was suspended in dry acetone (15.0 mL), 4-methylumbelliferone (1.76 g, 10.0 mmol, 1.00 equiv) and 1-bromo-4-chlorobutane (1.15 ml, 10.0 mmol, 1.00 equiv) were added. Subsequently, the reaction mixture was refluxed for 12 h. Afterwards the cooled mixture was concentrated *in vacuo*. The residue was dissolved in EtOAc (50.0 mL) and washed successively with 1 M aqueous NaOH solution (30.0 ml), water (30.0 mL) and a saturated solution of sodium chloride (30.0 mL). The organic phase was dried over magnesium sulfate, filtered and concentrated *in vacuo*. The crude product 7-(4-chlorobutoxy)-4-methyl-2H-chromen-2-one was taken on to the next reaction without further purification.

The crude 7-(4-chlorobutoxy)-4-methyl-2H-chromen-2-one was dissolved with dry acetone (15.0 mL), sodium iodide (6.00 g, 40.0 mmol, 4.00 equiv) was added at 23 °C. Subsequently, the reaction mixture was refluxed for 24 h. Afterwards the cooled mixture was filtrated and concentrated *in vacuo*. The residue was dissolved in EtOAc (50.0 mL) and washed successively with water (30.0 mL) and a saturated solution of sodium chloride (30.0 mL). The organic phase was dried over magnesium sulfate, filtered and and concentrated *in vacuo*. The residue was purified by chromatography on silica gel, eluting with hexanes/EtOAc 5:1 (v/v) to afford 2.14 g 7-(4-iodobutoxy)-4-methyl-2H-chromen-2-one (**1v**) as a white solid (60% yield).

 R_f = 0.4 (hexanes/EtOAc 5:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, *J* = 8.8 Hz, 1H), 6.85 (dd, *J* = 8.8, 2.5 Hz, 1H), 6.80 (d, *J* = 2.4 Hz, 1H), 6.14 (s, 1H), 4.05 (t, *J* = 6.0 Hz, 2H), 3.27 (t, *J* = 6.7 Hz, 2H), 2.40 (s, 3H), 2.09 – 2.00 (m, 2H), 1.99 – 1.90 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 162.2, 161.6, 155.5, 152.9, 125.9, 113.9, 112.9, 112.3, 101.6, 67.6, 30.3, 30.2, 19.0, 6.4. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₄H₁₆IO₃ [M+H]⁺, 359.0144. Found, 359.0138.

5-Iodohexan-2-yl 4-fluorobenzoate (1x)

To a solution of 4-fluorobenzoic acid (700 mg, 5.00 mmol, 1.00 equiv), DMAP (4-dimethylaminepyridine) (305 mg, 2.50 mmol, 0.50 equiv) and Et_3N (1.74 mL, 12.5 mmol, 2.50 equiv) in dry DCM (15.0 mL) at 23 °C under N₂ were added EDCI (1.92 g, 10.0 mmol, 2.00 equiv) and hexane-2,5-diol (0.92 mL, 7.50 mmol, 1.50 equiv). The reaction mixture was stirred and monitored by TLC. When completed, the reaction was diluted with DCM (10.0 mL) and quenched with H₂O (10.0 mL). The mixture was stirred for 15 min and extracted three times with DCM (25.0 mL). The combined organic layers were dried over magnesium sulfate, filtered and concentrated *in vacuo*. The residue was purified by chromatography on silica gel, eluting with hexanes/EtOAc 5:1 (v/v) to afford 672 mg 5-hydroxyhexan-2-yl 4-fluorobenzoate as a light yellow liquid (56% yield).

5-Hydroxyhexan-2-yl 4-fluorobenzoate (672 mg, 2.80 mmol, 1.00 equiv) was dissolved with dry DCM (10.0 mL), to which was added sequentially triphenylphosphine (808 mg, 3.08 mmol, 1.10 equiv), imidazole (229 mg, 3.36 mmol, 1.20 equiv), and iodine (599 mg, 3.36 mmol, 1.20 equiv) in three portions. The reaction was stirred overnight, in the dark, at room temperature. The reaction was quenched by the addition of a saturated solution of sodium thiosulfate and extracted three times with DCM (20.0 mL). The combined organic layers were washed with brine, dried over magnesium sulfate, filtered and concentrated *in vacuo*. The residue was purified by chromatography on silica gel, eluting with hexanes/EtOAc 50:1 (v/v) to afford 823 mg 5-iodohexan-2-yl 4-fluorobenzoate (**1x**) as a light yellow liquid (84% yield). R_f =0.2 (hexanes/EtOAc 50:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 8.10 – 7.98 (m, 2H), 7.16 – 7.05 (m, 2H), 5.23 – 5.11 (m, 1H), 4.25 – 4.13 (m, 1H), 2.00 – 1.63 (m, 7H), 1.36 (dd, *J* = 6.3, 0.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.5, 165.5, 166.1 (d, *J* = 253.8 Hz), 132.4 (d, *J* = 9.4 Hz), 127.2 (d, *J* = 2.9 Hz), 127.1 (d, *J* = 2.9 Hz), 115.8 (d, *J* =

21.9 Hz), 71.5, 71.0, 39.1, 38.8, 36.6, 36.5, 29.8, 29.8, 29.3, 29.3, 20.6, 20.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -105.7 – -105.9 (m, 1F). Mass Spectrometry: HRMS-EI (m/z): Calcd for C₁₄H₁₆F₃O₂ [M-I], 223.1134. Found, 223.1135.

5-Iodohexan-2-yl benzoate (1y)

To a solution of benzoic acid (611 mg, 5.00 mmol, 1.00 equiv), DMAP (4-dimethylaminepyridine) (305 mg, 2.50 mmol, 0.50 equiv) and Et_3N (1.74 mL, 12.5 mmol, 2.50 equiv) in dry DCM (15.0 mL) at 23 °C under N₂ were added EDCI (1.92 g, 10.0 mmol, 2.00 equiv) and hexane-2,5-diol (0.92 mL, 7.50 mmol, 1.50equiv). The reaction mixture was stirred and monitored by TLC. When completed, the reaction was diluted with DCM (10.0 mL) and quenched with H₂O (10.0 mL). The mixture was stirred for 15 min and extracted three times with DCM (25.0 mL). The combined organic layers were dried over magnesium sulfate, filtered and concentrated *in vacuo*. The residue was purified by chromatography on silica gel, eluting with hexanes/EtOAc 8:1 (v/v) to afford 211 mg 5-hydroxyhexan-2-yl benzoate as a light yellow liquid (38% yield).

5-Hydroxyhexan-2-yl benzoate (211 mg, 1.90 mmol, 1.00 equiv) was dissolved with dry DCM (10.0 mL), to which was added sequentially triphenylphosphine (548 mg, 2.09 mmol, 1.10 equiv), imidazole (155 mg, 2.28 mmol, 1.20 equiv), and iodine (579 mg, 2.28 mmol, 1.20 equiv) in three portions. The reaction was stirred overnight, in the dark, at room temperature. The reaction was quenched by the addition of a saturated solution of sodium thiosulfate and extracted three times with DCM (20.0 mL). The combined organic layers were washed with brine, dried over magnesium sulfate, filtered and concentrated *in vacuo*. The residue was purified by chromatography on silica gel, eluting with hexanes/EtOAc 50:1 (v/v) to afford 524 mg 5-iodohexan-2-yl benzoate (1y) as a light yellow liquid (83% yield).

 R_f =0.5 (hexanes/EtOAc 20:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 8.07 − 8.01 (m, 2H), 7.56 (t, *J* = 7.4 Hz, 1H), 7.45 (t, *J* = 7.7 Hz, 2H), 5.25 − 5.13 (m, 1H), 4.26 − 4.13 (m, 1H), 2.01 − 1.66 (m, 7H), 1.37 (d, *J* = 6.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.5, 166.4, 133.2, 130.9, 130.9, 129.9, 128.7, 71.3, 70.8, 39.2, 38.8, 36.7, 36.5, 30.0, 29.9, 29.4, 29.3, 20.6, 20.5. Mass Spectrometry: HRMS-EI (m/z): Calcd for C₁₃H₁₇O₂ [M-I], 205.1229. Found, 205.1227.

(S)-*tert*-Butyl-2-(1,3-dioxoisoindolin-2-yl)-3-(4-((5-iodopentyl)oxy)phenyl)propanoate (1z)

In a round-bottom flask fitted with Dean-stark apparatus and a reflux condenser, phthalic acid anhydride (1.48 g, 10 mmol, 1.00 equiv) and *tert*-butyl L-tyrosinate (2.37g, 10 mmol, 1.00 equiv) were refluxed in toluene (25.0 mL) in the presence of 0.1 mL triethylamine overnight. Afterwards the cooled mixture was concentrated *in vacuo*. Water was added to this oily mass and extracted three times with EtOAc (50.0 mL). The combined organic layers were dried over magnesium sulfate, filtered and concentrated *in vacuo*. The residue was purified by chromatography on silica gel, eluting with hexanes/EtOAc 5:1 (v/v) to afford 3.08 g (S)-*tert*-butyl-2-(1,3-dioxoisoindolin-2-yl)-3-(4-hydroxyphenyl)propanoate as a white solid (83% yield).

Potassium carbonate (1.38 g, 10.0 mmol, 2.00 equiv) was suspended in dry acetone (10.0 mL), (S)-tert-butyl-2-(1,3-dioxoisoindolin-2-yl)-3-(4-hydroxyphenyl)propanoate (1.54 g, 5.00 mmol, 1.00 equiv) and 1-bromo-5-chloropentane (0.66 ml, 5.00 mmol, 1.00 equiv) were added. Subsequently, the reaction mixture was refluxed for 12 h. Afterwards the cooled mixture was concentrated in vacuo. The residue was dissolved in EtOAc (50.0 mL) and washed successively with 1 M aqueous NaOH solution (30.0 ml), water (30.0 mL) and a saturated solution of sodium chloride (30.0 mL). The organic phase was dried over magnesium sulfate, filtered and concentrated in vacuo. The crude product (S)-tert-butyl-3-(4-((5-chloropentyl)oxy)phenyl)-2-(1,3-dioxoisoindolin-2-yl)propanoate was taken on to the next reaction without further purification.

The crude (S)-tert-butyl-3-(4-((5-chloropentyl)oxy)phenyl) -2-(1,3-dioxoisoindolin-2-yl)propanoate was dissolved with dry acetone (10.0 mL), sodium iodide (3.00 g, 20.0 mmol, 4.00 equiv) was added at 23 °C. Subsequently, the reaction mixture was refluxed for 24 h. Afterwards the cooled mixture was filtrated and concentrated *in vacuo*. The residue was dissolved in EtOAc (50.0 mL) and washed successively with water (30.0 mL) and a saturated solution of sodium chloride (30.0 mL). The organic phase was dried over magnesium sulfate, filtered and concentrated *in vacuo*. The residue was purified by chromatography on silica gel, eluting with hexanes/EtOAc 10:1 (v/v) to afford 1.46 g (S)-tert-butyl-2-(1,3-dioxoisoindolin-2-yl)-3-(4-((5-iodopentyl)oxy)phenyl)propanoate (**1z**) as a colorless oily liquid (52% yield).

Rf = 0.3 (hexanes/EtOAc 10:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.80 - 7.74 (m, 2H), 7.71 - 7.64 (m, 2H), 7.09 - 7.02 (m, 2H), 6.73 - 6.67 (m, 2H), 5.01 (dd, J = 10.0, 6.7 Hz, 1H), 3.90 - 3.80 (m, 2H), 3.51 - 3.43 (m, 2H), 3.18 (t, J = 7.0 Hz, 2H), 1.91 - 1.81 (m, 2H), 1.78 - 1.68 (m, 2H), 1.58 - 1.49 (m, 2H), 1.45 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 167.9, 167.6, 157.7, 134.0, 131.6, 129.8, 129.0, 123.4, 114.5, 82.7, 67.4, 54.3, 33.8, 33.2, 28.2, 27.9, 27.1, 6.8. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₂₆H₃₀INO₅Na [M+Na]⁺, 586.1066. Found, 586.1065.

3,12-Dimethoxy cholan-24-iodo (1aa)

To a suspension of NaH (684 mg of a 60 % suspension in mineral oil, 17.09 mmol, 3.40 equiv) in 40.0 mL of dry THF at 0 $^{\circ}$ C, was added deoxycholic acid (1.96 g, 5.00 mmol, 1.00 equiv) in portions. The resulting solution was stirred at 0 $^{\circ}$ C for 10 min, and then was added methyl iodide (0.49 mL, 7.80 mmol, 1.56 equiv). The reaction mixture was stirred for 18 h at ambient temperature and then was added a second portion of NaH (557 mg, 13.9 mmol, 2.78 equiv), followed by more methyl iodide (0.40 mL, 6.50 mmol, 1.30 equiv). The reaction was stirred for an additional 36 h at ambient temperature. The reaction mixture was quenched by slow addition of methanol then concentrated *in vacuo*. The resulting mixture was then extracted three times with EtOAc (25.0 mL). The combined organics were washed with brine (25.0 mL), dried over magnesium sulfate, filtered and concentrated *in vacuo*. The crude product di-*O*-methyl deoxycholic acid was taken on to the next reaction without further purification.

Crude di-*O*-methyl deoxycholic acid was dissolved with THF (15.0 mL) at 0 °C, to which was added LiAlH₄ (570 mg, 15.0 mmol, 3.00 equiv) in three portions with vigorous stirring under nitrogen atmosphere. The reaction mixture was then heated to reflux with stirring for overnight. Upon completion, the reaction was carefully quenched with the same amount of water (0.57 mL) as LiAlH₄ at 0°C, subsequently aqueous NaOH solution (0.57 mL), water (0.57 mL×3) were added, filtered and concentrated *in vacuo*. The residue was purified by chromatography on silica gel, eluting with hexanes/EtOAc 4:1 (v/v) to afford 1.80 g 3,12-dimeth oxycholan-24-ol (**S-1**) as a white solid (88% yield).

 R_f = 0.5 (hexanes/EtOAc 2:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 3.61 (t, *J* = 6.5 Hz, 2H), 3.39 (s, 1H), 3.33 (s, 3H), 3.25 (s, 3H), 3.19 – 3.09 (m, 1H), 1.91 – 1.68 (m, 8H), 1.67 – 1.51 (m, 4H), 1.47 – 0.98 (m, 14H), 0.95 – 0.88 (m, 6H), 0.66 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 82.6, 80.8, 63.9, 56.0, 55.8, 49.2, 47.0, 46.6, 42.4, 36.3, 35.7, 35.6, 34.8, 33.8, 32.9, 32.1, 29.8, 27.9, 27.7, 27.1, 26.4, 24.0, 23.6, 22.2, 18.0, 13.0. Mass Spectrometry: HRMS-EI (m/z): Calcd for C₂₆H₄₆O₃ [M], 406.3447. Found, 406.3458

3,12-Dimethoxy cholan-24-ol (S-1) (1.90 g, 4.16 mmol, 1.00 equiv) was dissolved with dry DCM (10.0 mL), to which was added sequentially triphenylphosphine (1.20 g, 4.58 mmol, 1.10 equiv), imidazole (340 mg, 4.99 mmol, 1.20 equiv), and iodine (1.27 g, 4.99 mmol, 1.20 equiv) in portions. The reaction was stirred overnight, in the dark, at room temperature. The reaction was quenched by the addition of a saturated solution of sodium thiosulfate and extracted three times with DCM (20.0 m). The combined organic layers were washed with brine, dried over magnesium sulfate, filtered and concentrated *in vacuo*. The residue was purified by chromatography on silica gel, eluting with hexanes/EtOAc 20:1 (v/v) to afford 1.94 g 3,12-dimethoxy cholan-24-iodo (**1aa**) as a white solid (90% yield).

 R_f = 0.2 (hexanes/EtOAc 20:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 3.38 (s, 1H), 3.34 (s, 3H), 3.25 (s, 3H), 3.22 – 3.09 (m, 3H), 1.92 – 1.65 (m, 10H), 1.62 – 1.58 (m, 1H), 1.55 – 1.52 (m, 1H), 1.47 – 0.95 (m, 14H), 0.94-0.86 (m, 6H), 0.66 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 82.5, 80.8, 56.0, 55.9, 49.1, 46.9, 46.6, 42.4, 37.1, 36.3, 35.6, 35.2, 34.8, 33.8, 32.9, 30.7, 27.9, 27.6, 27.1, 26.4, 24.0, 23.6, 22.2, 18.1, 13.0, 8.3. Mass Spectrometry: HRMS-EI (m/z): Calcd for C₂₆H₄₅IO₂ [M], 516.2464. Found, 516.2468.

7-O-acetyl-13-O-(5-iodopentanoate)baccatine III (1bb)

7-O-acetyl baccatine III, 90%

To a solution of baccatine III (200 mg, 0.341 mmol, 1.00 equiv), DMAP (4-dimethylaminepyridine) (20.8 mg, 0.17 mmol, 0.500 equiv) and Et₃N (187 μ L, 1.71 mmol, 4.00 equiv) in dry THF (4.00 mL) at 23 °C under N₂ were added acetic anhydride (64.2 μ L 0.684 mmol, 2.00 equiv). The reaction mixture was stirred and monitored by TLC. When completed, the reaction was diluted with EtOAc (50.0 mL) and quenched with H₂O (20.0 mL). The mixture was stirred for 15 min, and the aqueous fraction was separated and extracted three times with EtOAc (25.0 mL). The combined organic layers were dried over magnesium sulfate, filtered and concentrated *in vacuo*. The residue was purified by chromatography on silica gel, eluting with hexanes/EtOAc 1:1 (v/v), to afford 203 mg 7-*O*-acetyl baccatine III¹ as a white solid (90% yield).

To a solution of 5-chloropentanoic acid (114 μ L, 0.972 mmol, 3.00 equiv), DMAP (4-dimethylaminepyridine) (118 mg, 0.972 mmol, 3.00 equiv) and Et₃N (225 μ L, 1.62 mmol, 5.00 equiv) in dry THF (4.00 mL) at 23 °C under N₂ were added EDCI (186 mg, 0.972 mmol, 3.00 equiv) and 7-*O*-acetyl baccatine III (203 mg, 0.324 mmol, 1.00 equiv). The reaction was

stirred for 20 h before diluted with EtOAc (50.0 mL) and quenched with H_2O (10.0 mL). The mixture was stirred for 15 min and extracted three times with EtOAc (25.0 mL). The combined organic layers were dried over magnesium sulfate, filtered and concentrated *in vacuo*. The residue was purified by chromatography on silica gel, eluting with hexanes/EtOAc 3:1 (v/v), to afford 186 mg 7-*O*-acetyl-13-*O*-(5-chloropentanoate)baccatine III (S-2) as a white solid (82% yield).

 R_f = 0.6 (hexanes/EtOAc 1:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, *J* = 7.3 Hz, 2H), 7.61 (t, *J* = 7.4 Hz, 1H), 7.48 (t, *J* = 7.7 Hz, 2H), 6.25 (s, 1H), 6.19 (t, *J* = 8.7 Hz, 1H), 5.65 (d, *J* = 6.9 Hz, 1H), 5.58 (dd, *J* = 10.5, 7.1 Hz, 1H), 4.96 (d, *J* = 8.6 Hz, 1H), 4.31 (d, *J* = 8.3 Hz, 1H), 4.14 (d, *J* = 8.4 Hz, 1H), 3.94 (d, *J* = 6.9 Hz, 1H), 3.58 (t, *J* = 5.5 Hz, 2H), 2.65 − 2.40 (m, 3H), 2.33 (s, 3H), 2.27 − 2.19 (m, 2H), 2.17 (s, 3H), 2.03 (s, 3H), 1.94 (s, 3H), 1.91 − 1.84 (m, 4H), 1.84 − 1.81 (m, 1H), 1.79 (s, 3H), 1.71 (s, 1H), 1.21 (s, 3H), 1.16 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 202.4, 172.9, 170.8, 169.8, 169.2, 167.2, 141.7, 134.1, 132.8, 130.4, 129.4, 129.0, 84.3, 81.2, 79.1, 76.6, 75.7, 74.7, 71.7, 69.8, 56.4, 47.5, 44.7, 43.5, 35.8, 33.9, 33.7, 32.1, 26.7, 22.9, 22.5, 21.5, 21.1, 21.0, 15.2, 11.1. Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₃₈H₅₁CINO₁₃ [M+NH₄]⁺, 764.3049. Found, 764.3043.

7-*O*-acetyl-13-*O*-(5-chloropentanoate)baccatine III (**S-2**) (186 mg, 0.266 mmol, 1.00 equiv) was dissolved with dry acetone (5.00 mL), sodium iodide (120 mg, 0.800 mmol, 3.00 equiv) was added at 23 °C. Subsequently, the reaction mixture was refluxed for 24 h. Afterwards the cooled mixture was filtrated and concentrated *in vacuo*. The residue was dissolved in EtOAc (50.0 mL) and washed successively with water (30.0 mL) and a saturated solution of sodium chloride (30.0 mL). The organic phase was dried over magnesium sulfate, filtered and concentrated *in vacuo*. The residue was purified by chromatography on silica gel, eluting with hexanes/EtOAc 3:1 (v/v) to afford 145 mg 7-*O*-acetyl-13-*O*-(5-iodopentanoate)baccatine III (**1bb**) as a white solid (65% yield).

R_f = 0.6 (hexanes/EtOAc 1:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, *J* = 7.6 Hz, 2H), 7.62 (t, *J* = 7.4 Hz, 1H), 7.49 (t, *J* = 7.7 Hz, 2H), 6.26 (s, 1H), 6.20 (t, *J* = 8.3 Hz, 1H), 5.66 (d, *J* = 6.9 Hz, 1H), 5.59 (dd, *J* = 10.6, 7.1 Hz, 1H), 4.97 (d, *J* = 8.5 Hz, 1H), 4.33 (d, *J* = 8.5 Hz, 1H), 4.15 (d, *J* = 8.4 Hz, 1H), 3.95 (d, *J* = 7.0 Hz, 1H), 3.22 (t, *J* = 6.6 Hz, 2H), 2.65 – 2.38 (m, 3H), 2.34 (s, 3H), 2.24 (d, *J* = 8.3 Hz, 2H), 2.18 (s, 3H), 2.04 (s, 3H), 1.95 (s, 3H), 1.94 – 1.81 (m, 5H), 1.80 (s, 3H), 1.65 (s, 1H), 1.22 (s, 3H), 1.17 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 202.1, 172.5, 170.5, 169.5, 168.9, 166.9, 141.3, 133.8, 132.5, 130.1, 129.1, 128.7, 84.0, 80.9, 78.8, 76.3, 75.4, 74.4, 71.4, 69.5, 56.0, 47.2, 43.2, 35.5, 33.4, 33.2, 32.7, 26.4, 25.7, 22.6, 21.1, 20.8, 20.7, 14.9, 10.8, 5.5. Mass Spectrometry: HRMS-ESI (m/z): Calcd for $C_{38}H_{51}INO_{13}$ [M+NH₄]⁺, 856.2405. Found, 856.2398.

5-Fluoropentyl 4-fluorobenzoate (3a)

In an N₂ glovebox, to Ag₂O (116 mg, 0.500 mmol, 1.00 equiv), CaF₂ (117 mg, 1.50 mmol, 3.00 equiv) in a 10.0 mL sealed vial were added CH₃CN (2.00 mL) and toluene (0.500 mL). [bmim][NTf₂] (1-Butyl-3-methylimidazoliumBis(trifluoromethanesulfonyl)) (105 mg, 0.250 mmol, 0.500 equiv), 5-iodopentyl 4-fluorobenzoate (**1a**) (168 mg, 0.500 mmol, 1.00 equiv) were added to the reaction subsequently. The resulting mixture was stirred for 30 min at 25 °C, TMSCF₃ (225 μ L, 1.50 mmol, 3.00 equiv) was added and then the reaction mixture was stirred at 90 °C for a further 12 h. After cooling to room temperature, the mixture was diluted with EtOAc (10.0 mL) and quenched with H₂O (10.0 mL), filtrated and washed three times with EtOAc (10.0 mL). The filtrate was extracted three times with EtOAc (5.00 mL). The residue was purified by chromatography on silica gel, eluting with hexanes/toluene 4:1 (v/v) to afford 103 mg 5-fluoropentyl 4-fluorobenzoate (**3a**) as a colorless liquid (88% yield).

 $R_f = 0.20$ (hexanes/toluene 3:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 8.09 – 8.01 (m, 2H), 7.15 – 7.07 (m, 2H), 4.48 (dt, J = 47.3, 6.0 Hz, 2H), 4.33 (t, J = 6.5 Hz, 2H), 1.88 – 1.70 (m, 4H), 1.64 – 1.53 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 166.0 (d, J = 253.7 Hz), 166.0, 132.4 (d, J = 9.3 Hz), 126.9 (d, J = 3.0 Hz), 115.8 (d, J = 22.0 Hz), 84.2 (d, J = 164.7 Hz), 65.2, 30.4 (d, J = 19.7 Hz), 28.7, 22.3 (d, J = 5.2 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -105.8 – -105.9 (m, 1F), -218.4 – -218.9 (m, 1F) . Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₂ H₁₄F₂O₂Na [M+Na]⁺, 251.0860. Found, 251.0858.

1-((5-Fluoropentyl)oxy)-4-(trifluoromethyl)benzene (3b)

In an N₂ glovebox, to Ag₂O (116 mg, 0.500 mmol, 1.00 equiv), CaF₂ (117 mg, 1.50 mmol, 3.00 equiv) in a 10.0 mL sealed vial were added CH₃CN (2.00 mL) and toluene (0.500 mL). [bmim][NTf₂] (1-Butyl-3-methylimidazoliumBis(trifluoromethanesulfonyl)) (105 mg, 0.250 mmol, 0.500 equiv), 1-((5-iodopentyl)oxy)-4-(trifluoromethyl)benzene (1b) (179 mg, 0.500 mmol, 1.00 equiv) were added to the reaction subsequently. The resulting mixture was stirred for 30 min at 25 °C, TMSCF₃ (225 µL, 1.50 mmol, 3.00 equiv) was added and then the reaction mixture was stirred at 90 °C for a further 12 h. After cooling to room temperature, the mixture was diluted with EtOAc (10.0 mL) and quenched with H₂O (10.0 mL), filtrated and washed three times with EtOAc (10.0 mL). The filtrate was extracted three times with EtOAc (5.00 mL). The combined organic layers were dried over anh. MgSO₄, filtered and concentrated in vacuo. The residue was purified by chromatography on silica gel, eluting with hexanes/EtOAc 50:1 (v/v)afford 104 to mg 1-((5-fluoropentyl)oxy)-4-(trifluoromethyl)benzene (3b) as a colorless liquid (83% yield).

 R_f = 0.50 (hexanes/EtOAc 20:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, *J* = 8.7 Hz, 2H), 6.94 (d, *J* = 8.6 Hz, 2H), 4.49 (dt, *J* = 47.3, 6.0 Hz, 2H), 4.01 (t, *J* = 6.3 Hz, 2H), 1.90 – 1.71 (m, 4H), 1.66 – 1.57 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 161.5, 126.9 (q, *J* = 3.6 Hz), 124.5 (q, *J* = 271.0 Hz), 122.7 (q, *J* = 32.7 Hz), 114.4, 83.9 (d, *J* = 164.6 Hz), 67.9, 30.1 (d, *J* = 19.7 Hz), 28.8, 22.0 (d, *J* = 5.3 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -61.4 (s, 3F), -218.3 – -218.8 (m, 1F). Mass Spectrometry: HRMS-EI (m/z): Calcd for C₁₂ H₁₄F₄O [M], 250.0981. Found, 250.0978.

1-((5-Fluoropentyl)oxy)-4-nitrobenzene (3c)

In an N₂ glovebox, to Ag₂O (139 mg, 0.600 mmol, 1.20 equiv), CaF₂ (117 mg, 1.50 mmol, 3.00 equiv) in a 10.0 mL sealed vial were added CH₃CN (2.00 mL) and toluene (0.500 mL). [bmim][NTf₂] (1-Butyl-3-methylimidazoliumBis(trifluoromethanesulfonyl)) (105 mg, 0.250 mmol, 0.500 equiv), 1-((5-iodopentyl)oxy)-4-nitrobenzene (1c) (168 mg, 0.500 mmol, 1.00 equiv) were added to the reaction subsequently. The resulting mixture was stirred for 30 min at 25 °C, TMSCF₃ (225 µL, 1.50 mmol, 3.00 equiv) was added and then the reaction mixture was stirred at 90 °C for a further 12 h. After cooling to room temperature, the mixture was diluted with EtOAc (10.0 mL) and quenched with H_2O (10.0 mL), filtrated and washed three times with EtOAc (10.0 mL). The filtrate was extracted three times with EtOAc (5.00 mL). The combined organic layers were dried over anh. MgSO₄, filtered and concentrated in vacuo. silica The residue was purified by chromatography on gel, eluting with hexanes/toluene/acetone 5:3:0.2 (v/v/v)to afford 84.4 mg 1-((5-fluoropentyl)oxy)-4-nitrobenzene (3c) as a colorless liquid (74% yield).

 R_f = 0.20 (hexanes/toluene/acetone 5:3:0.2 (v/v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 8.23 – 8.16 (m, 2H), 6.97 – 6.89 (m, 2H), 4.49 (dt, *J* = 47.2, 5.9 Hz, 2H), 4.07 (t, *J* = 6.3 Hz, 2H), 1.93 – 1.70 (m, 4H), 1.66 – 1.59 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 164.4, 141.6, 126.2, 114.7, 84.1 (d, *J* = 164.6 Hz), 68.8, 30.3 (d, *J* = 19.7 Hz), 28.9, 22.2 (d, *J* = 5.3 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -218.4 – -218.9 (m, 1F). Mass Spectrometry: HRMS-EI (m/z): Calcd for C₁₁H₁₄FNO₃ [M], 227.0958. Found, 227.0961.

4-(4-Fluorobutoxy)benzonitrile (3d)

In an N₂ glovebox, to Ag₂O (139 mg, 0.600 mmol, 1.20 equiv), CaF₂ (117 mg, 1.50 mmol, 3.00 equiv) in a 10.0 mL sealed vial were added CH₃CN (2.00 mL) and toluene (0.500 mL). [bmim][NTf₂] (1-Butyl-3-methylimidazoliumBis(trifluoromethanesulfonyl)) (105 mg, 0.250 mmol, 0.500 equiv), 4-(4-iodobutoxy)benzonitrile (**1d**) (150 mg, 0.500 mmol, 1.00 equiv) were added to the reaction subsequently. The resulting mixture was stirred for 30 min at 25 °C, TMSCF₃ (225 μ L, 1.50 mmol, 3.00 equiv) was added and then the reaction mixture was
stirred at 90 °C for a further 12 h. After cooling to room temperature, the mixture was diluted with EtOAc (10.0 mL) and quenched with H₂O (10.0 mL), filtrated and washed three times with EtOAc (10.0 mL). The filtrate was extracted three times with EtOAc (5.00 mL). The combined organic layers were dried over anh. MgSO₄, filtered and concentrated *in vacuo*. The residue was purified by chromatography on silica gel, eluting with hexanes/toluene/acetone 1:1:0.015 (v/v/v) to afford 82.6 mg 4-(4-fluorobutoxy)benzonitrile (**3d**) as a white solid (85% yield).

 $R_f = 0.30$ (hexanes/toluene/acetone 1:1:0.02 (v/v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.61 – 7.54 (m, 2H), 6.97 – 6.88 (m, 2H), 4.53 (dt, *J* = 47.6, 5.6 Hz, 2H), 4.05 (t, *J* = 6.0 Hz, 2H), 2.01 – 1.80 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 162.5, 134.3, 119.6, 115.5, 104.2, 83.9 (d, *J* = 165.1 Hz), 68.0, 27.4 (d, *J* = 20.0 Hz), 25.4 (d, *J* = 4.8 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -218.6 – -219.0 (m, 1F). Mass Spectrometry: HRMS-EI (m/z): Calcd for C₁₁H₁₂FNO [M], 193.0903. Found, 193.0901.

1-(4-Fluorobutoxy)-4-(trifluoromethoxy)benzene (3e)

In an N₂ glovebox, to Ag₂O (116 mg, 0.500 mmol, 1.00 equiv), CaF₂ (117 mg, 1.50 mmol, 3.00 equiv) in a 10.0 mL sealed vial were added CH₃CN (2.00 mL) and toluene (0.500 mL). [bmim][NTf₂] (1-Butyl-3-methylimidazoliumBis(trifluoromethanesulfonyl)) (105 mg, 0.250 mmol, 0.500 equiv), 1-(4-iodobutoxy)-4-(trifluoromethoxy)benzene (**1e**) (180 mg, 0.500 mmol, 1.00 equiv) were added to the reaction subsequently. The resulting mixture was stirred for 30 min at 25 °C, TMSCF₃ (225 μ L, 1.50 mmol, 3.00 equiv) was added and then the reaction mixture was stirred at 90 °C for a further 12 h. After cooling to room temperature, the mixture was diluted with EtOAc (10.0 mL) and quenched with H₂O (10.0 mL), filtrated and washed three times with EtOAc (10.0 mL). The filtrate was extracted three times with EtOAc (5.00 mL). The combined organic layers were dried over anh. MgSO₄, filtered and concentrated *in vacuo*. The residue was purified by chromatography on silica gel, eluting with hexanes/toluene 15:1 (v/v) to afford 75.1 mg 1-(4-fluorobutoxy)-4-(trifluoromethoxy)benzene (**3e**) as a colorless liquid (60% yield).

 $R_f = 0.40$ (hexanes/toluene 10:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.16-7.10 (m, 2H), 6.90 – 6.84 (m, 2H), 4.53 (dt, J = 48.0, 5.5 Hz, 1H), 3.99 (t, J = 5.9 Hz, 2H), 1.97 – 1.81 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 157.8, 143.0, 122.8, 120.9 (q, J = 256.0 Hz), 115.5, 84.1 (d, J = 164.7 Hz), 68.0, 27.5 (d, J = 20.0 Hz), 25.6 (d, J = 4.8 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -58.4 (s, 3F), -218.5 – -218.9 (m, 1F). Mass Spectrometry: HRMS-EI (m/z): Calcd for C₁₁H₁₂F₄O₂ [M], 252.0773. Found, 252.0774.

1-((5-Fluoropentyl)oxy)-4-fluorobenzene (3f)

In an N₂ glovebox, to Ag₂O (116 mg, 0.500 mmol, 1.00 equiv), CaF₂ (117 mg, 1.50 mmol, 3.00 equiv) in a 10.0 mL sealed vial were added CH₃CN (2.00 mL) and toluene (0.500 mL). [bmim][NTf₂] (1-Butyl-3-methylimidazoliumBis(trifluoromethanesulfonyl)) (105 mg, 0.250 mmol, 0.500 equiv), 1-((5-iodopentyl)oxy)-4-fluorobenzene (**1f**) (154 mg, 0.500 mmol, 1.00 equiv) were added to the reaction subsequently. The resulting mixture was stirred for 30 min at 25 °C, TMSCF₃ (225 μ L, 1.50 mmol, 3.00 equiv) was added and then the reaction mixture was stirred at 90 °C for a further 12 h. After cooling to room temperature, the mixture was diluted with EtOAc (10.0 mL) and quenched with H₂O (10.0 mL), filtrated and washed three times with EtOAc (10.0 mL). The filtrate was extracted three times with EtOAc (5.00 mL). The sequence of organic layers were dried over anh. MgSO₄, filtered and concentrated *in vacuo*. The residue was purified by chromatography on silica gel, eluting with hexanes/toluene 10:1 (v/v) to afford 70.1 mg 1-((5-fluoropentyl)oxy)-4-fluorobenzene (**3f**) as a colorless liquid (70% yield).

 $R_f = 0.2$ (hexanes/toluene 10:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.00 – 6.92 (m, 2H), 6.86 – 6.79 (m, 2H), 4.48 (dt, J = 47.3, 6.0 Hz, 2H), 3.93 (t, J = 6.3 Hz, 2H), 1.90 – 1.69 (m, 4H), 1.64 – 1.55 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 157.5 (d, J =237.8 Hz), 155.5 (d, J = 2.0 Hz), 116.1 (d, J = 23.0 Hz), 115.7 (d, J = 8.0 Hz), 84.3 (d, J =164.5 Hz), 68.6, 30.5 (d, J = 19.6 Hz), 29.2, 22.3 (d, J = 5.4 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -124.3 – -124.4 (m, 1F), -218.2 – -218.7 (m, 1F). Mass Spectrometry: HRMS-EI (m/z): Calcd for C₁₁H₁₄F₂O [M], 200.1013. Found, 200.1016.

1-((5-Fluoropentyl)oxy)-4-chlorobenzene (3g)

In an N₂ glovebox, to Ag₂O (116 mg, 0.500 mmol, 1.00 equiv), CaF₂ (117 mg, 1.50 mmol, 3.00 equiv) in a 10.0 mL sealed vial were added CH₃CN (2.00 mL) and toluene (0.500 mL). [bmim][NTf₂] (1-Butyl-3-methylimidazoliumBis(trifluoromethanesulfonyl)) (105 mg, 0.250 mmol, 0.500 equiv), 1-((5-iodopentyl)oxy)-4-chlorobenzene (**1g**) (162 mg, 0.500 mmol, 1.00 equiv) were added to the reaction subsequently. The resulting mixture was stirred for 30 min at 25 °C, TMSCF₃ (225 μ L, 1.50 mmol, 3.00 equiv) was added and then the reaction mixture was stirred at 90 °C for a further 12 h. After cooling to room temperature, the mixture was diluted with EtOAc (10.0 mL) and quenched with H₂O (10.0 mL), filtrated and washed three times with EtOAc (10.0 mL). The filtrate was extracted three times with EtOAc (5.00 mL). The residue was purified by chromatography on silica gel, eluting with hexanes/toluene 15:1 (v/v) to afford 83.1 mg 1-((5-fluoropentyl)oxy)-4-chlorobenzene (**3g**) as a colorless liquid (77% yield).

 $R_f = 0.4$ (hexanes/toluene 10:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.25 – 7.19 (m, 2H), 6.85 – 6.77 (m, 2H), 4.48 (dt, J = 47.3, 6.0 Hz, 2H), 3.94 (t, J = 6.3 Hz, 2H), 1.89 – 1.68 (m, 4H), 1.64 – 1.54 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 157.9, 129.6, 125.7, 116.0, 84.3 (d, J = 164.5 Hz), 68.2, 30.5 (d, J = 19.6 Hz), 29.1, 22.2 (d, J = 5.4 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -218.3 – -218.7 (m, 1F). Mass Spectrometry: HRMS-EI (m/z): Calcd for C₁₁H₁₄ClFO [M], 216.0717. Found, 216.0719.

1-((5-Fluoropentyl)oxy)-4-bromobenzene (3h)

In an N₂ glovebox, to Ag₂O (116 mg, 0.500 mmol, 1.00 equiv), CaF₂ (117 mg, 1.50 mmol, 3.00 equiv) in a 10.0 mL sealed vial were added CH₃CN (2.00 mL) and toluene (0.500 mL). [bmim][NTf₂] (1-Butyl-3-methylimidazoliumBis(trifluoromethanesulfonyl)) (105 mg, 0.250 mmol, 0.500 equiv), 1-((5-iodopentyl)oxy)-4-bromobenzene (**1h**) (184 mg, 0.500 mmol, 1.00 equiv) were added to the reaction subsequently. The resulting mixture was stirred for 30 min at 25 °C, TMSCF₃ (225 μ L, 1.50 mmol, 3.00 equiv) was added and then the reaction mixture was stirred at 90 °C for a further 12 h. After cooling to room temperature, the mixture was diluted with EtOAc (10.0 mL) and quenched with H₂O (10.0 mL), filtrated and washed three times with EtOAc (10.0 mL). The filtrate was extracted three times with EtOAc (5.00 mL). The sequence of the residue was purified by chromatography on silica gel, eluting with hexanes/DCM 15:1 (v/v) to afford 102 mg 1-((5-fluoropentyl)oxy)-4-bromobenzene (**3h**) as a colorless liquid (78% yield).

 R_f = 0.15 (hexanes/DCM 10:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.34 (m, 2H), 6.80 – 6.74 (m, 2H), 4.48 (dt, *J* = 47.3, 6.0 Hz, 2H), 3.93 (t, *J* = 6.3 Hz, 2H), 1.87 – 1.70 (m, 4H), 1.63 – 1.54 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 158.4, 132.5, 116.6, 113.0, 84.2 (d, *J* = 164.6 Hz), 68.2, 30.4 (d, *J* = 19.7 Hz), 29.1, 22.2 (d, *J* = 5.4 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -218.3 – -218.7 (m, 1F). Mass Spectrometry: HRMS-EI (m/z): Calcd for C₁₁H₁₄BrFO [M], 260.0212. Found, 260.0214.

1-((5-Fluoropentyl)oxy)-4-iodobenzene (3i)

In an N₂ glovebox, to Ag₂O (116 mg, 0.500 mmol, 1.00 equiv), CaF₂ (117 mg, 1.50 mmol, 3.00 equiv) in a 10.0 mL sealed vial were added CH₃CN (2.00 mL) and toluene (0.500 mL). [bmim][NTf₂] (1-Butyl-3-methylimidazoliumBis(trifluoromethanesulfonyl)) (105 mg, 0.250 mmol, 0.500 equiv), 1-((5-iodopentyl)oxy)-4-iodobenzene (**1i**) (208 mg, 0.500 mmol, 1.00 equiv) were added to the reaction subsequently. The resulting mixture was stirred for 30 min at 25 °C, TMSCF₃ (225 μ L, 1.50 mmol, 3.00 equiv) was added and then the reaction mixture was stirred at 90 °C for a further 12 h. After cooling to room temperature, the mixture was diluted with EtOAc (10.0 mL) and quenched with H₂O (10.0 mL), filtrated and washed three times with EtOAc (10.0 mL). The filtrate was extracted three times with EtOAc (5.00 mL). The combined organic layers were dried over anh. MgSO₄, filtered and concentrated *in vacuo*. The residue was purified by chromatography on silica gel, eluting with hexanes/toluene 8:1 (v/v) to afford 101 mg 1-((5-fluoropentyl)oxy)-4-iodobenzene (**3i**) as a colorless liquid (66%

yield).

 R_f = 0.2 (hexanes/toluene 5:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.57 – 7.50 (m, 2H), 6.70 – 6.63 (m, 2H), 4.47 (dt, *J* = 47.3, 6.0 Hz, 2H), 3.93 (t, *J* = 6.3 Hz, 2H), 1.87 – 1.70 (m, 4H), 1.63 – 1.56 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 159.2, 138.5, 117.2, 84.2 (d, *J* = 164.6 Hz), 82.9, 68.1, 30.4 (d, *J* = 19.7 Hz), 29.1, 22.2 (d, *J* = 5.3 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -218.0 – -218.8 (m, 1F). Mass Spectrometry: HRMS-EI (m/z): Calcd for C₁₁H₁₄FIO [M], 308.0073. Found, 308.0076.

1-(4-((5-Fluoropentyl)oxy)phenyl)ethanone (3j)

In an N₂ glovebox, to Ag₂O (139 mg, 0.600 mmol, 1.20 equiv), CaF₂ (117 mg, 1.50 mmol, 3.00 equiv) in a 10.0 mL sealed vial were added CH₃CN (2.00 mL) and toluene (0.500 mL). [bmim][NTf₂] (1-Butyl-3-methylimidazoliumBis(trifluoromethanesulfonyl)) (105 mg, 0.250 mmol, 0.500 equiv), 1-(4-((5-iodopentyl)oxy)phenyl)ethanone (1j) (166 mg, 0.500 mmol, 1.00 equiv) were added to the reaction subsequently. The resulting mixture was stirred for 30 min at 25 °C, TMSCF₃ (225 µL, 1.50 mmol, 3.00 equiv) was added and then the reaction mixture was stirred at 90 °C for a further 12 h. After cooling to room temperature, the mixture was diluted with EtOAc (10.0 mL) and quenched with H_2O (10.0 mL), filtrated and washed three times with EtOAc (10.0 mL). The filtrate was extracted three times with EtOAc (5.00 mL). The combined organic layers were dried over anh. MgSO₄, filtered and concentrated in vacuo. The residue was purified by chromatography on silica gel, eluting with hexanes/toluene/acetone 5:3:0.2 (v/v/v)to afford 85.0 mg 1-(4-((5-fluoropentyl)oxy)phenyl)ethanone (3j) as a colorless liquid (76% yield).

 $R_f = 0.2$ (hexanes/toluene/acetone 5:3:0.2 (v/v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.95 – 7.88 (m, 2H), 6.94 – 6.88 (m, 2H), 4.48 (dt, *J* = 47.3, 6.0 Hz, 2H), 4.04 (t, *J* = 6.3 Hz, 2H), 2.55 (s, 3H), 1.90 – 1.71 (m, 4H), 1.66 – 1.56 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 197.2, 163.3, 130.9, 130.5, 114.4, 84.2 (d, *J* = 164.6 Hz), 68.2, 30.4 (d, *J* = 19.7 Hz), 29.0, 26.7, 22.2 (d, *J* = 5.3 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -218.3 – -218.7 (m, 1F). Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₃H₁₇FO₂Na [M+Na]⁺, 247.1110. Found, 247.1110.

((5-Fluoropentyl)oxy)benzene (3k)

In an N₂ glovebox, to Ag₂O (116 mg, 0.500 mmol, 1.00 equiv), CaF₂ (117 mg, 1.50 mmol, 3.00 equiv) in a 10.0 mL sealed vial were added CH₃CN (2.00 mL) and toluene (0.500 mL). [bmim][NTf₂] (1-Butyl-3-methylimidazoliumBis(trifluoromethanesulfonyl)) (105 mg, 0.250 mmol, 0.500 equiv), ((5-iodopentyl)oxy)benzene (**1k**) (145 mg, 0.500 mmol, 1.00 equiv) were added to the reaction subsequently. The resulting mixture was stirred for 30 min at 25 °C,

TMSCF₃ (225 μ L, 1.50 mmol, 3.00 equiv) was added and then the reaction mixture was stirred at 90 °C for a further 12 h. After cooling to room temperature, the mixture was diluted with EtOAc (10.0 mL) and quenched with H₂O (10.0 mL), filtrated and washed three times with EtOAc (10.0 mL). The filtrate was extracted three times with EtOAc (5.00 mL). The combined organic layers were dried over anh. MgSO₄, filtered and concentrated *in vacuo*. The residue was purified by chromatography on silica gel, eluting with hexanes/toluene 15:1 (v/v) to afford 64.5 mg ((5-fluoropentyl)oxy)benzene (**3k**) as a colorless liquid (71% yield).

 $R_f = 0.4$ (hexanes/toluene 10:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.31 – 7.25 (m, 2H), 6.98 – 6.86 (m, 3H), 4.48 (dt, *J* = 47.3, 6.1 Hz, 2H), 3.98 (t, *J* = 6.4 Hz, 2H), 1.89 – 1.70 (m, 4H), 1.65 – 1.57 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 159.3, 129.8, 120.9, 114.8, 84.3 (d, *J* = 164.4 Hz), 67.8, 30.5 (d, *J* = 19.8 Hz), 29.3, 22.3 (d, *J* = 5.5 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -218.2 – -218.6 (m, 1F). Mass Spectrometry: HRMS-EI (m/z): Calcd for C₁₁H₁₅FO [M], 182.1107. Found, 182.1109.

4-((5-Fluoropentyl)oxy)-1,1'-biphenyl (3l)

In an N₂ glovebox, to Ag₂O (139 mg, 0.600 mmol, 1.20 equiv), CaF₂ (117 mg, 1.50 mmol, 3.00 equiv) in a 10.0 mL sealed vial were added CH₃CN (2.00 mL) and toluene (0.500 mL). [bmim][NTf₂] (1-Butyl-3-methylimidazoliumBis(trifluoromethanesulfonyl)) (105 mg, 0.250 mmol, 0.500 equiv), 4-((5-iodopentyl)oxy)-1,1'-biphenyl (**1**l) (183 mg, 0.500 mmol, 1.00 equiv) were added to the reaction subsequently. The resulting mixture was stirred for 30 min at 25 °C, TMSCF₃ (225 μ L, 1.50 mmol, 3.00 equiv) was added and then the reaction mixture was stirred at 90 °C for a further 12 h. After cooling to room temperature, the mixture was diluted with EtOAc (10.0 mL) and quenched with H₂O (10.0 mL), filtrated and washed three times with EtOAc (10.0 mL). The filtrate was extracted three times with EtOAc (5.00 mL). The filtrate was extracted three times with EtOAc (5.00 mL). The residue was purified by chromatography on silica gel, eluting with hexanes/toluene 10:1 (v/v) to afford 92.9 mg 4-((5-fluoropentyl)oxy)-1,1'-biphenyl (**3**l) as a white solid (72% yield).

 $R_f = 0.2$ (hexanes/toluene 10:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.58 – 7.49 (m, 4H), 7.45 – 7.38 (m, 2H), 7.34 – 7.30 (m, 1H), 7.00 – 6.93 (m, 2H), 4.49 (dt, *J* = 47.3, 5.9 Hz, 2H), 4.02 (t, *J* = 6.3 Hz, 2H), 1.93 – 1.72 (m, 4H), 1.67 – 1.58 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 158.9, 141.2, 134.0, 129.1, 128.5, 127.1, 127.0, 115.1, 84.3 (d, *J* = 164.7 Hz), 68.1, 30.5 (d, *J* = 19.7 Hz), 29.3, 22.3 (d, *J* = 5.4 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -218.2 – -218.6 (m, 1F). Mass Spectrometry: HRMS-EI (m/z): Calcd for C₁₇H₁₉FO [M], 258.1420. Found, 258.1421.

1-((5-Fluoropentyl)oxy)-4-isopropylbenzene (3m)

In an N₂ glovebox, to Ag₂O (116 mg, 0.500 mmol, 1.00 equiv), CaF₂ (117 mg, 1.50 mmol, 3.00 equiv) in a 10.0 mL sealed vial were added CH₃CN (2.00 mL) and toluene (0.500 mL). [bmim][NTf₂] (1-Butyl-3-methylimidazoliumBis(trifluoromethanesulfonyl)) (105 mg, 0.250 mmol, 0.500 equiv), 1-((5-iodopentyl)oxy)-4-isopropylbenzene (**1m**) (166 mg, 0.500 mmol, 1.00 equiv) were added to the reaction subsequently. The resulting mixture was stirred for 30 min at 25 °C, TMSCF₃ (225 μ L, 1.50 mmol, 3.00 equiv) was added and then the reaction mixture was stirred at 90 °C for a further 12 h. After cooling to room temperature, the mixture was diluted with EtOAc (10.0 mL) and quenched with H₂O (10.0 mL), filtrated and washed three times with EtOAc (10.0 mL). The filtrate was extracted three times with EtOAc (5.00 mL). The residue was purified by chromatography on silica gel, eluting with hexanes/toluene 10:1 (v/v) to afford 70.0 mg 1-((5-fluoropentyl)oxy)-4-isopropylbenzene (**3m**) as a colorless liquid (63% yield).

 $R_f = 0.2$ (hexanes/toluene 10:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.17 – 7.11 (m, 2H), 6.86 – 6.80 (m, 2H), 4.48 (dt, J = 47.3, 6.1 Hz, 2H), 3.96 (t, J = 6.3 Hz, 2H), 2.92 – 2.81 (m, 1H), 1.87 – 1.70 (m, 4H), 1.64 – 1.55 (m, 2H), 1.23 (d, J = 6.9 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 157.4, 141.3, 127.6, 114.6, 84.4 (d, J = 164.3 Hz), 67.9, 33.6, 30.5 (d, J = 19.6 Hz), 29.3, 24.6, 22.3 (d, J = 5.5 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -218.1 – -218.6 (m, 1F). Mass Spectrometry: HRMS-EI (m/z): Calcd for C₁₄H₂₁FO [M], 224.1576. Found, 224.1577.

1-(tert-Butyl)-4-((5-fluoropentyl)oxy)benzene (3n)

In an N₂ glovebox, to Ag₂O (116 mg, 0.500 mmol, 1.00 equiv), CaF₂ (117 mg, 1.50 mmol, 3.00 equiv) in a 10.0 mL sealed vial were added CH₃CN (2.00 mL) and toluene (0.500 mL). [bmim][NTf₂] (1-Butyl-3-methylimidazoliumBis(trifluoromethanesulfonyl)) (105 mg, 0.250 mmol, 0.500 equiv), 1-(*tert*-butyl)-4-((5-iodopentyl)oxy)benzene (**1n**) (173 mg, 0.500 mmol, 1.00 equiv) were added to the reaction subsequently. The resulting mixture was stirred for 30 min at 25 °C, TMSCF₃ (225 μ L, 1.50 mmol, 3.00 equiv) was added and then the reaction mixture was stirred at 90 °C for a further 12 h. After cooling to room temperature, the mixture was diluted with EtOAc (10.0 mL) and quenched with H₂O (10.0 mL), filtrated and washed three times with EtOAc (10.0 mL). The filtrate was extracted three times with EtOAc (5.00 mL). The residue was purified by chromatography on silica gel, eluting with hexanes/toluene 10:1 (v/v) to afford 90.1 mg 1-(*tert*-butyl)-4-((5-fluoropentyl)oxy)benzene (**3n**) as a colorless liquid (76% yield).

 $R_f = 0.2$ (hexanes/toluene 10:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.32 – 7.27 (m, 2H), 6.87 – 6.80 (m, 2H), 4.48 (dt, J = 47.3, 6.1 Hz, 2H), 3.96 (t, J = 6.3 Hz, 2H), 1.87 – 1.70 (m, 4H), 1.64 – 1.58 (m, 2H), 1.30 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 156.8, 143.3, 126.2, 113.9, 84.0 (d, J = 164.5 Hz), 67.6, 34.1, 31.6, 30.2 (d, J = 19.6 Hz), 29.0, 22.0 (d, J = 5.5 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -218.1 – -218.6 (m, 1F). Mass Spectrometry: HRMS-EI (m/z): Calcd for C₁₅H₂₃FO [M], 238.1733, Found, 238.1733.

1-((5-Fluoropentyl)oxy)-4-methoxybenzene (30)

In an N₂ glovebox, to Ag₂O (116 mg, 0.500 mmol, 1.00 equiv), CaF₂ (117 mg, 1.50 mmol, 3.00 equiv) in a 10.0 mL sealed vial were added CH₃CN (2.00 mL) and toluene (0.500 mL). [bmim][NTf₂] (1-Butyl-3-methylimidazoliumBis(trifluoromethanesulfonyl)) (105 mg, 0.250 mmol, 0.500 equiv), 1-((5-iodopentyl)oxy)-4-methoxybenzene (**10**) (160 mg, 0.500 mmol, 1.00 equiv) were added to the reaction subsequently. The resulting mixture was stirred for 30 min at 25 °C, TMSCF₃ (225 μ L, 1.50 mmol, 3.00 equiv) was added and then the reaction mixture was stirred at 90 °C for a further 12 h. After cooling to room temperature, the mixture was diluted with EtOAc (10.0 mL) and quenched with H₂O (10.0 mL), filtrated and washed three times with EtOAc (10.0 mL). The filtrate was extracted three times with EtOAc (5.00 mL). The residue was purified by chromatography on silica gel, eluting with hexanes/toluene 1:1 (v/v) to afford 74.8 mg 1-((5-fluoropentyl)oxy)-4-methoxybenzene (**30**) as a colorless liquid (71% yield).

 R_f = 0.15 (hexanes/toluene 1:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 6.83 (s, 4H), 4.48 (dt, *J* = 47.3, 6.1 Hz, 2H), 3.92 (t, *J* = 6.4 Hz, 2H), 3.77 (s, 3H), 1.85 – 1.70 (m, 4H), 1.64 – 1.56 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 154.1, 153.5, 115.7, 115.0, 84.3 (d, *J* = 164.4 Hz), 68.6, 56.1 30.5 (d, *J* = 19.5 Hz), 29.3, 22.3 (d, *J* = 5.5 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -218.1 – -218.6 (m, 1F). Mass Spectrometry: HRMS-EI (m/z): Calcd for C₁₂ H₁₇FO₂ [M], 212.1213. Found, 212.1214.

5-Fluoropentyl thiophene-3-carboxylate (3p)

In an N₂ glovebox, to Ag₂O (139 mg, 0.600 mmol, 1.20 equiv), CaF₂ (117 mg, 1.50 mmol, 3.00 equiv) in a 10.0 mL sealed vial were added CH₃CN (2.00 mL) and toluene (0.500 mL). [bmim][NTf₂] (1-Butyl-3-methylimidazoliumBis(trifluoromethanesulfonyl)) (105 mg, 0.250 mmol, 0.500 equiv), 5-iodopentyl thiophene-3-carboxylate (**1p**) (162 mg, 0.500 mmol, 1.00 equiv) were added to the reaction subsequently. The resulting mixture was stirred for 30 min at 25 °C, TMSCF₃ (225 μ L, 1.50 mmol, 3.00 equiv) was added and then the reaction mixture was stirred at 90 °C for a further 12 h. After cooling to room temperature, the mixture was

diluted with EtOAc (10.0 mL) and quenched with H_2O (10.0 mL), filtrated and washed three times with EtOAc (10.0 mL). The filtrate was extracted three times with EtOAc (5.00 mL). The combined organic layers were dried over anh. MgSO₄, filtered and concentrated *in vacuo*. The residue was purified by chromatography on silica gel, eluting with hexanes/toluene 1:1 (v/v) to afford 61.6 mg 5-fluoropentyl thiophene-3-carboxylate (**3p**) as a colorless liquid (57% yield).

 $R_f = 0.1$ (hexanes/toluene 1:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 8.10 (dd, J = 3.0, 1.1 Hz, 1H), 7.52 (dd, J = 5.1, 1.1 Hz, 1H), 7.31 (dd, J = 5.1, 3.1 Hz, 1H), 4.47 (dt, J = 47.3, 6.0 Hz, 2H), 4.29 (t, J = 6.5 Hz, 2H), 1.85 – 1.69 (m, 4H), 1.61 – 1.52 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 163.2, 134.2, 132.9, 128.2, 126.3, 84.2 (d, J = 164.8 Hz), 64.8, 30.4 (d, J = 19.7 Hz), 28.7, 22.3 (d, J = 5.3 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -218.4 – -218.8 (m, 1F). Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₀H₁₃FO₂SNa [M+Na]⁺, 239.0518. Found, 239.0514.

2-(4-Fluorobutoxy)-1-bromobenzene (3q)

In an N₂ glovebox, to Ag₂O (116 mg, 0.500 mmol, 1.00 equiv), CaF₂ (117 mg, 1.50 mmol, 3.00 equiv) in a 10.0 mL sealed vial were added CH₃CN (2.00 mL) and toluene (0.500 mL). [bmim][NTf₂] (1-Butyl-3-methylimidazoliumBis(trifluoromethanesulfonyl)) (105 mg, 0.250 mmol, 0.500 equiv), 2-(4-iodobutoxy)-1-bromobenzene (**1q**) (178 mg, 0.500 mmol, 1.00 equiv) were added to the reaction subsequently. The resulting mixture was stirred for 30 min at 25 °C, TMSCF₃ (225 μ L, 1.50 mmol, 3.00 equiv) was added and then the reaction mixture was stirred at 90 °C for a further 12 h. After cooling to room temperature, the mixture was diluted with EtOAc (10.0 mL) and quenched with H₂O (10.0 mL), filtrated and washed three times with EtOAc (10.0 mL). The filtrate was extracted three times with EtOAc (5.00 mL). The filtrate was extracted three times with EtOAc (5.00 mL). The residue was purified by chromatography on silica gel, eluting with hexanes/toluene 15:1 (v/v) to afford 80.2 mg 2-(4-fluorobutoxy)-1-bromobenzene (**3q**) as a colorless liquid (66% yield).

 R_f = 0.25 (hexanes/toluene 10:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.56 – 7.51 (m, 1H), 7.29 – 7.21 (m, 1H), 6.93 – 6.80 (m, 2H), 4.56 (dt, *J* = 46.7, 4.7 Hz, 2H), 4.08 (t, *J* = 5.4 Hz, 2H), 2.08 – 1.85 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 155.6, 133.7, 128.8, 122.2, 113.5, 112.6, 84.2 (d, *J* = 164.4 Hz), 68.7, 27.6 (d, *J* = 19.9 Hz), 25.5 (d, *J* = 5.0 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -218.4 – -218.9 (m, 1F). Mass Spectrometry: HRMS-EI (m/z): Calcd for C₁₀H₁₂BrFO [M], 246.0056. Found, 246.0065.

3-(4-Fluorobutoxy)-1-bromobenzene (3r)

In an N₂ glovebox, to Ag₂O (116 mg, 0.500 mmol, 1.00 equiv), CaF₂ (117 mg, 1.50 mmol, 3.00 equiv) in a 10.0 mL sealed vial were added CH₃CN (2.00 mL) and toluene (0.500 mL). [bmim][NTf₂] (1-Butyl-3-methylimidazoliumBis(trifluoromethanesulfonyl)) (105 mg, 0.250 mmol, 0.500 equiv), 3-(4-iodobutoxy)-1-bromobenzene (**1r**) (178 mg, 0.500 mmol, 1.00 equiv) were added to the reaction subsequently. The resulting mixture was stirred for 30 min at 25 °C, TMSCF₃ (225 μ L, 1.50 mmol, 3.00 equiv) was added and then the reaction mixture was stirred at 90 °C for a further 12 h. After cooling to room temperature, the mixture was diluted with EtOAc (10.0 mL) and quenched with H₂O (10.0 mL), filtrated and washed three times with EtOAc (10.0 mL). The filtrate was extracted three times with EtOAc (5.00 mL). The filtrate was extracted three times with EtOAc (5.00 mL). The residue was purified by chromatography on silica gel, eluting with hexanes/toluene 15:1 (v/v) to afford 73.3 mg 3-(4-fluorobutoxy)-1-bromobenzene (**3r**) as a colorless liquid (60% yield).

 R_f = 0.4 (hexanes/toluene 5:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.17 - 7.10 (m, 1H), 7.09 - 7.03 (m, 2H), 6.84 - 6.80 (m, 1H), 4.52 (dt, *J* = 47.4, 5.6 Hz, 2H), 3.99 (t, *J* = 5.9 Hz, 2H), 1.97 - 1.80 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 160.0, 130.9, 124.1, 123.1, 118.1, 113.8, 84.1 (d, *J* = 164.8 Hz), 67.8, 27.5 (d, *J* = 20.0 Hz), 25.5 (d, *J* = 5.0 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -218.4 - -218.9 (m, 1F). Mass Spectrometry: HRMS-EI (m/z): Calcd for C₁₀H₁₂BrFO [M], 246.0056. Found, 246.0052.

2,4-Dibromo-1-(4-fluorobutoxy)benzene (3s)

In an N₂ glovebox, to Ag₂O (116 mg, 0.500 mmol, 1.00 equiv), CaF₂ (117 mg, 1.50 mmol, 3.00 equiv) in a 10.0 mL sealed vial were added CH₃CN (2.00 mL) and toluene (0.500 mL). [bmim][NTf₂] (1-Butyl-3-methylimidazoliumBis(trifluoromethanesulfonyl)) (105 mg, 0.250 mmol, 0.500 equiv), 2,4-dibromo-1-(4-iodobutoxy)benzene (**1s**) (217 mg, 0.500 mmol, 1.00 equiv) were added to the reaction subsequently. The resulting mixture was stirred for 30 min at 25 °C, TMSCF₃ (225 μ L, 1.50 mmol, 3.00 equiv) was added and then the reaction mixture was stirred at 90 °C for a further 12 h. After cooling to room temperature, the mixture was diluted with EtOAc (10.0 mL) and quenched with H₂O (10.0 mL), filtrated and washed three times with EtOAc (10.0 mL). The filtrate was extracted three times with EtOAc (5.00 mL). The filtrate was extracted three times with EtOAc (5.00 mL). The residue was purified by chromatography on silica gel, eluting with hexanes/toluene 15:1 (v/v) to afford 103 mg 2,4-dibromo-1-(4-fluorobutoxy)benzene (**3s**) as a colorless liquid (64% yield).

 $R_f = 0.3$ (hexanes/toluene 10:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, J = 1.4 Hz, 1H), 7.39 – 7.32 (m, 1H), 6.76 (d, J = 8.7 Hz, 1H), 4.55 (dt, J = 46.7, 5.1 Hz, 2H), 4.04 (t, J = 5.4 Hz, 2H), 2.03 – 1.85 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 154.9, 135.8, 131.5, 114.5, 113.4, 113.2, 84.1 (d, J = 164.6 Hz), 69.1, 27.5 (d, J = 19.9 Hz), 25.5 (d, J = 4.9 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -218.3 – -219.1 (m, 1F). Mass Spectrometry: HRMS-EI (m/z): Calcd for C₁₀H₁₁Br₂FO [M], 323.9161. Found, 323.9162.

2-(4-Fluorobutyl)isoindoline-1,3-dione (3t)

In an N₂ glovebox, to Ag₂O (116 mg, 0.500 mmol, 1.00 equiv), CaF₂ (117 mg, 1.50 mmol, 3.00 equiv) in a 10.0 mL sealed vial were added CH₃CN (2.00 mL) and toluene (0.500 mL). [bmim][NTf₂] (1-Butyl-3-methylimidazoliumBis(trifluoromethanesulfonyl)) (105 mg, 0.250 mmol, 0.500 equiv), 2-(4-iodobutyl)isoindoline-1,3-dione (**1t**) (165 mg, 0.500 mmol, 1.00 equiv) were added to the reaction subsequently. The resulting mixture was stirred for 30 min at 25 °C, TMSCF₃ (225 μ L, 1.50 mmol, 3.00 equiv) was added and then the reaction mixture was stirred at 90 °C for a further 12 h. After cooling to room temperature, the mixture was diluted with EtOAc (10.0 mL) and quenched with H₂O (10.0 mL), filtrated and washed three times with EtOAc (10.0 mL). The filtrate was extracted three times with EtOAc (5.00 mL). The filtrate was extracted three times with EtOAc (5.00 mL). The residue was purified by chromatography on silica gel, eluting with hexanes/EtOAc 12:1 (v/v) to afford 89.4 mg 2-(4-fluorobutyl)isoindoline-1,3-dione (**3t**) as a white solid (81% yield).

 R_f = 0.35 (hexanes/EtOAc 5:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.88 – 7.81 (m, 2H), 7.75 – 7.68 (m, 2H), 4.48 (dt, *J* = 47.4, 5.7 Hz, 2H), 3.74 (t, *J* = 6.9 Hz, 2H), 1.87 – 1.67 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 168.7, 134.3, 132.4, 123.5, 83.7 (d, *J* = 165.2 Hz), 37.7, 28.1 (d, *J* = 20.1 Hz), 24.9 (d, *J* = 4.8 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -218.6 – -219.0 (m, 1F). Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₂H₁₃FNO₂ [M+H]⁺, 222.0930. Found, 222.0922.

N-(5-fluoropentyl)saccharine (3u)

In an N₂ glovebox, to Ag₂O (232 mg, 1.00 mmol, 2.00 equiv), CaF₂ (234 mg, 3.00 mmol, 6.00 equiv) in a 10.0 mL sealed vial were added CH₃CN (2.00 mL) and toluene (0.500 mL). [bmim][NTf₂] (1-Butyl-3-methylimidazoliumBis(trifluoromethanesulfonyl)) (105 mg, 0.250 mmol, 0.500 equiv), *N*-(5-iodopentyl)saccharine (**1u**) (190 mg, 0.500 mmol, 1.00 equiv) were added to the reaction subsequently. The resulting mixture was stirred for 30 min at 25 °C, TMSCF₃ (225 μ L, 1.50 mmol, 3.00 equiv) was added and then the reaction mixture was stirred at 100 °C for a further 12 h. After cooling to room temperature, the mixture was diluted with EtOAc (10.0 mL) and quenched with H₂O (10.0 mL), filtrated and washed three times with EtOAc (10.0 mL). The filtrate was extracted three times with EtOAc (5.00 mL). The resulting on silica gel, eluting with hexanes/EtOAc 10:1 (v/v) to afford 99.2 mg *N*-(5-fluoropentyl)saccharine (**3u**) as a colorless liquid (73% yield).

 R_f = 0.2 (hexanes/EtOAc 10:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 8.08 – 8.03 (m, 1H), 7.94 – 7.90 (m, 1H), 7.90 – 7.80 (m, 2H), 4.45 (dt, *J* = 47.2, 6.0 Hz, 2H), 3.79 (t, *J* = 7.4 Hz, 2H), 1.95 – 1.85 (m, 2H), 1.84 – 1.69 (m, 2H), 1.59 – 1.49 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 159.3, 138.0, 135.1, 134.7, 127.7, 125.5, 121.3, 84.1 (d, *J* = 164.7 Hz), 39.5, 30.1 (d, *J* = 19.8 Hz), 28.3, 22.9 (d, *J* = 5.3 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -218.4 – -218.8 (m, 1F). Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₂H₁₅FNO₃S [M+H]⁺, 272.0757. Found, 272.0748.

7-(4-Fluorobutoxy)-4-methyl-2H-chromen-2-one (3v)

In an N₂ glovebox, to Ag₂O (232 mg, 1.00 mmol, 2.00 equiv), CaF₂ (234 mg, 3.00 mmol, 6.00 equiv) in a 10.0 mL sealed vial were added CH₃CN (2.00 mL) and toluene (0.500 mL). [bmim][NTf₂] (1-Butyl-3-methylimidazoliumBis(trifluoromethanesulfonyl)) (105 mg, 0.250 mmol, 0.500 equiv), 7-(4-iodobutoxy)-4-methyl-2H-chromen-2-one (**1v**) (179 mg, 0.500 mmol, 1.00 equiv) were added to the reaction subsequently. The resulting mixture was stirred for 30 min at 25 °C, TMSCF₃ (225 μ L, 1.50 mmol, 3.00 equiv) was added and then the reaction mixture was stirred at 100 °C for a further 12 h. After cooling to room temperature, the mixture was diluted with EtOAc (10.0 mL) and quenched with H₂O (10.0 mL), filtrated and washed three times with EtOAc (10.0 mL). The filtrate was extracted three times with EtOAc (5.00 mL). The residue was purified by chromatography on silica gel, eluting with hexanes/EtOAc 5:1 (v/v) to afford 53.3 mg 7-(4-fluorobutoxy)-4-methyl-2H-chromen-2-one (**3v**) as a white solid (43% yield).

 R_f = 0.3 (hexanes/EtOAc 5:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, *J* = 8.8 Hz, 1H), 6.85 (dd, *J* = 8.8, 2.5 Hz, 1H), 6.80 (d, *J* = 2.4 Hz, 1H), 6.13 (d, *J* = 0.7 Hz, 1H), 4.53 (dt, *J* = 48.0, 5.5 Hz, 2H), 4.06 (t, *J* = 6.0 Hz, 2H), 2.39 (d, *J* = 0.9 Hz, 3H), 2.00 – 1.83 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 162.2, 161.6, 155.5, 152.9, 125.8, 113.8, 112.8, 112.1, 101.6, 83.9 (d, *J* = 164.9 Hz), 68.1, 27.3 (d, *J* = 20.0 Hz), 25.4 (d, *J* = 4.9 Hz), 18.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -218.6 – -219.1 (m, 1F). Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₄H₁₆FO₃ [M+H]⁺, 251.1083. Found, 251.1081.

1-Fluorododecane (3w)

In an N₂ glovebox, to Ag₂O (116 mg, 0.500 mmol, 1.00 equiv), CaF₂ (117 mg, 1.50 mmol, 3.00 equiv) in a 10.0 mL sealed vial were added CH₃CN (2.00 mL) and toluene (0.500 mL). [bmim][NTf₂] (1-Butyl-3-methylimidazoliumBis(trifluoromethanesulfonyl)) (105 mg, 0.250 mmol, 0.500 equiv), 1-iodododecane (**1w**) (148 mg, 0.500 mmol, 1.00 equiv) were added to

the reaction subsequently. The resulting mixture was stirred for 30 min at 25 °C, TMSCF₃ (225 μ L, 1.50 mmol, 3.00 equiv) was added and then the reaction mixture was stirred at 90 °C for a further 12 h. After cooling to room temperature, the mixture was diluted with EtOAc (10.0 mL) and quenched with H₂O (10.0 mL), filtrated and washed three times with EtOAc (10.0 mL). The filtrate was extracted three times with EtOAc (5.00 mL). The combined organic layers were dried over anh. MgSO₄, filtered and concentrated *in vacuo* (< 20 °C). The residue was purified by chromatography on silica gel, eluting with pentane to afford 71.1 mg 1-fluorododecane (**3w**) as a colorless liquid (76% yield).

 R_f = 0.8 (pentane). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 4.44 (dt, *J* = 47.4, 6.2 Hz, 2H), 1.76 – 1.61 (m, 2H), 1.43 – 1.22 (m, 18H), 0.88 (t, *J* = 6.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 84.6 (d, *J* = 164.0 Hz), 32.3, 30.8 (d, *J* = 19.3 Hz), 30.0, 29.9, 29.9, 29.7, 29.6, 25.5 (d, *J* = 5.5 Hz), 23.0, 14.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -217.7 – -218.2 (m, 1F). The spectroscopic data (NMR) matched those reported in the literature for 1-fluorododecane.²

5-Fluorohexan-2-yl 4-fluorobenzoate (3x)

In an N₂ glovebox, to Ag₂O (232 mg, 1.00 mmol, 2.00 equiv), CaF₂ (234 mg, 3.00 mmol, 6.00 equiv) in a 10.0 mL sealed vial were added CH₃CN (4.00 mL) and toluene (1.00 mL). 1,10-phenanthroline (45.0)0.250 0.500 equiv). [bmim][NTf₂] mg, mmol. (1-Butyl-3-methylimidazoliumBis(trifluoromethanesulfonyl)) (105 mg, 0.250 mmol, 0.500 equiv), 5-iodohexan-2-yl 4-fluorobenzoate (1x) (175 mg, 0.500 mmol, 1.00 equiv) were added to the reaction subsequently. The resulting mixture was stirred for 30 min at 25 °C, TMSCF₃ (75.0 µL, 0.500 mmol, 1.00 equiv) was added and then the reaction mixture was stirred at 80 °C for a further 12 h. After cooling to room temperature, the mixture was diluted with EtOAc (10.0 mL) and quenched with H_2O (10.0 mL), filtrated and washed three times with EtOAc (10.0 mL). The filtrate was extracted three times with EtOAc (5.00 mL). The combined organic layers were dried over anh. MgSO₄, filtered and concentrated in vacuo. The residue was purified by chromatography on silica gel, eluting with hexanes/EtOAc 75:1 (v/v) to afford 32.0 mg 5-fluorohexan-2-yl 4-fluorobenzoate (**3x**) as a colorless liquid (26% yield).

R_f = 0.2 (hexanes/EtOAc 50:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 8.11 – 8.01 (m, 2H), 7.17 – 7.05 (m, 2H), 5.24 – 5.11 (m, 1H), 4.80 – 4.56 (m, 1H), 1.95 – 1.52 (m, 4H), 1.41 – 1.25 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 166.0 (d, J = 253.6 Hz), 165.5, 165.5, 132.4 (d, J = 9.2 Hz), 127.2 (d, J = 2.6 Hz), 127.2 (d, J = 2.1 Hz), 115.8 (d, J = 22.0 Hz), 91.0 (d, J = 165.3 Hz), 90.7 (d, J = 165.1 Hz), 72.0, 71.6, 33.3 (d, J = 21.1 Hz), 33.0 (d, J = 21.0 Hz), 32.0 (d, J = 4.5 Hz), 31.8 (d, J = 4.5 Hz), 21.3 (d, J = 22.7 Hz), 20.4. ¹⁹F NMR (376 MHz, CDCl₃) δ -105.8 – -106.0 (m, 1F), -172.9 – -173.8 (m, 1F) . Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₃H₁₇F₂O₂ [M+H]⁺, 243.1197. Found, 243.1191.

5-Fluorohexan-2-yl 4-fluorobenzoate (3y)

In an N₂ glovebox, to Ag₂O (232 mg, 1.00 mmol, 2.00 equiv), CaF₂ (234 mg, 3.00 mmol, 6.00 equiv) in a 10.0 mL sealed vial were added CH₃CN (4.00 mL) and toluene (1.00 mL). 1,10-phenanthroline (45.0)mg, 0.250 mmol, 0.500 equiv), [bmim][NTf₂] (1-Butyl-3-methylimidazoliumBis(trifluoromethanesulfonyl)) (105 mg, 0.250 mmol, 0.500 equiv), 5-iodohexan-2-yl benzoate (1y) (166 mg, 0.500 mmol, 1.00 equiv) were added to the reaction subsequently. The resulting mixture was stirred for 30 min at 25 °C, TMSCF₃ (75.0 μ L, 0.500 mmol, 1.00 equiv) was added and then the reaction mixture was stirred at 80 °C for a further 12 h. After cooling to room temperature, the mixture was diluted with EtOAc (10.0 mL) and quenched with H_2O (10.0 mL), filtrated and washed three times with EtOAc (10.0 mL). The filtrate was extracted three times with EtOAc (5.00 mL). The combined organic layers were dried over anh. MgSO₄, filtered and concentrated *in vacuo*. The residue was purified by chromatography on silica gel, eluting with hexanes/EtOAc 75:1 (v/v) to afford 33.4 mg 5-fluorohexan-2-yl benzoate (**3y**) as a colorless liquid (30% yield).

 R_f = 0.2 (hexanes/EtOAc 50:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, *J* = 7.4 Hz, 2H), 7.56 (t, *J* = 7.4 Hz, 1H), 7.44 (t, *J* = 7.6 Hz, 2H), 5.25 – 5.13 (m, 1H), 4.81 – 4.57 (m, 1H), 1.96 – 1.59 (m, 4H), 1.40 – 1.28 (m, 6.2 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 166.5, 166.5, 133.2, 131.0, 131.0, 129.9, 128.7, 91.1 (d, *J* = 165.1 Hz), 90.7 (d, *J* = 165.2 Hz), 71.8, 71.3, 33.4 (d, *J* = 21.0 Hz), 33.0 (d, *J* = 21.0 Hz), 32.1 (d, *J* = 4.4 Hz), 31.8 (d, *J* = 4.4 Hz), 21.3 (d, *J* = 22.7 Hz), 20.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -172.4 – -173.5 (m) (m, 1F). Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₁₃H₁₈FO₂ [M+H]⁺, 225.1291. Found, 225.1284.

(S)-*tert*-Butyl 2-(1,3-dioxoisoindolin-2-yl)-3-(4-((5-fluoropentyl)oxy)phenyl)propanoate (3z)

In an N₂ glovebox, to Ag₂O (58.0 mg, 0.250 mmol, 1.00 equiv), CaF₂ (58.5 mg, 0.750 mmol, 3.00 equiv) in a 10.0 mL sealed vial were added CH₃CN (1.00 mL) and toluene (0.250 mL). [bmim][NTf₂] (1-Butyl-3-methylimidazoliumBis(trifluoromethanesulfonyl)) (52.5 mg, 0.125 mmol, 0.500 equiv), (S)-*tert*-butyl 2-(1,3-dioxoisoindolin-2-yl)-3-(4-((5-iodopentyl)oxy)phenyl)propanoate (**1z**) (141 mg, 0.250 mmol, 1.00 equiv) were added to the reaction subsequently. The resulting mixture was stirred for 30 min at 25 °C, TMSCF₃ (113 μ L, 0.750 mmol, 3.00 equiv) was added and then the reaction mixture was stirred at 90 °C for a further 12 h. After cooling to room temperature, the mixture was diluted with EtOAc (10.0 mL) and quenched with H₂O (10.0 mL), filtrated and

washed three times with EtOAc (10.0 mL). The filtrate was extracted three times with EtOAc (5.00 mL). The combined organic layers were dried over anh. MgSO₄, filtered and concentrated *in vacuo*. The residue was purified by chromatography on silica gel, eluting with hexanes/EtOAc/DCM 20:1:1 (v/v/v) to afford 82.0 mg (S)-*tert*-butyl 2-(1,3-dioxoisoindolin-2-yl)-3-(4-((5-fluoropentyl)oxy)phenyl)propanoate (**3z**) as a colorless liquid (72% yield).

 $R_f = 0.2$ (hexanes/EtOAc/DCM 20:1:1 (v/v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 7.80 – 7.74 (m, 2H), 7.70 – 7.64 (m, 2H), 7.08 – 7.02 (m, 2H), 6.72 – 6.66 (m, 2H), 5.07 – 4.94 (m, 1H), 4.43 (dt, *J* = 47.3, 6.1 Hz, 2H), 3.91 – 3.80 (m, 2H), 3.50 – 3.40 (m, 2H), 1.80 – 1.65 (m, 4H), 1.57 – 1.48 (m, 2H), 1.45 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 168.2, 168.0, 158.0, 134.3, 132.0, 130.1, 129.3, 123.7, 114.7, 84.2 (d, *J* = 164.4 Hz), 83.0, 67.8, 54.6, 34.1, 30.4 (d, *J* = 19.6 Hz), 29.1, 28.2, 22.2 (d, *J* = 5.5 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -218.4 – -218.9 (m, 1F). Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₂₆H₃₀FNO₅Na [M+Na]⁺, 478.2006. Found, 478.2005.

3,12-Dimethoxy cholan-24-fluoro (3aa)

In an N₂ glovebox, to Ag₂O (116 mg, 0.500 mmol, 2.00 equiv), CaF₂ (117 mg, 1.50 mmol, 6.00 equiv) in a 10.0 mL sealed vial were added CH₃CN (1.00 mL) and toluene (0.250 mL). [bmim][NTf₂] (1-Butyl-3-methylimidazoliumBis(trifluoromethanesulfonyl)) (52.5 mg, 0.125 mmol, 0.500 equiv), 3,12-dimethoxy cholan-24-iodo (**1aa**) (129 mg, 0.250 mmol, 1.00 equiv) were added to the reaction subsequently. The resulting mixture was stirred for 30 min at 25 °C, TMSCF₃ (113 μ L, 0.750 mmol, 3.00 equiv) was added and then the reaction mixture was stirred at 100 °C for a further 12 h. After cooling to room temperature, the mixture was diluted with EtOAc (10.0 mL) and quenched with H₂O (10.0 mL), filtrated and washed three times with EtOAc (10.0 mL). The filtrate was extracted three times with EtOAc (5.00 mL). The residue was purified by chromatography on silica gel, eluting with hexanes/EtOAc 75:1 (v/v) to afford 54.0 mg 3,12-dimethoxy cholan-24-fluoro (**3aa**) as a colorless liquid (53% yield).

 R_f = 0.4 (hexanes/EtOAc 50:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 4.40 (dt, *J* = 47.4, 6.3 Hz, 2H), 3.39 (t, *J* = 2.4 Hz, 1H), 3.34 (s, 3H), 3.25 (s, 3H), 3.19 – 3.10 (m, 1H), 1.90 – 1.69 (m, 9H), 1.57 – 1.44 (m, 4H), 1.41 – 0.94 (m, 13H), 0.93 – 0.89 (m, 6H), 0.66 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 85.1 (d, *J* = 164.1 Hz), 82.6, 80.8, 56.0, 55.9, 49.2, 46.9, 46.6, 42.4, 36.3, 35.6, 35.5, 34.8, 33.9, 32.9, 31.4 (d, *J* = 5.2 Hz), 27.8, 27.7, 27.4 (d, *J* = 19.2 Hz), 27.1, 26.4, 24.0, 23.6, 22.3, 17.9, 13.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -217.0 – -217.4 (m, 1F). Mass Spectrometry: HRMS-EI (m/z): Calcd for C₂₆H₄₅FO₂ [M], 408.3404. Found, 408.3416.

7-O-acetyl-13-O-(5-fluoropentanoate)baccatine III (3bb)

In an N₂ glovebox, to Ag₂O (58.0 mg, 0.250 mmol, 2.00 equiv), CaF₂ (58.5 mg, 0.75 mmol, 6.00 equiv) in a 10.0 mL sealed vial were added CH₃CN (1.00 mL) and toluene (0.250 mL). [bmim][NTf₂] (1-Butyl-3-methylimidazoliumBis(trifluoromethanesulfonyl)) (26.3mg, 0.0625 mmol, 0.500 equiv), 7-*O*-acetyl-13-*O*-(5-iodopentanoate)baccatine III (**1bb**) (105 mg, 0.125 mmol, 1.00 equiv) were added to the reaction subsequently. The resulting mixture was stirred for 30 min at 25 °C, TMSCF₃ (56.5 μ L, 0.375 mmol, 3.00 equiv) was added and then the reaction mixture was stirred at 100 °C for a further 12 h. After cooling to room temperature, the mixture was diluted with EtOAc (10.0 mL) and quenched with H₂O (10.0 mL), filtrated and washed three times with EtOAc (10.0 mL). The filtrate was extracted three times with EtOAc (5.00 mL). The combined organic layers were dried over anh. MgSO₄, filtered and concentrated *in vacuo*. The residue was purified by chromatography on silica gel, eluting with hexanes/EtOAc 3:1 (v/v) to afford 39.2 mg 7-*O*-acetyl-13-*O*-(5-fluoropentanoate)baccatine III (**3bb**) as a white solid (43% yield).

 R_f = 0.15 (hexanes/EtOAc 3:1 (v/v)). NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, *J* = 8.0 Hz, 2H), 7.63 – 7.57 (m, 1H), 7.47 (t, *J* = 7.6 Hz, 2H), 6.24 (s, 1H), 6.18 (t, *J* = 8.8 Hz, 1H), 5.64 (d, *J* = 6.9 Hz, 1H), 5.57 (dd, *J* = 10.4, 7.2 Hz, 1H), 4.95 (d, *J* = 9.2 Hz, 1H), 4.49 (dt, *J* = 47.6, 5.4 Hz, 2H), 4.30 (d, *J* = 8.4 Hz, 1H), 4.14 (d, *J* = 8.4 Hz, 1H), 3.94 (d, *J* = 6.9 Hz, 1H), 2.63 – 2.42 (m, 3H), 2.32 (s, 3H), 2.23 (dd, *J* = 8.8, 3.4 Hz, 2H), 2.16 (s, 3H), 2.02 (s, 3H), 1.93 (s, 3H), 1.88 – 1.72 (m, 5H), 1.78 (s, 3H), 1.76 (s, 1H), 1.20 (s, 3H), 1.15 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 202.4, 173.0, 170.7, 169.9, 169.2, 167.2, 141.7, 134.1, 132.7, 130.4, 129.4, 129.0, 83.9 (d, *J* = 165.2 Hz), 84.3, 81.2, 79.0, 76.6, 75.7, 74.7, 71.7, 69.7, 56.3, 47.5, 43.4, 35.8, 34.1, 33.6, 30.0 (d, *J* = 19.8 Hz), 26.6, 22.8, 21.4, 21.3 (d, *J* = 4.6 Hz), 21.1, 21.0, 15.1, 11.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -218.3 – -218.7 (m, 1F). Mass Spectrometry: HRMS-ESI (m/z): Calcd for C₃₈H₅₁FNO₁₃ [M+NH₄]⁺, 748.3344. Found, 748.3342.

Gram-scale synthesis of 1-((5-fluoropentyl)oxy)-4-(trifluoromethyl)benzene (3b)

In an N₂ glovebox, to Ag₂O (1.78 g, 7.70 mmol, 1.10 equiv), CaF₂ (1.64 g, 21.0 mmol, 3.00 equiv) in a 150 mL sealed vial were added CH₃CN (10.0 mL) and toluene (2.50 mL). [bmim][NTf₂] (1-Butyl-3-methylimidazoliumBis(trifluoromethanesulfonyl)) (1.47 g, 3.50 mmol, 0.500 equiv), 1-((5-iodopentyl)oxy)-4-(trifluoromethyl)benzene (**1b**) (2.51 g, 7.00 mmol, 1.00 equiv) were added to the reaction subsequently. The resulting mixture was stirred

for 30 min at 25 °C, TMSCF₃ (3.15 mL, 21.0 mmol, 3.00 equiv) was added and then the reaction mixture was stirred at 100 °C for a further 24h. After cooling to room temperature, the mixture was diluted with EtOAc (50.0 mL) and quenched with H₂O (20.0 mL), filtrated and washed three times with EtOAc (20.0 mL). The filtrate was extracted three times with EtOAc (20.0 mL). The filtrate was extracted three times with EtOAc (20.0 mL). The filtrate over anh. MgSO₄, filtered and concentrated *in vacuo*. The residue was purified by chromatography on silica gel, eluting with hexanes/EtOAc 50:1 (v/v) to afford 1.26 g 1-((5-fluoropentyl)oxy)-4-(trifluoromethyl)benzene (**3b**) as a colorless liquid (72% yield).

The study of Mechanism

The preparation of TMSF

A 25.0 mL three-necked, round-bottomed flask equipped with a magnetic stir bar, dropping funnel with pressure-equalizing side arm, distilling apparatus, 10.0 mL round-bottomed receiving flask, and was charged with AgF (10.0 g, 78.8 mmol, 4.55 equiv) followed by dry CH₃CN (2.00 mL). TMSCl (1.50 mL, 17.3 mmol, 1.00 equiv) was added drop wise at room tempreture. Meanwhile, the receiving flask was cooled to -78 °C. After the addition was complete, dry CH₃CN (2.00 mL) was added to 1.05 g TMSF (65% yield) in 10 mL round-bottomed receiving flask, and stored at -20 °C. The spectroscopic data (NMR) matched those reported in the literature for TMSF.³

Figure 1S. NMR Spectra of Intermediates (TMSF)

Top line: the mixture of 0.150 mmol TMSCF₃ and 0.0500 mmol Ag₂O in CH₃CN (0.400 mL) and toluene (0.100 mL) was stirred at 90°C for 10 h, after cooling to room temperature, ethyl 2-fluoropropanoate (6.00 μ L, 0.0500 mmol) was added as internal standard;

Middle line: the mixture of 0.150 mmol TMSCF₃ and 0.150 mmol CaF₂ in CH₃CN (0.400 mL) and toluene (0.100 mL) was stirred at 90°C for 10 h, after cooling to room temperature, ethyl 2-fluoropropanoate (6.00 μ L, 0.0500 mmol) was added as internal standard;

Bottom line: the mixture of 0.150 mmol TMSCF₃, 0.0500 mmol Ag₂O, and 0.150 mmol CaF₂ in CH₃CN (0.400 mL) and toluene (0.100 mL) was stirred at 90°C for 10 h, after cooling to room temperature, ethyl 2-fluoropropanoate (6.00 μ L, 0.050 mmol) was added as internal standard.

Figure 2S. NMR Spectra of Intermediates (AgF)

Top line: the mixture of 0.0500 mmol TMSCF₃, 0.0500 mmol Ag₂O, and 0.150 mmol CaF₂ in CH₃CN (0.400 mL) and toluene (0.100 mL) was stirred at 90°C for 10 h, after cooling to room temperature, ethyl 2-fluoropropanoate (2.00 μ L, 0.0167 mmol) was added as internal standard;

Middle line: the mixture of 0.0500 mmol TMSCF₃, 0.0500 mmol Ag₂O, and 0.150 mmol CaF₂ in CH₃CN (0.400 mL) and toluene (0.100 mL) was stirred at 90°C for 10 h, after cooling to room temperature, ethyl 2-fluoropropanoate (2.00 μ L, 0.0167 mmol) was added as internal standard, then water (50.0 μ L) was added;

Bottom line: the mixture of 0.0500 mmol TMSCF₃, 0.0500 mmol Ag₂O, and 0.150 mmol CaF₂ in CH₃CN (0.400 mL) and toluene (0.100 mL) was stirred at 90°C for 10 h, after cooling to room temperature, ethyl 2-fluoropropanoate (2.00 μ L, 0.0167 mmol) was added as internal standard, then aqueous AgF solution (50.0 μ L) was added.

Effect of TMSF on the reaction

In an N₂ glovebox, to Ag₂O (11.6 mg, 0.0500 mmol, 1.00 equiv), CaF₂ in a 2.00 mL sealed vial were added CH₃CN (0.400 mL) and toluene (0.100 mL). [bmim][NTf₂] (1-Butyl-3-methylimidazoliumBis(trifluoromethanesulfonyl)) (10.5 mg, 0.0250 mmol, 0.500 equiv), 1-((5-iodopentyl)oxy)-4-(trifluoromethyl)benzene (1b) (17.9 mg, 0.0500 mmol, 1.00 equiv) were added to the reaction and the resulting mixture was stirred for 30 min at 25 °C, TMSF in CH₃CN (16.0 µL, 0.0500 mmol, 1.00 equiv) was added and then the reaction mixture was stirred at 90 °C for a further 12 h. After cooling to room temperature, styrene (6.00 µL, 0.0524 mmol), CDCl₃(1.50 mL) was added to the reaction mixture. The yield of 1-((5-fluoropentyl)oxy)-4-(trifluoromethyl)benzene (3b) was determined by comparing the of $^{1}\mathrm{H}$ integration the NMR resonance of 1-((5-fluorope ntyl)oxy)-4-(trifluoromethyl)benzene (4.54 ppm, t) with that of styrene (5.25 ppm, d). Yields are reported in Table S12.

Table S12 Effect of TMSF on the reaction

Conditions	Yield [%] (¹ H NMR)
TMSF (1.0 equiv), CaF ₂ (1.0 equiv)	38
TMSF (1.0 equiv), CaF ₂ (2.0 equiv)	43
TMSF (1.0 equiv)	7
CaF ₂ (3.0 equiv)	8

References

[1] Nawarathne, I. N.; Walker, K. D. J. Nat. Prod. 2010, 73, 151

[2] Furuya, T.; Nomoto, T.; Fukuhara, T.; Hara, S. J. Fluorine Chem. 2009, 130, 348.

[3] (a) Levin, V. V.; Dilman, A. D.; Belyakov, P. A.; Struchkova, M. I.; Tartakovsky, V. A. J. *Fluorine Chem.***2009**, *130*, 667.; (b) Rakita, P. E.; Worsham, L. S. *Inorg. Nucl. Chem. Lett.* **1977**, *13*, 547.

¹H NMR spectrum (400 MHz, CDCl₃) of **1a**

¹³C NMR spectrum (101 MHz, CDCl₃) of **1a**

85.201--

 ^{19}F NMR spectrum (376 MHz, CDCl₃) of 1a

¹H NMR spectrum (400 MHz, CDCl₃) of **1b**

¹³C NMR spectrum (101 MHz, CDCl₃) of **1b**

07.19---

 ^{19}F NMR spectrum (376 MHz, CDCl₃) of 1b

¹H NMR spectrum (400 MHz, CDCl₃) of **1c**

¹³C NMR spectrum (101 MHz, CDCl₃) of **1c**

¹H NMR spectrum (400 MHz, CDCl₃) of **1d**

¹³C NMR spectrum (101 MHz, CDCl₃) of **1d**

¹H NMR spectrum (400 MHz, CDCl₃) of **1e**

¹³C NMR spectrum (101 MHz, CDCl₃) of **1e**

66'85---

¹³C NMR spectrum (101 MHz, CDCl₃) of **1f**

<-154'52 -154'54

 $^{19}\mathrm{F}$ NMR spectrum (376 MHz, CDCl_3) of 1f

¹H NMR spectrum (400 MHz, CDCl₃) of **1g**

¹³C NMR spectrum (101 MHz, CDCl₃) of **1g**

¹H NMR spectrum (400 MHz, CDCl₃) of **1h**

¹³C NMR spectrum (101 MHz, CDCl₃) of **1h**

¹H NMR spectrum (400 MHz, CDCl₃) of **1i**

¹³C NMR spectrum (101 MHz, CDCl₃) of **1i**

¹H NMR spectrum (400 MHz, CDCl₃) of **1j**

 ^{13}C NMR spectrum (101 MHz, CDCl₃) of 1j

¹H NMR spectrum (400 MHz, CDCl₃) of **1k**

¹³C NMR spectrum (101 MHz, CDCl₃) of **1k**

¹H NMR spectrum (400 MHz, CDCl₃) of **1**l

¹³C NMR spectrum (101 MHz, CDCl₃) of **11**

¹H NMR spectrum (400 MHz, CDCl₃) of **1m**

¹³C NMR spectrum (101 MHz, CDCl₃) of **1m**

¹H NMR spectrum (400 MHz, CDCl₃) of **1n**

¹³C NMR spectrum (101 MHz, CDCl₃) of **1n**

¹H NMR spectrum (400 MHz, CDCl₃) of **10**

¹³C NMR spectrum (101 MHz, CDCl₃) of **10**

¹H NMR spectrum (400 MHz, CDCl₃) of **1p**

¹³C NMR spectrum (101 MHz, CDCl₃) of **1p**

¹³C NMR spectrum (101 MHz, CDCl₃) of **1q**

10 10

0.01

10.5

0.11

¹³C NMR spectrum (101 MHz, CDCl₃) of **1r**

¹H NMR spectrum (400 MHz, CDCl₃) of **1s**

¹³C NMR spectrum (101 MHz, CDCl₃) of 1s

¹H NMR spectrum (400 MHz, CDCl₃) of **1t**

₽6°S--

98'62 98'02 99'02 90'22

29.521-

~135.36 ~134.35

0=

- 09

120

180

- 8

200

¹H NMR spectrum (400 MHz, CDCl₃) of **1u**

 ^{13}C NMR spectrum (101 MHz, CDCl₃) of 1u

¹H NMR spectrum (400 MHz, CDCl₃) of **1v**

210

¹H NMR spectrum (400 MHz, CDCl₃) of **1x**

¹³C NMR spectrum (101 MHz, CDCl₃) of **1x**

¹³C NMR spectrum (101 MHz, CDCl₃) of **1y**

¹³C NMR spectrum (101 MHz, CDCl₃) of **1z**

¹H NMR spectrum (400 MHz, CDCl₃) of **S-1**

¹³C NMR spectrum (101 MHz, CDCl₃) of **S-1**

¹H NMR spectrum (400 MHz, CDCl₃) of **1aa**

#£'8-20'£1-80'81-

#1'6*-

98'55-

¹³C NMR spectrum (101 MHz, CDCl₃) of **1aa**

¹H NMR spectrum (400 MHz, CDCl₃) of **S-2**

¹³C NMR spectrum (101 MHz, CDCl₃) of **S-2**

¹H NMR spectrum (400 MHz, CDCl₃) of **1bb**

¹³C NMR spectrum (101 MHz, CDCl₃) of **1bb**

¹³C NMR spectrum (101 MHz, CDCl₃) of **3a**

ш

¹⁹F NMR spectrum of 3a

0=

-280

-260

-240

-220

-200

-180

-160

-140 f1 (ppn)

-120

-100

96

-80

-1-

.09

12

-30 -40

- 83

-10

¹H NMR spectrum (400 MHz, CDCl₃) of **3b**

¹³C NMR spectrum (101 MHz, CDCl₃) of **3b**

 ^{19}F NMR spectrum (376 MHz, CDCl₃) of 3b

¹H NMR spectrum (400 MHz, CDCl₃) of **3c**

¹³C NMR spectrum (101 MHz, CDCl₃) of **3c**

+8'812--12'812--12'812--12'812--18'82--18'812--18'812--18'812--18'812--

¹H NMR spectrum (400 MHz, CDCl₃) of **3d**

¹³C NMR spectrum (101 MHz, CDCl₃) of **3d**

L6'812--518'80 +518'81 -518'81 -518'82 --518'82 --59'812-85'812-

 ^{19}F NMR spectrum (376 MHz, CDCl₃) of 3d

¹H NMR spectrum (400 MHz, CDCl₃) of **3e**

¹³C NMR spectrum (101 MHz, CDCl₃) of **3e**

¹H NMR spectrum (400 MHz, CDCl₃) of **3f**

S134

¹³C NMR spectrum (101 MHz, CDCl₃) of **3f**

- 9

-8

- 8

-10

¹³C NMR spectrum (101 MHz, CDCl₃) of **3g**

-518'60 -518'60 -518'87 -518'87 -518'85 -518'85 -518'85 -518'85 -518'32

 ^{19}F NMR spectrum (376 MHz, CDCl₃) of 3g

¹³C NMR spectrum (101 MHz, CDCl₃) of **3h**

29'812-09'812-+5'812-24'812-14'812-14'812-56'812-56'812-

ù, ¹⁹F NMR spectrum of 3h o à

 ^{19}F NMR spectrum (376 MHz, CDCl₃) of 3h

0

¹³C NMR spectrum (101 MHz, CDCl₃) of **3i**
19'812'-25'8'8'-218'8'-18'812'-18'812'-52'8'23 52'8'23 52'8'23 52'8'23

¹⁹F NMR spectrum of 31

ù.

-270 -260 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 230 -240 -250 f1 (ppm) 8 -10 - 8 -12 9 .8 8 -10

¹³C NMR spectrum (101 MHz, CDCl₃) of **3j**

12'812-99'812-85'812-85'812-55'812-55'812-55'812-55'812-55'812-55'812-

¹H NMR spectrum (400 MHz, CDCl₃) of **3k**

S149

¹³C NMR spectrum (101 MHz, CDCl₃) of **3k**

25,812-54,812-54,812-54,812-518,32 16,812-52,812-52,812-52,812-52,812-52,812-52,812-52,812-52,812-52,812-52,812-54,912

¹⁹F NMR spectrum of 3k O

-270 -260 -250 -90 -100 -110 -120 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 f1 (ppu) - 8 -17-- 8 -12 -9 -8 - 8 -10

 ^{19}F NMR spectrum (376 MHz, CDCl₃) of 3k

¹H NMR spectrum (400 MHz, CDCl₃) of **3**l

¹³C NMR spectrum (101 MHz, CDCl₃) of **3**l

-518'22 -518'23 -518'30 -518'30 -518'30 -518'30 -518'12 -518'12

u. ¹⁹F NMR spectrum of 31 Ó

ĥ

 ^{19}F NMR spectrum (376 MHz, CDCl_3) of 3l

¹³C NMR spectrum (101 MHz, CDCl₃) of **3m**

-518'23 -518'41 -518'41 -518'54 -518'55 -518'12 -518'12

 ^{19}F NMR spectrum (376 MHz, CDCl₃) of **3m**

¹H NMR spectrum (400 MHz, CDCl₃) of **3n**

¹³C NMR spectrum (101 MHz, CDCl₃) of **3n**

+5'812-26'312-18'812-18'812-51'812-51'812-51'812-51'812-51'812-

 19 F NMR spectrum (376 MHz, CDCl₃) of **3n**

¹H NMR spectrum (400 MHz, CDCl₃) of **30**

¹³C NMR spectrum (101 MHz, CDCl₃) of **30**

95'812-7
61.812-
6-218.43
16.812-7
05.812-7
+7318'54
81.812-7

¹⁹F NMR spectrum of 3o Ċ

¹H NMR spectrum (400 MHz, CDCl₃) of **3p**

¹³C NMR spectrum (101 MHz, CDCl₃) of **3p**

62'81Z-7
72.812-
99'812-
\$9'812
65'812-
+5'812
55'812-
15.812-
04.812-7

-270 -260 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 8 -10 4.8 - 29 L 9 -8 - 8 -10

¹H NMR spectrum (400 MHz, CDCl₃) of **3**q

¹³C NMR spectrum (101 MHz, CDCl₃) of **3**q

r8'817-7
28.812-
SL'817
27.812
69'817-7
89'812
\$9'817-
29'812-
518'60
15.812-
95'817
05'812
95'812
218'43
14.812-7

¹⁹F NMR spectrum of 3q Ó

-270 -260 -90 -100 -110 -120 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 -250 - 8 -17-- 18p -120 -97 - 8 - 83 -10

 ^{19}F NMR spectrum (376 MHz, CDCl₃) of 3q

¹³C NMR spectrum (101 MHz, CDCl₃) of **3r**

88'812-7
18.812-
\$8'812
\$8'812
87,815
92'812
\$7.815
£L'81Z
72'812-7
02'812
89'817-7
19.812-
99'817
t-518'6t
£9'81Z
29.812
09'812
65.812
12.815
518'23
12.815
95'812
PP.812-7

¹⁹F NMR spectrum of 3r ó à

-270 -260 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 f1 (ppn) - 80 -19 - 8 -19 -9 -8 - 8 -10

¹³C NMR spectrum (101 MHz, CDCl₃) of **3s**

98'812--518'80 +5'812-29'812-+5'812-25'812-25'812-

 ^{19}F NMR spectrum (376 MHz, CDCl₃) of 3s

 13 C NMR spectrum (101 MHz, CDCl₃) of **3t**

00'612-16'812-28'812-18'812-52'812-69'812-29'812-29'812-

¹⁹F NMR spectrum of 3t 07

-270 -260 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 f1 (ppn) 66 - 8 -10 . 8 3 9 -8 8 -10

¹H NMR spectrum (400 MHz, CDCl₃) of **3u**

¹³C NMR spectrum (101 MHz, CDCl₃) of **3u**
LL'812-1L'812-59'812-85'812-15'812-55'812-65'812-65'812-

280 -260 -240 -220 -200 180 160 -140 f1 (ppn) -120 -100 96 -80 -70 9 -90 -40 . 8 - 8 -10

¹H NMR spectrum (400 MHz, CDCl₃) of **3v**

¹³C NMR spectrum (101 MHz, CDCl₃) of **3v**

 ^{19}F NMR spectrum (376 MHz, CDCl₃) of 3v

u.

¹⁸F NMR spectrum of 3v

C

ő

¹H NMR spectrum (400 MHz, CDCl₃) of **3w**

¹³C NMR spectrum (101 MHz, CDCl₃) of **3w**

+1'812-L0'812-10'812-10'812-56'L12-58'L12-58'L12-51'L12-

¹⁵F NMR spectrum of **3w**

shierwan-F-F-0605 F19 S187

 ^{19}F NMR spectrum (376 MHz, CDCl₃) of 3w

¹H NMR spectrum (400 MHz, CDCl₃) of **3x**

¹³C NMR spectrum (101 MHz, CDCl₃) of **3x**

12.571-7
\$9.571
85°ELT
25'821
14.571-4
07'621
EE.ET1-
12.571-7
12.571
41.571-
80'£71
20.571-
96.271-7

88'501---

¹H NMR spectrum (400 MHz, CDCl₃) of **3y**

¹³C NMR spectrum (101 MHz, CDCl₃) of **3y**

¹⁹F NMR spectrum of 3y

0

92 ELT 92 ELT 91 ELT 90 ELT 22 ELT 90 ELT 22 ELT 90 ELT 22 ELT 90 ELT 10 ELT

 ^{19}F NMR spectrum (376 MHz, CDCl₃) of 3y

¹H NMR spectrum (400 MHz, CDCl₃) of **3z**

¹³C NMR spectrum (101 MHz, CDCl₃) of **3z**

08'812'-55'812'-19'812'-55'812'-65'812'-65'812'-65'812'-

Ó

¹⁹F NMR spectrum of 3z

¹H NMR spectrum (400 MHz, CDCl₃) of **3aa**

¹³C NMR spectrum (101 MHz, CDCl₃) of **3aa**

-260 -240 220 200 -180 -160 -140 -120 -100 [] (ppn) 08 9 9 8 0 2 8 8 9 - 8 - 8 -2

¹³C NMR spectrum (101 MHz, CDCl₃) of **3bb**

