Supporting Information

Rhodium(III)-Catalyzed Synthesis of Indanones via C-H Activation of Phenacyl Phosphoniums and Coupling with Olefins
Yunyun Li, ${ }^{\dagger, \dagger}$ Xifa Yang, ${ }^{\dagger, \dagger}$ Lingheng Kong, ${ }^{\dagger,+}$ and Xingwei Li*, ${ }^{\dagger}$
${ }^{\dagger}$ Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
University of Chinese Academy of Sciences, Beijing 100049, China
xwli@dicp.ac.cn

Table of Contents

\qquad
II. Experimental Information for the Preparation of Starting Materials S2
III. Experimental Details and Characterization Data S3
IV. Mechanistic Studies S10
V. Gram-scale Synthesis S20
VI. NMR Spectra. S21

I. General Information

Commercially available reagents were used as received without further purification, unless stated otherwise. All reactions were carried out in a nitrogen-filled dry box or using standard Schlenk techniques. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker NMR spectrometer (400 MHz and 100 MHz , respectively) and internally referenced to the tetramethylsilane signal in the solvent indicated. ${ }^{19} \mathrm{~F}$ NMR spectra were recorded on a Bruker NMR spectrometer instrument (376 MHz). HRMS were obtained on an Agilent Q-TOF 6540. Column chromatography was performed on silica gel (300-400 mesh) using ethyl acetate (EA)/petroleum ether (PE) or dichloromethane (DCM)/methanol (MeOH) as eluents. The abundance of ${ }^{18} \mathrm{O}$ in $\mathrm{Et}^{18} \mathrm{OH}$ and $\mathrm{CH}_{3} \mathrm{C}^{18} \mathrm{O}_{2} \mathrm{Na}$ was 95% and 98% respectively.

II. Experimental Information for the Preparation of Starting Materials

Representative Procedure of Preparation of a Phenacyl Phosphonium Salt. ${ }^{[1]}$

A solution of α-bromoacetophenone (50.0 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ was added dropwise over 20 min to a solution of triphenylphosphine (50.0 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$. The reaction mixture was stirred at room temperature for 24 h , and the mixture was concentrated under reduced pressure and the resulting precipitate was washed with $\mathrm{Et}_{2} \mathrm{O}$. The phosphonium bromide was obtained in quantitative yield, and was used without further purification.

A solution of KOTf (4 equiv) in acetone (10 mL) was added to a solution of (2-oxo-2-phenylethyl)triphenylphosphonium bromide (20 mmol) in acetone (40 mL) and the mixture was stirred for at rt for 24 h . All the solvent was removed under reduced pressure and the residue was washed with DCM. The solution was concentrated to give product 1a in 95% yield.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$) $\delta 8.18(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.84-7.74(\mathrm{~m}, 9 \mathrm{H}), 7.69-7.61(\mathrm{~m}$, $7 \mathrm{H}), 7.50(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.60(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta$ 191.7, 135.1, $135.0(\mathrm{~d}, J=3.1 \mathrm{~Hz}), 133.8,133.7,130.4,130.2,129.5,129.1,118.6(\mathrm{~d}, J=$ $89.5 \mathrm{~Hz}), 36.5\left(\mathrm{~d}, J=59.2 \mathrm{~Hz}\right.$). HRMS: [M-OTf] ${ }^{+}$calculated for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{OP}^{+}: 381.1403$, found 381.1403, [OTf]' calculated for $\mathrm{CF}_{3} \mathrm{O}_{3} \mathrm{~S}: 148.9520$, found 148.9524 .

III. Experimental Details and Characterization Data

Representative procedures for the synthesis of indanone derivatives. Phenacyl phosphonium salts 1a (0.2 mmol), $\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}(2 \mathrm{~mol} \%), \mathrm{AgSbF}_{6}(10 \mathrm{~mol} \%), \mathrm{CsOAc}(0.4 \mathrm{mmol})$, and $\mathrm{Cu}(\mathrm{OAc})_{2}(0.42 \mathrm{mmol})$ were charged into a pressure tube. Ethanol $(2 \mathrm{~mL})$ was then added to this tube. The resulting mixture was stirred for seconds under N_{2} atmosphere, to which ethyl acrylate (2a, 0.4 mmol) was next added. The mixture was stirred at $120^{\circ} \mathrm{C}$ for 18 hours. The solvent was then removed under vacuum and the residue was purified by silica gel chromatography using PE/EA (30:1-10:1) to afford product 3aa as a colorless oil (34.7 mg, 80\%).

3aa, 80%
Product 3aa was obtained as a colorless oil in 80% yield (34.7 mg). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(\mathbf{4 0 0} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta 7.76(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.88-3.79(\mathrm{~m}, 1 \mathrm{H}), 3.01(\mathrm{dd}, J=19.2,7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $2.89(\mathrm{dd}, J=15.9,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{dd}, J=16.0,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{dd}, J=19.2,3.4 \mathrm{~Hz}$, $1 \mathrm{H}), 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 205.4,171.7,156.7,136.8$, 134.9, 128.0, 125.4, 123.7, 60.8, 43.3, 40.4, 34.6, 14.2. HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{O}_{3}{ }^{+}$: 219.1016, found 219.1017.

3ba, 85%
Product 3ba was obtained as a colorless oil in 85% yield (39.4 mg). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(\mathbf{4 0 0} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta 7.64(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~s}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{q}, J=7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 3.80-3.74(\mathrm{~m}, 1 \mathrm{H}), 2.98(\mathrm{dd}, J=19.1,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{dd}, J=15.9,5.1 \mathrm{~Hz}, 1 \mathrm{H})$, $2.52(\mathrm{dd}, J=15.9,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.47-2.40(\mathrm{~m}, 4 \mathrm{H}), 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 204.9,171.8,157.2,146.1,134.6,129.3,125.8,123.5,60.8,43.5,40.5,34.4$, 22.2, 14.2. HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}_{3}{ }^{+}: 233.1172$, found 233.1174.

Product 3ca was obtained as a colorless oil in 56% yield (28.0 mg). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(\mathbf{4 0 0} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta 7.69(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.95-6.93(\mathrm{~m}, 2 \mathrm{H}), 4.18(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H})$, $3.81-3.73(\mathrm{~m}, 1 \mathrm{H}), 2.98(\mathrm{dd}, J=19.0,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{dd}, J=15.9,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{dd}$, $J=15.9,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{dd}, J=19.0,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 203.5,171.8,165.4,159.7,130.1,125.4,115.7,108.9,60.8,55.7,43.5,40.5$, 34.5, 14.2. HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}_{4}{ }^{+}: 249.1121$, found 249.1124.

Product 3da was obtained as a colorless oil in 76% yield (35.8 mg). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(\mathbf{4 0 0} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta 7.76(\mathrm{dd}, J=8.4,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{dd}, J=8.6,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{ddd}, J=8.5,2.2$, $1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.85-3.77(\mathrm{~m}, 1 \mathrm{H}), 3.02(\mathrm{dd}, J=19.2,7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $2.85(\mathrm{dd}, J=16.1,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{dd}, J=16.1,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{dd}, J=19.2,3.4 \mathrm{~Hz}$, $1 \mathrm{H}), 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 203.3,171.4,167.2(\mathrm{~d}, J=$ $256.5 \mathrm{~Hz}), 159.6(\mathrm{~d}, J=9.5 \mathrm{~Hz}), 133.3(\mathrm{~d}, J=1.8 \mathrm{~Hz}), 126.1(\mathrm{~d}, J=10.4 \mathrm{~Hz}), 116.3(\mathrm{~d}, J=$ $23.8 \mathrm{~Hz}), 112.3(\mathrm{~d}, J=22.6 \mathrm{~Hz}), 60.9,43.4,40.1,34.4,14.2 .{ }^{19} \mathbf{F} \mathbf{N M R}\left(\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta$ -102.1. HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{FO}_{3}{ }^{+}: 237.0921$, found 237.0923.

3ea, 90%
Product 3ea was obtained as a white solid in 90% yield (40.1 mg). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ ($\mathbf{4 0 0} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta 7.68(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~s}, 1 \mathrm{H}), 7.39(\mathrm{dd}, J=8.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{q}, J=$ $7.1 \mathrm{~Hz}, 2 \mathrm{H}$), $3.85-3.76(\mathrm{~m}, 1 \mathrm{H}), 3.01(\mathrm{dd}, J=19.2,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{dd}, J=16.1,5.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.58(\mathrm{dd}, J=16.1,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{dd}, J=19.2,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 203.7,171.4,158.1,141.4,135.3,128.8,125.8,124.9,60.9$, 43.3, 40.1, 34.3, 14.2. HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{ClO}_{3}{ }^{+}: 253.0626$, found 253.0626 .

3fa, 73%
Product 3fa was obtained as a yellow solid in 73% yield $(43.5 \mathrm{mg}) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ ($\mathbf{4 0 0} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta 7.69(\mathrm{~s}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{dd}, J=8.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{q}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.86-3.77(\mathrm{~m}, 1 \mathrm{H}), 2.99(\mathrm{dd}, J=19.3,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{dd}, J=16.1,5.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.58(\mathrm{dd}, J=16.1,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{dd}, J=19.3,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 203.9,171.4,158.2,135.7,131.7,130.2,128.9,125.0,60.9$, 43.2, 40.1, 34.3, 14.2. HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{BrO}_{3}{ }^{+}$: 297.0121, found 297.0125.

3ga, 73\%
Product 3ga was obtained as a yellow oil in 73% yield $(42.7 \mathrm{mg}) .{ }^{1} \mathbf{H} \mathbf{N M R}(400 \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta 7.81(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~s}, 1 \mathrm{H}), 7.65-7.59(\mathrm{~m}, 3 \mathrm{H}), 7.50-7.45(\mathrm{~m}, 2 \mathrm{H})$, $7.43-7.39(\mathrm{~m}, 1 \mathrm{H}), 4.18(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.90-3.84(\mathrm{~m}, 1 \mathrm{H}), 3.04(\mathrm{dd}, J=19.2,7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 2.94$ (dd, $J=15.9,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{dd}, J=15.9,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{dd}, J=19.2,3.4$ $\mathrm{Hz}, 1 \mathrm{H}), 1.25(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 204.9,171.7,157.4,148.0$, $140.1,135.7,129.0,128.5,127.5,127.5,124.1,124.0,60.8,43.6,40.5,34.6,14.2$. HRMS:
$\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{O}_{3}{ }^{+}: 295.1329$, found 295.1331.

3ha, 38\%
Product 3ha was obtained as a white solid in 38% yield $(18.7 \mathrm{mg}) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ ($\mathbf{4 0 0} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta 7.88-7.81(\mathrm{~m}, 2 \mathrm{H}), 7.70(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.92-3.85$ $(\mathrm{m}, 1 \mathrm{H}), 3.07(\mathrm{dd}, J=19.5,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{dd}, J=16.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{dd}, J=16.4$, $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{dd}, J=19.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.25(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 MHz , $\left.\mathbf{C D C l}_{3}\right) \delta 203.6,171.1,156.5,139.8,131.7,129.9,124.5,118.0,117.9,61.1,43.2,39.8,34.4$, 14.2. HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{NO}_{3}{ }^{+}: 244.0968$, found 244.0970 .

3ia, 66\%
Product 3ia was obtained as a white solid in 66% yield (37.7 mg). ${ }^{1} \mathbf{H}$ NMR (400 MHz , $\left.\mathbf{C D C l}_{3}\right) \delta 7.86(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~s}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{qd}, J=7.1$, $1.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.94-3.85(\mathrm{~m}, 1 \mathrm{H}), 3.08(\mathrm{dd}, J=19.4,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{dd}, J=16.1,5.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.64(\mathrm{dd}, J=16.1,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{dd}, J=19.4,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.25(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$) $\delta 204.1,171.3,156.7,139.5,136.2(\mathrm{q}, ~ J=32.3 \mathrm{~Hz}), 125.2(\mathrm{q}, J$ $=3.5 \mathrm{~Hz}), 124.3,123.6(\mathrm{q}, J=273.2 \mathrm{~Hz}), 122.8(\mathrm{q}, J=3.9 \mathrm{~Hz}), 61.0,43.4,40.0,34.6,14.1$. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta-62.8$. HRMS: $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{O}_{3}{ }^{+}$: 287.0890, found 287.0890.

Product 3ja and 3ja' was obtained as a white solid in 67% yield as a $1: 1$ mixture (37.7 mg). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.42-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.22-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.06(\mathrm{dd}, J=7.5$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.20-4.11(\mathrm{~m}, 4 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.89-3.83(\mathrm{~m}, 4 \mathrm{H}), 3.80-3.72(\mathrm{~m}, 1 \mathrm{H}), 3.27$ (dd, $J=16.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.05-2.94(\mathrm{~m}, 2 \mathrm{H}), 2.84(\mathrm{dd}, J=15.9,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.56-2.44$ (m, 3H), $\left.2.38(\mathrm{dd}, J=16.1,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.27-1.23(\mathrm{~m}, 6 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R ~ (1 0 0 ~ M H z}, \mathbf{C D C l}_{3}\right)$ $\delta 205.8,205.2,172.2,171.8,159.8,157.2,149.5,144.6,138.7,138.1,129.7,126.2,124.1$, $115.5,115.3,104.9,60.8,60.6,55.6,55.5,43.9,43.4,40.6,38.3,34.0,32.8,14.205,14.20$. HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}_{4}{ }^{+}$: 249.1121 , found 249.1125.

3ka (1.5:1) 3ka' \quad 3ka+3ka', 65% (1.5:1)
Product 3ka and 3ka' was obtained as a colorless oil in 65% yield as a 1.5:1 mixture (33.0 $\mathrm{mg}) .{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Mixture: $\quad \delta 7.70(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $1.5 \mathrm{H}), 7.63-7.54(\mathrm{~m}, 2.5 \mathrm{H}), 7.46(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1.5 \mathrm{H}), 4.20-4.10$
$(\mathrm{m}, 5 \mathrm{H}), 3.95-3.89(\mathrm{~m}, 1.5 \mathrm{H}), 3.85-3.76(\mathrm{~m}, 1 \mathrm{H}), 3.26(\mathrm{dd}, J=16.3,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.08-$ $2.96(\mathrm{~m}, 2.5 \mathrm{H}), 2.85(\mathrm{dd}, J=16.1,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.62-2.43(\mathrm{~m}, 5 \mathrm{H}), 1.27-1.20(\mathrm{~m}, 7.5 \mathrm{H})$. 13C NMR (100 MHz, CDCl3) Major: $\delta 204.4,171.5,152.9,139.2,135.2,132.5,129.7,122.2$, 60.8, 43.4, 37.9, 34.2, 14.2. Minor: $\delta 203.8,154.7,138.4,134.9,134.5,126.8,123.6,60.9$, 43.6, 40.2, 34.3, 14.15. HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{ClO}_{3}{ }^{+}: 253.0626$, found 253.0626 .

3la+3la', 58\% (1:1)
Product 3la and 3la' was obtained as a yellow oil in 58% yield as a $1: 1 \mathrm{mixture}(34.6 \mathrm{mg}) .{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 7.87(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{dd}, J=7.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.73-$ $7.70(\mathrm{~m}, 2 \mathrm{H}), 7.41(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.19-4.10(\mathrm{~m}, 4 \mathrm{H}), 3.90-$ $3.83(\mathrm{~m}, 1 \mathrm{H}), 3.82-3.74(\mathrm{~m}, 1 \mathrm{H}), 3.29(\mathrm{dd}, J=16.3,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{dd}, J=7.7,5.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.99(\mathrm{dd}, J=7.8,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{dd}, J=16.1,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.63-2.54(\mathrm{~m}, 2 \mathrm{H}), 2.52$ - $2.43(\mathrm{~m}, 2 \mathrm{H}), 1.26-1.22(\mathrm{~m}, 6 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 204.5,203.7,171.4$, $155.2,154.8,139.3,138.7,138.4,137.6,129.9,127.1,126.7,122.8,122.4,121.4,60.9,60.8$, $43.5,43.4,40.1,38.1,35.7,34.3,14.2,14.15 . \mathrm{HRMS}: \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{BrO}_{3}{ }^{+}: 297.0121$, found 297.0125.

3ma, 66\%
Product 3ma was obtained as a yellow solid in 66% yield (31.2 mg) ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(\mathbf{4 0 0} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta 7.57(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 1 \mathrm{H}), 4.14(\mathrm{q}, J=7.1$ $\mathrm{Hz}, 2 \mathrm{H}), 4.01-3.91(\mathrm{~m}, 1 \mathrm{H}), 3.13(\mathrm{dd}, J=16.2,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{dd}, J=19.4,7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $2.58-2.50(\mathrm{~m}, 2 \mathrm{H}), 1.23(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(100 \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 204.1(\mathrm{~d}, J=$ $2.0 \mathrm{~Hz}), 171.4,160.3(\mathrm{~d}, J=251.1 \mathrm{~Hz}), 141.8(\mathrm{~d}, J=17.0 \mathrm{~Hz}), 140.0(\mathrm{~d}, J=4.3 \mathrm{~Hz}), 130.2(\mathrm{~d}$, $J=6.5 \mathrm{~Hz}), 121.3(\mathrm{~d}, J=20.5 \mathrm{~Hz}), 119.6(\mathrm{~d}, J=3.9 \mathrm{~Hz}), 60.8,43.2,38.6,32.2,14.2 .{ }^{19}$ F NMR (376 MHz, $\mathbf{C D C l}_{3}$) δ-118.3. HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{FO}_{3}{ }^{+}$: 237.0921, found 237.0924.

3na, 77\%
Product 3na was obtained as a yellow oil in 77% yield (38.2 mg). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(\mathbf{4 0 0} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta 7.55(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{q}$, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 3.78-3.71(\mathrm{~m}, 1 \mathrm{H}), 2.97(\mathrm{dd}, J=18.9,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{dd}, J$ $=15.9,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{dd}, J=15.9,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{dd}, J=18.9,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.26(\mathrm{t}, J$ $=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 203.0,171.7,159.4,158.0,136.7,124.8$, 117.1, 109.6, 60.8, 55.8, 43.8, 40.6, 34.1, 14.2. HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}_{4}{ }^{+}: 249.1121$, found 249.1118.

3oa, 76\%
Product 3oa was obtained as a colorless oil in 76% yield $(36.0 \mathrm{mg}) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(\mathbf{4 0 0} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta 7.62-7.57(\mathrm{~m}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{t}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{q}, J=$ $7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.86-3.80(\mathrm{~m}, 1 \mathrm{H}), 3.02(\mathrm{dd}, J=19.1,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{dd}, J=16.1,5.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.59(\mathrm{dd}, J=16.1,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{dd}, J=19.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 201.5,171.4,158.9(\mathrm{~d}, J=2.2 \mathrm{~Hz}), 158.8(\mathrm{~d}, J=264.3 \mathrm{~Hz})$, $136.9(\mathrm{~d}, J=8.3 \mathrm{~Hz}), 124.6(\mathrm{~d}, J=12.9 \mathrm{~Hz}), 121.2(\mathrm{~d}, J=4.2 \mathrm{~Hz}), 114.9(\mathrm{~d}, J=19.3 \mathrm{~Hz})$, $60.9,43.8,40.2,34.5,14.2 .{ }^{19}$ F NMR ($376 \mathbf{M H z}, \mathbf{C D C l}_{3}$) δ-114.6. HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$ calculated for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{FO}_{3}{ }^{+}: 237.0921$, found 237.0924.

3pa, 71\%
Product 3pa was obtained as a white solid in 71% yield $(35.9 \mathrm{mg}) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, $\left.\mathbf{C D C l}_{3}\right) \delta 7.01(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{td}, J=9.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, $3.86-3.76(\mathrm{~m}, 1 \mathrm{H}), 3.03(\mathrm{dd}, J=19.1,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{dd}, J=16.3,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{dd}$,
$J=16.3,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{dd}, J=19.1,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{~ N M R ~ (1 0 0}$ $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 199.72(\mathrm{~d}, J=1.9 \mathrm{~Hz}), 171.11,167.60(\mathrm{dd}, J=259.1,11.1 \mathrm{~Hz}), 160.76(\mathrm{dd}, J$ $=10.7,4.0 \mathrm{~Hz}), 159.36(\mathrm{dd}, J=262.1,8.9 \mathrm{~Hz}), 121.45(\mathrm{dd}, J=13.2,2.4 \mathrm{~Hz}), 108.70(\mathrm{dd}, J=$ $22.5,4.3 \mathrm{~Hz}), 104.22(\mathrm{dd}, J=26.9,22.9 \mathrm{~Hz}), 61.0,43.9,39.9,34.7,14.2 .{ }^{19}$ F NMR (376 $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta-97.7(\mathrm{~d}, J=13.3 \mathrm{~Hz}),-109.4(\mathrm{~d}, J=13.3 \mathrm{~Hz}) . \mathrm{HRMS}: \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$ calculated for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~F}_{2} \mathrm{O}_{3}{ }^{+}: 255.0827$, found 255.0826.

3qa+3qa', 47\% (1.7:1)
Product 3qa and 3qa' was obtained as a yellow oil in 47% yield as a 1.7:1 mixture (27.1 mg). ${ }^{1} \mathbf{H}$ NMR (400 MHz, $\mathbf{C D C l}_{3}$) Mixture: $\delta 7.81(\mathrm{~s}, 1 \mathrm{H}), 7.64(\mathrm{~s}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1.7 \mathrm{H})$, $7.54(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1.7 \mathrm{H}), 4.21-4.09(\mathrm{~m}, 5.4 \mathrm{H}), 3.98-3.89(\mathrm{~m}, 1.7 \mathrm{H}), 3.82-3.76(\mathrm{~m}, 1 \mathrm{H})$, $3.23(\mathrm{dd}, J=16.4,3.2 \mathrm{~Hz}, 1.7 \mathrm{H}), 3.03(\mathrm{dd}, J=19.3,7.8 \mathrm{~Hz}, 2.7 \mathrm{H}), 2.83(\mathrm{dd}, J=16.2,5.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.65-2.56(\mathrm{~m}, 2.7 \mathrm{H}), 2.56-2.46(\mathrm{~m}, 2.7 \mathrm{H}), 1.25-1.20(\mathrm{~m}, 8.1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\mathbf{M H z}, \mathbf{C D C l}_{3}$) Major: $\delta 203.2,171.2,154.8,139.8,137.4,130.9,130.85,122.5,60.9,43.6$, 37.7, 34.8, 14.14. Minor: $\delta 202.6,155.4,139.4,136.5,133.2,127.7,125.2,61.0,43.4,39.9$, 34.0, 14.2. HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{O}_{3}{ }^{+}: 287.0236$, found 287.0236.

3ra+3ra', 67\% (2:1)
Product 3ra and 3ra' was obtained as a colorless oil in 67% yield as a $2: 1$ mixture (38.9 mg). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) Mixture: $\delta 7.35-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.01(\mathrm{~d}, J=0.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.98$ $(\mathrm{d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.37-4.33(\mathrm{~m}, 10 \mathrm{H}), 4.29-4.22(\mathrm{~m}, 2 \mathrm{H}), 4.20-4.10(\mathrm{~m}, 6 \mathrm{H}), 3.86-$ $3.80(\mathrm{~m}, 2 \mathrm{H}), 3.75-3.65(\mathrm{~m}, 1 \mathrm{H}), 3.17(\mathrm{dd}, J=15.9,3.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.95(\mathrm{dd}, J=19.2,7.8 \mathrm{~Hz}$, $3 \mathrm{H}), 2.80(\mathrm{dd}, J=15.9,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.54-2.37(\mathrm{~m}, 6 \mathrm{H}), 2.32-2.21(\mathrm{~m}, 6 \mathrm{H}), 1.28-1.19(\mathrm{~m}$, 9H). ${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$) Major: $\delta 204.0,172.0,156.5,148.7,147.8,132.8,122.5$, 118.4, 70.27, 60.6, 43.7, 38.8, 32.8, 30.8, 14.19. Minor: $\delta 203.7,171.7,157.5,152.5,151.4$, 132.0, 117.2, 115.9, 70.3, 70.2, 60.8, 43.8, 40.5, 33.9, 14.2. HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{O}_{5}{ }^{+}: 291.1227$, found 291.1230

3sa, 47\%
Product 3sa was obtained as a yellow solid in 47% yield (32.0 mg). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(\mathbf{4 0 0} \mathbf{~ M H z}$, acetone- $\boldsymbol{d}_{\mathbf{6}}$) $\delta 9.47(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.46-8.42(\mathrm{~m}, 4 \mathrm{H}), 8.34(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{~d}$, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.16(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.22-4.11(\mathrm{~m}, 3 \mathrm{H}), 3.25(\mathrm{dd}, J=12.7,3.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.22-3.16(\mathrm{~m}, 1 \mathrm{H}), 2.91-2.82(\mathrm{~m}, 1 \mathrm{H}), 2.72(\mathrm{dd}, J=18.7,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.21(\mathrm{t}, J=7.1 \mathrm{~Hz}$, 3H). ${ }^{13} \mathbf{C}$ NMR (100 MHz, DMSO-d \mathbf{d}_{6}) 206.6, 172.1, 156.1, 136.1, 131.2, 130.9, 130.6, $130.4,128.1,127.8,127.7,127.5,127.1,123.8,123.3,122.5,121.6,60.5,44.3,34.4,14.5$.

HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{O}_{3}{ }^{+}: 343.1329$, found 343.1329.

3ta+3ta', 72\% (1.6:1)
Product 3ta and 3ta' was obtained as a yellow oil in 72% yield as a $1.6: 1$ mixture (38.5 mg). ${ }^{1} \mathbf{H}$ NMR (400 MHz, $\mathbf{C D C l}_{3}$) Mixture: $\delta 8.31$ ($\mathrm{s}, 1.6 \mathrm{H}$), $8.11-8.07(\mathrm{~m}, 1 \mathrm{H}), 8.00-7.95(\mathrm{~m}$, $2.6 \mathrm{H}), 7.91(\mathrm{~s}, 1.6 \mathrm{H}), 7.88-7.84(\mathrm{~m}, 2.6 \mathrm{H}), 7.74(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.69-7.65(\mathrm{~m}, 1.6 \mathrm{H})$, $7.61-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.49(\mathrm{~m}, 1.6 \mathrm{H}), 4.34-4.29(\mathrm{~m}, 1 \mathrm{H}), 4.22-4.14(\mathrm{~m}, 5.2 \mathrm{H}), 4.02-$ $3.96(\mathrm{~m}, 1.6 \mathrm{H}), 3.20(\mathrm{dd}, J=16.1,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.15-3.06(\mathrm{~m}, 2.6 \mathrm{H}), 2.99(\mathrm{dd}, J=16.0,5.3$ $\mathrm{Hz}, 1.6 \mathrm{H}), 2.70-2.62(\mathrm{~m}, 2.6 \mathrm{H}), 2.57(\mathrm{dd}, J=19.2,4.1 \mathrm{~Hz}, 1.6 \mathrm{H}), 2.39(\mathrm{dd}, J=16.1,10.9$ $\mathrm{Hz}, 1 \mathrm{H}), 1.27-1.23(\mathrm{~m}, 7.8 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{~ N M R ~ (1 0 0 ~ M H z , ~} \mathbf{C D C l}_{3}$) Major: $\delta 205.6,171.8,149.8$, $137.1,134.4,130.4,129.5,129.46,128.7,128.0,126.5,124.5,124.0,119.4,60.8,44.0,40.9$, 34.2, 14.23. Minor: $\delta 205.3,171.8,157.1,137.1,134.7,132.6,129.5,129.1,127.3,124.4$, $60.9,44.0,41.1,34.0,14.2$. HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{O}_{3}{ }^{+}: 269.1172$, found 269.1173.

3ab, 87\%
Product 3ab was obtained as a colorless oil in 87% yield $(35.5 \mathrm{mg}) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, $\left.\mathbf{C D C l}_{3}\right) \delta 7.76(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{td}, J=7.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{dd}, J=7.8,0.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.44-7.39(\mathrm{~m}, 1 \mathrm{H}), 3.86-3.80(\mathrm{~m}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.01(\mathrm{dd}, J=19.2,7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $2.90(\mathrm{dd}, J=16.1,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{dd}, J=16.1,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{dd}, J=19.2,3.4 \mathrm{~Hz}$, 1H). ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 205.2,172.2,156.6,136.8,134.9,128.1,125.4,123.7$, 51.9, 43.3, 40.2, 34.5. HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{O}_{3}{ }^{+}$: 205.0859, found 205.0862 .

3ac, 74\%
Product 3ac was obtained as a colorless oil in 74% yield $(29.8 \mathrm{mg}) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R} \mathbf{(4 0 0} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta 7.76(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.88-3.79(\mathrm{~m}, 1 \mathrm{H}), 3.00(\mathrm{dd}, J=19.2,7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $2.90(\mathrm{dd}, J=15.9,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{dd}, J=15.9,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{dd}, J=19.2,3.4 \mathrm{~Hz}$, $1 \mathrm{H}), 1.64-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.31(\mathrm{~m}, 2 \mathrm{H}), 0.93(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}(100 \mathrm{MHz}$, $\left.\mathbf{C D C l}_{3}\right) \delta 205.3,171.8,156.7,136.8,134.9,128.0,125.4,123.7,64.7,43.3,40.4,34.6,30.6$, 19.1, 13.7. HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}_{3}{ }^{+}: 247.1329$, found 247.1331.

3ad, 57\%
Product 3ad was obtained as a colorless oil in 57% yield $(27.8 \mathrm{mg}) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(\mathbf{4 0 0} \mathbf{~ M H z}$,
$\left.\mathbf{C D C l}_{3}\right) \delta 7.75(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.82-3.76(\mathrm{~m}, 1 \mathrm{H}), 2.98(\mathrm{dd}, J=19.2,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{dd}, J=15.6,5.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.52-2.46(\mathrm{~m}, 2 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(100 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 205.6,170.9,157.0$, $136.9,134.8,127.9,125.5,123.7,81.1,43.2,41.5,34.7,28.0 . \operatorname{HRMS}: \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$ calculated for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}_{3}{ }^{+}: 247.1329$, found 247.1328 .

3ae, 78\%
Product 3ae was obtained as a colorless oil in 78% yield $(43.5 \mathrm{mg}) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, $\left.\mathbf{C D C l}_{3}\right) \delta 7.74(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-$ $7.30(\mathrm{~m}, 6 \mathrm{H}), 5.20-5.11(\mathrm{~m}, 2 \mathrm{H}), 3.88-3.79(\mathrm{~m}, 1 \mathrm{H}), 3.02-2.89(\mathrm{~m}, 2 \mathrm{H}), 2.61(\mathrm{dd}, J=$ $16.0,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{dd}, J=19.2,3.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 205.2$, $171.6,156.5,136.8,135.6,134.9,128.7,128.5,128.4,128.1,125.4,123.8,66.7,43.3,40.4$, 34.6. HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{O}_{3}{ }^{+}: 281.1172$, found 281.1172.

Product 3af was obtained as a yellow oil in 75% yield $(25.6 \mathrm{mg}) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, $\left.\mathbf{C D C l}_{3}\right) \delta 7.80(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.72-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.47(\mathrm{~m}, 1 \mathrm{H}), 3.80-3.74(\mathrm{~m}$, $1 \mathrm{H}), 3.05(\mathrm{dd}, J=19.1,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.85-2.72(\mathrm{~m}, 2 \mathrm{H}), 2.51(\mathrm{dd}, J=19.1,3.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 203.2,154.0,136.8,135.4,129.0,125.4,124.1,117.7,42.5,34.5$, 23.8. HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{NO}^{+}$: 172.0757, found 172.0755 .

3ag, 56\%
Product 3ag was obtained as a colorless oil in 56% yield (27.9 mg). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(\mathbf{4 0 0} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta 7.99-7.95(\mathrm{~m}, 2 \mathrm{H}), 7.77(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.64-7.53(\mathrm{~m}, 3 \mathrm{H}), 7.49-7.45(\mathrm{~m}$, $2 \mathrm{H}), 7.41(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.09-4.03(\mathrm{~m}, 1 \mathrm{H}), 3.57(\mathrm{dd}, J=17.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{dd}, J$ $=17.8,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{dd}, J=19.3,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{dd}, J=19.3,3.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 205.7,198.1,157.6,136.9,136.6,134.9,133.5,128.8,128.1$, 127.9, 125.7, 123.8, 45.3, 44.0, 33.7. HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{O}_{2}{ }^{+}:$251.1067, found 251.1068.

IV. Mechanistic Studies

H/D Exchange Experiment of the Coupling Reaction between 1a and Ethyl Acrylate 2a. To a mixture of 1a $(0.2 \mathrm{mmol}), \mathrm{CsOAc}(0.4 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OAc})_{2}(0.42 \mathrm{mmol}),\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}(2$ $\mathrm{mol} \%)$, and $\mathrm{AgSbF}_{6}(10 \mathrm{~mol} \%)$ in ethanol $-d_{6}(2 \mathrm{~mL})$ was added ethyl acrylate $2 \mathrm{a}(0.4 \mathrm{mmol})$
under N_{2} atmosphere. The reaction mixture was stirred at $120^{\circ} \mathrm{C}$ for 18 h . After that, the solvent was removed under reduced pressure and the residue was purified by silica gel chromatography using PE/EA to afford colorless oil product, which was characterized by ${ }^{1} \mathrm{H}$ NMR spectroscopy.

Post-Coupling H/D Exchange Experiment of the Product 3aa. A control experiment was conducted to exclude the H / D exchange originating from post-coupling H / D exchange. A mixture of 3aa (0.1 mmol), $\mathrm{CsOAc}(0.4 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OAc})_{2}(0.42 \mathrm{mmol}),\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}(2$ $\mathrm{mol} \%), \operatorname{AgSbF}_{6}(10 \mathrm{~mol} \%)$ in ethanol $-d_{6}(1 \mathrm{~mL})$ was stirred at $120{ }^{\circ} \mathrm{C}$ for 18 h under N_{2} atmosphere. Then the solvent was removed under vacuum and the residue was purified by silica gel chromatography. The product was characterized by ${ }^{1} \mathrm{H}$ NMR spectroscopy.

Abstract

Measurement of Kinetic Isotope Effect (Parallel Reactions). Two pressure tubes were separately charged with $\mathbf{1 a}(0.24 \mathrm{mmol})$ and $\mathbf{1 a}-d_{5}(0.24 \mathrm{mmol})$. To each tube was added $\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}(2 \mathrm{~mol} \%), \mathrm{AgSbF}_{6}(10 \mathrm{~mol} \%), \mathrm{CsOAc}(0.4 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OAc})_{2}(0.42 \mathrm{mmol})$, ethyl acrylate 2a (0.2 mmol), and $\mathrm{EtOH}(2 \mathrm{~mL})$ under N_{2} atmosphere. The two reaction mixtures were stirred side by side in an oil bath preheated at $100^{\circ} \mathrm{C}$ for 2 hour. After that, the reaction was cooled to $0{ }^{\circ} \mathrm{C}$ rapidly and was quenched with pentane. The two mixtures were combined and the solvent was removed under vacuum. The residue was purified by silica gel chromatography using PE/EA to afford a mixture of Зaa and Зaa- d_{n} as a colorless oil (6.5 mg , 7% yield). The KIE value was determined to be $k_{\mathrm{H}} / k_{\mathrm{D}}=2.3$ on the basis of ${ }^{1} \mathrm{H}$ NMR analysis.

Studies on a Possible Sequence of Phosphine Elimnation-Oxidation. To a pressure tube loaded with $\mathrm{PPh}_{3}(0.1 \mathrm{mmol})$ was added $\mathrm{H}_{2} \mathrm{O}$ (5.0 equiv.) with or without ethyl acrylate 2a under standard conditions at $100^{\circ} \mathrm{C}$ for 18 h . After that, the reaction mixture was analyzed by GC-MS and ${ }^{31} \mathrm{P}$ NMR spectroscopy, and essentially no ($<5 \%$) $\mathrm{O}=\mathrm{PPh}_{3}$ was detected.

$$
\mathrm{PPh}_{3} \xrightarrow[\begin{array}{c}
100^{\circ} \mathrm{C} \\
\text { with or without 2a }
\end{array}]{\begin{array}{c}
\text { standard conditions } \\
\mathrm{H}_{2} \mathrm{O}(5.0 \text { equiv })
\end{array}}<5 \% \mathrm{O}=\mathrm{PPh}_{3}
$$

${ }^{31}$ P NMR Spectrum of the Product of Mixture without 2a

Two pressure tubes were both charged with phosphonium 1a $(0.2 \mathrm{mmol})$, and to one of the tube was added $\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}(2 \mathrm{~mol} \%), \mathrm{AgSbF}_{6}(10 \mathrm{~mol} \%), \mathrm{CsOAc}(0.4 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OAc})_{2}$ $(0.42 \mathrm{mmol})$, and $\mathrm{EtOH}(2 \mathrm{~mL})$ under N_{2} atmosphere. To the other tube was added $\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}(2 \mathrm{~mol} \%), \mathrm{AgSbF}_{6}(10 \mathrm{~mol} \%), \mathrm{CsOAc}(0.4 \mathrm{mmol})$, and $\mathrm{EtOH}(2 \mathrm{~mL})$ under N_{2} atmosphere. The two reaction mixtures were stirred at $120{ }^{\circ} \mathrm{C}$ for 12 hour. After that, the reaction mixtures were characterized by ${ }^{31} \mathrm{P}$ NMR spectroscopy and GC-MS analysis. Phenacyl phosphonium salt was mostly converted to $\mathrm{O}=\mathrm{PPh}_{3}$ even without $\mathrm{Cu}(\mathrm{OAc})_{2}$.

${ }^{31} \mathrm{P}$ NMR Spectra of the Mixture Obtained with $\mathrm{Cu}(\mathrm{OAc})_{2}$

${ }^{31} \mathrm{P}$ NMR Spectra of the Mixture Obtained without $\mathrm{Cu}(\mathrm{OAc})_{2}$

130 50 $0<150$
${ }^{31}$ P NMR Spectra of 1a

130 ($50<150$
Studies on the Possible Intermediacy of an Olefin. A possible olefin intermediate $\mathbf{5}$ was prepared ${ }^{[2]}$ and was subjected to the standard conditions. No conversion was detected by GC-MS.

${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 8.15(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{dd}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.61$ $-7.57(\mathrm{~m}, 1 \mathrm{H}), 7.52(\mathrm{td}, J=7.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{td}, J=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{~d}, J=15.9$ $\mathrm{Hz}, 1 \mathrm{H}), 4.27(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.62(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta 200.9,166.5,143.9,138.2,134.8,132.0,129.4,129.3,128.4,121.0,60.6,29.3$, 14.3.
${ }^{18} \mathbf{O}$-Labeling Experiments. To a mixture of $\mathbf{1 a}(0.2 \mathrm{mmol}), \mathrm{NaOAc}(0.4 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OAc})_{2}$ (0.42 mmol), $\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}(2 \mathrm{~mol} \%)$, and $\mathrm{AgSbF}_{6}(10 \mathrm{~mol} \%)$ in $\mathrm{EtOH}(2 \mathrm{~mL})$ was added ethyl acrylate ($2 \mathbf{a}, 0.4 \mathrm{mmol}$) and $\mathrm{H}_{2}{ }^{18} \mathrm{O}(1 \mathrm{mmol})$ under N_{2} atmosphere. The reaction mixture was stirred at $120^{\circ} \mathrm{C}$ for 18 h . After that, the solvent was removed under reduced pressure. The residue was characterized by HRMS analysis. The ratio of the ${ }^{18} \mathrm{O}:{ }^{16} \mathrm{O}$ in $\mathrm{O}=\mathrm{PPh}_{3}$ was 58:42.

m / z	Abund	Abund \%	Area	End	Start
279.0938	616386.6	56.62	7830	279.1164	278.9914
280.0967	138694.5	12.74	1539	280.1204	280.0446
281.0984	761465.5	69.94	10797	281.1232	280.9919
282.101	169991.5	15.61	1902	282.1249	282.0343
282.279	59690.4	5.48	692	282.3032	282.2447

To a mixture of 1a (0.1 mmol), $\mathrm{NaOAc}(0.2 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OAc})_{2}(0.21 \mathrm{mmol}),\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}(2$ $\mathrm{mol} \%), \mathrm{AgSbF}_{6}(10 \mathrm{~mol} \%)$ in $\mathrm{Et}^{18} \mathrm{OH} / \mathrm{EtOH}(1: 1.5,1 \mathrm{~mL}$ in total) was added ethyl acrylate 2a (0.2 mmol) under N_{2} atmosphere. The reaction mixture was stirred at $120^{\circ} \mathrm{C}$ for 18 h . The reaction mixture was characterized by HRMS analysis. The ratio of the ${ }^{18} \mathrm{O}:{ }^{16} \mathrm{O}$ in $\mathrm{O}=\mathrm{PPh}_{3}$ was $18: 82$.

m / z	Abund	Abund \%	Area	End	Start
277.1146	68399.2	9.43	779	277.1389	277.052
279.0954	725356.4	100	13515	279.1211	278.999
279.1881	51057.8	7.04	854	279.1997	279.1764
280.0973	200680.8	27.67	2327	280.1193	280.0144
281.0985	237372.1	32.72	2789	281.1221	281.0229
282.1014	45015.4	6.21	543	282.1267	281.9777
282.2794	94922	13.09	1067	282.3021	282.2407
301.076	154819	21.34	1850	301.0987	301.0172

To a mixture of 1a $(0.2 \mathrm{mmol}), \mathrm{Na}^{18} \mathrm{OAc}(0.8 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OAc})_{2}(0.42 \mathrm{mmol}),\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}$ $(2 \mathrm{~mol} \%), \operatorname{AgSbF}_{6}(10 \mathrm{~mol} \%)$ in $\mathrm{EtOH}(2 \mathrm{~mL})$ was added ethyl acrylate $2 \mathrm{a}(0.4 \mathrm{mmol})$ under N_{2} atmosphere. The reaction mixture was stirred at $120^{\circ} \mathrm{C}$ for 18 h . The reaction mixture was characterized by HRMS analysis. Essentially no ${ }^{18} \mathrm{O}$ was incorporated.

m / z	Abund	Area	End	Start
277.114	43828.7	523	277.1382	277.0831
279.0951	650907.8	12420	279.1204	278.9896
280.0969	175298.8	2140	280.1185	280.034
281.0983	62120.1	763	281.1213	281.063
282.2788	52635.4	629	282.3014	282.2283
288.1387	308379.9	3914	288.1617	288.0849
289.1415	68930.8	851	289.164	289.1078

To a mixture of $\mathrm{O}=\mathrm{PPh}_{3}(0.2 \mathrm{mmol}),\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}(2 \mathrm{~mol} \%), \mathrm{AgSbF}_{6}(10 \mathrm{~mol} \%), \mathrm{NaOAc}$ $(0.4 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OAc})_{2}(0.42 \mathrm{mmol})$ in $\mathrm{EtOH}(2 \mathrm{~mL})$ was added $\mathrm{H}_{2}{ }^{18} \mathrm{O}(1 \mathrm{mmol})$ at $120^{\circ} \mathrm{C}$ for 18 h . The reaction mixture was characterized by HRMS analysis. No ${ }^{18} \mathrm{O}$-labled was detected.

$$
\begin{aligned}
& \stackrel{\mathrm{O}}{\mathrm{O}} \mathrm{PPh}_{3} \xrightarrow{\text { standard conditions }} \prod_{\mathrm{PPh}_{3}}^{\mathrm{O}} \quad \begin{array}{l}
\text { with } \mathrm{NaOAc} \text { (2.0 equiv) instead of } \mathrm{CsOAc} \text { (2.0 equiv }), \\
\mathrm{H}_{2}^{18} \mathrm{O}(5.0 \text { equiv) }
\end{array} \\
& \mathrm{H}_{2}{ }^{18} \mathrm{O} \text { (5.0 equiv) } \\
& \text { Essentially no }{ }^{18} \mathrm{O} \text { incorporation was detected. }
\end{aligned}
$$

m / z	Abund	Abund \%	Area	End	Start
146.9802	94679.3	8.25	668	146.9971	146.9507
279.0949	1120694.4	97.69	20506	279.1205	278.9926
279.1876	76357.8	6.66	1285	279.2019	279.1758
280.0968	308432.4	26.89	3474	280.1186	280.0283
301.0765	959399	83.63	16457	301.1008	300.9438
301.173	57691.1	5.03	1003	301.1854	301.1612

To a mixture of 1-phenyl-2-(triphenylphosphoranylidene)ethanone 1aa (the ylidic form of 1a, $0.2 \mathrm{mmol}),\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}(2 \mathrm{~mol} \%), \mathrm{AgSbF}_{6}(10 \mathrm{~mol} \%)$, and $\mathrm{Cu}(\mathrm{OAc})_{2}(0.42 \mathrm{mmol})$ in EtOH $(2 \mathrm{~mL})$ was added ethyl acrylate $\mathbf{2 a}(0.4 \mathrm{mmol})$ under N_{2} atmosphere. The reaction mixture was stirred at $120^{\circ} \mathrm{C}$ for 18 h . After that, the solvent was removed under reduced pressure and the residue was purified by silica gel chromatography using PE/EA to afford product 3aa in

74\% yield.

V. Gram-scale Synthesis

Phenacyl phosphonium salts $1 \mathrm{a}(5.0 \mathrm{mmol}),\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}(1 \mathrm{~mol} \%), \mathrm{AgSbF}_{6}$ (5 mol \%), CsOAc (2.0 equiv), and $\mathrm{Cu}(\mathrm{OAc})_{2}$ (2.1 equiv) were charged into a pressure tube. Ethanol (40 mL) was then added to this tube. The resulting mixture was stirred for seconds under N_{2} atmosphere, to which ethyl acrylate (2a, 2.0 equiv) was added. The mixture was stirred at 120 ${ }^{\circ} \mathrm{C}$ for 18 hours. The solvent was then removed under vacuum and the residue was purified by silica gel chromatography using PE/EA (30:1-10:1) to afford product 3aa as a colorless oil ($0.74 \mathrm{~g}, 68 \%$).

Reference
[1] (a) Nanteuil, F. D.; Loup,J.; Waser, J. Org. Lett. 2013, 15, 3738. (b) Xu, X.; Shabashov, D.; Zavalij, P. Y.; Doyle, M. P. Org. Lett. 2012, 14, 800. (c) Koduri, N. D.; Scott, H.; Hileman, B.; Cox, J. D.; Coffin, M.; Glicksberg, L.; Hussaini, S. R. Org. Lett. 2012, 14, 440.
[2] Patureau, F.W.; Besset, T.; Glorius, F. Angew. Chem. Int. Ed. 2011, 50, 1064.

VI．NMR Spectra

10	0	-20	-40	-60	-80	-100	-120	-140
$\mathrm{fl}(\mathrm{ppm})$	-160	-180	-200					

우은

\％	$\underset{\sim}{ \pm}$	$\stackrel{\square}{\square}$	帯		－	¢	¢్లోగ్ర్ర
¢ัֹ	차자N	$\stackrel{\infty}{\sim}$	守		Nべャ	－	
।	I	I	－	11	\downarrow	1	111

$\stackrel{\text { ® }}{\infty}$	¢	\％		すু すু	－	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\circ}$	®
¢	$\stackrel{\text {－}}{ }$	$\stackrel{\infty}{\sim}$	¢	$\stackrel{\text { id }}{ }$	N－N	－	लู宀寸	
1	I	｜			－		11	

160	180	160	120	100	80	60	40	20

ํ.

융Nㅜㅊ	Nodidenemid		－		旡过	\％	ัన్ํ
\％\％\％	Ėષiobio		玉̇̇	oiobididim	¢	$\stackrel{\square}{\circ}$	
Y			\checkmark		\downarrow	，	｜1｜

	$\stackrel{\text { 玉े }}{ }$	欲長
ֹั่ํํ	E	

踥

－000	吕	J	ద్ల్ఞ్ఞ్వ		ल్ల్రంగ్రం	춪		앵
¢	$\stackrel{ \pm}{\text { I }}$	$\stackrel{\circ}{\circ}$	¢్లㄲ	ฌ్ำస్ํ	NべN	¢		
\cdots	$\stackrel{\square}{1}$	－	－	115	$\xrightarrow{*}$			

-205.7322
-198.0727

-157.6051

$-\begin{array}{r}136.9266 \\ 136.5696 \\ 134.9170 \\ 133.5028 \\ 128.7759 \\ 128.0556 \\ 127.9221 \\ 125.6480 \\ 123.7529\end{array}$

	ホ̇¢
N゙ペ	どず
\checkmark	\／

5

