Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2017

Supporting Information

Rhodium(III)-Catalyzed Synthesis of Indanones via C-H Activation of Phenacyl Phosphoniums and Coupling with Olefins

Yunyun Li, ^{†,‡} Xifa Yang, ^{†,‡} Lingheng Kong, ^{†,‡}and Xingwei Li^{*,†} [†]Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China [‡]University of Chinese Academy of Sciences, Beijing 100049, China <u>xwli@dicp.ac.cn</u>

Table of Contents

I. General Information	S2
II. Experimental Information for the Preparation of Starting Materials	S2
III. Experimental Details and Characterization Data	S3
IV. Mechanistic Studies	S10
V. Gram-scale Synthesis	S20
VI. NMR Spectra	S21

I. General Information

Commercially available reagents were used as received without further purification, unless stated otherwise. All reactions were carried out in a nitrogen-filled dry box or using standard Schlenk techniques. ¹H and ¹³C NMR spectra were recorded on a Bruker NMR spectrometer (400 MHz and 100 MHz, respectively) and internally referenced to the tetramethylsilane signal in the solvent indicated. ¹⁹F NMR spectra were recorded on a Bruker NMR spectrometer instrument (376 MHz). HRMS were obtained on an Agilent Q-TOF 6540. Column chromatography was performed on silica gel (300-400 mesh) using ethyl acetate (EA)/petroleum ether (PE) or dichloromethane (DCM)/methanol (MeOH) as eluents. The abundance of ¹⁸O in Et¹⁸OH and CH₃C¹⁸O₂Na was 95% and 98% respectively.

II. Experimental Information for the Preparation of Starting Materials

Representative Procedure of Preparation of a Phenacyl Phosphonium Salt.^[1]

A solution of α -bromoacetophenone (50.0 mmol) in CH₂Cl₂ (30 mL) was added dropwise over 20 min to a solution of triphenylphosphine (50.0 mmol) in CH₂Cl₂ (60 mL). The reaction mixture was stirred at room temperature for 24 h, and the mixture was concentrated under reduced pressure and the resulting precipitate was washed with Et₂O. The phosphonium bromide was obtained in quantitative yield, and was used without further purification.

A solution of KOTf (4 equiv) in acetone (10 mL) was added to a solution of (2-oxo-2-phenylethyl)triphenylphosphonium bromide (20 mmol) in acetone (40 mL) and the mixture was stirred for at rt for 24 h. All the solvent was removed under reduced pressure and the residue was washed with DCM. The solution was concentrated to give product **1a** in 95% yield.

¹**H** NMR (400 MHz, CDCl₃) δ 8.18 (d, J = 8.1 Hz, 2H), 7.84 – 7.74 (m, 9H), 7.69 – 7.61 (m, 7H), 7.50 (t, J = 7.6 Hz, 2H), 5.60 (d, J = 12.4 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 191.7, 135.1, 135.0 (d, J = 3.1 Hz), 133.8, 133.7, 130.4, 130.2, 129.5, 129.1, 118.6 (d, J = 89.5 Hz), 36.5 (d, J = 59.2 Hz). HRMS: [M-OTf]⁺ calculated for C₂₆H₂₂OP⁺: 381.1403, found 381.1403, [OTf]⁻ calculated for CF₃O₃S: 148.9520, found 148.9524.

III. Experimental Details and Characterization Data

Representative procedures for the synthesis of indanone derivatives. Phenacyl phosphonium salts **1a** (0.2 mmol), $[Cp*RhCl_2]_2$ (2 mol %), AgSbF₆ (10 mol %), CsOAc (0.4 mmol), and Cu(OAc)₂ (0.42 mmol) were charged into a pressure tube. Ethanol (2 mL) was then added to this tube. The resulting mixture was stirred for seconds under N₂ atmosphere, to which ethyl acrylate (**2a**, 0.4 mmol) was next added. The mixture was stirred at 120 °C for 18 hours. The solvent was then removed under vacuum and the residue was purified by silica gel chromatography using PE/EA (30:1 – 10:1) to afford product **3aa** as a colorless oil (34.7 mg, 80%).

Product **3aa** was obtained as a colorless oil in 80% yield (34.7 mg). ¹H NMR (400 MHz, **CDCl**₃) δ 7.76 (d, J = 7.7 Hz, 1H), 7.65 – 7.59 (m, 1H), 7.51 (d, J = 7.6 Hz, 1H), 7.42 (t, J = 7.4 Hz, 1H), 4.17 (q, J = 7.1 Hz, 2H), 3.88 – 3.79 (m, 1H), 3.01 (dd, J = 19.2, 7.7 Hz, 1H), 2.89 (dd, J = 15.9, 5.1 Hz, 1H), 2.56 (dd, J = 16.0, 9.3 Hz, 1H), 2.47 (dd, J = 19.2, 3.4 Hz, 1H), 1.26 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 205.4, 171.7, 156.7, 136.8, 134.9, 128.0, 125.4, 123.7, 60.8, 43.3, 40.4, 34.6, 14.2. HRMS: m/z: [M + H]⁺ calculated for C₁₃H₁₅O₃⁺ : 219.1016, found 219.1017.

 CO_2Et **3ba**, 85%

Product **3ba** was obtained as a colorless oil in 85% yield (39.4 mg). ¹H NMR (400 MHz, **CDCl**₃) δ 7.64 (d, J = 7.8 Hz, 1H), 7.30 (s, 1H), 7.22 (d, J = 7.8 Hz, 1H), 4.18 (q, J = 7.1 Hz, 2H), 3.80 – 3.74 (m, 1H), 2.98 (dd, J = 19.1, 7.7 Hz, 1H), 2.87 (dd, J = 15.9, 5.1 Hz, 1H), 2.52 (dd, J = 15.9, 9.3 Hz, 1H), 2.47 – 2.40 (m, 4H), 1.26 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, **CDCl**₃) δ 204.9, 171.8, 157.2, 146.1, 134.6, 129.3, 125.8, 123.5, 60.8, 43.5, 40.5, 34.4, 22.2, 14.2. HRMS: m/z: [M + H]⁺ calculated for C₁₄H₁₇O₃⁺: 233.1172, found 233.1174.

Product **3ca** was obtained as a colorless oil in 56% yield (28.0 mg). ¹H NMR (400 MHz, **CDCl**₃) δ 7.69 (d, J = 9.2 Hz, 1H), 6.95 – 6.93 (m, 2H), 4.18 (q, J = 7.1 Hz, 2H), 3.89 (s, 3H), 3.81 – 3.73 (m, 1H), 2.98 (dd, J = 19.0, 7.7 Hz, 1H), 2.86 (dd, J = 15.9, 5.3 Hz, 1H), 2.54 (dd, J = 15.9, 9.2 Hz, 1H), 2.43 (dd, J = 19.0, 3.3 Hz, 1H), 1.27 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, **CDCl**₃) δ 203.5, 171.8, 165.4, 159.7, 130.1, 125.4, 115.7, 108.9, 60.8, 55.7, 43.5, 40.5, 34.5, 14.2. HRMS: m/z: [M + H]⁺ calculated for C₁₄H₁₇O₄⁺ : 249.1121, found 249.1124.

Product **3da** was obtained as a colorless oil in 76% yield (35.8 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.76 (dd, J = 8.4, 5.3 Hz, 1H), 7.18 (dd, J = 8.6, 1.9 Hz, 1H), 7.11 (ddd, J = 8.5, 2.2, 1.1 Hz, 1H), 4.18 (q, J = 7.1 Hz, 2H), 3.85 – 3.77 (m, 1H), 3.02 (dd, J = 19.2, 7.8 Hz, 1H), 2.85 (dd, J = 16.1, 5.5 Hz, 1H), 2.59 (dd, J = 16.1, 8.8 Hz, 1H), 2.48 (dd, J = 19.2, 3.4 Hz, 1H), 1.26 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 203.3, 171.4, 167.2 (d, J = 256.5 Hz), 159.6 (d, J = 9.5 Hz), 133.3 (d, J = 1.8 Hz), 126.1 (d, J = 10.4 Hz), 116.3 (d, J = 23.8 Hz), 112.3 (d, J = 22.6 Hz), 60.9, 43.4, 40.1, 34.4, 14.2. ¹⁹F NMR (376 MHz, CDCl₃) δ -102.1. HRMS: m/z: [M + H]⁺ calculated for C₁₃H₁₄FO₃⁺: 237.0921, found 237.0923.

Product **3ea** was obtained as a white solid in 90% yield (40.1 mg). ¹H NMR (400 MHz, **CDCl**₃) δ 7.68 (d, J = 8.2 Hz, 1H), 7.51 (s, 1H), 7.39 (dd, J = 8.2, 1.2 Hz, 1H), 4.18 (q, J = 7.1 Hz, 2H), 3.85 – 3.76 (m, 1H), 3.01 (dd, J = 19.2, 7.8 Hz, 1H), 2.86 (dd, J = 16.1, 5.4 Hz, 1H), 2.58 (dd, J = 16.1, 8.8 Hz, 1H), 2.48 (dd, J = 19.2, 3.5 Hz, 1H), 1.26 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 203.7, 171.4, 158.1, 141.4, 135.3, 128.8, 125.8, 124.9, 60.9, 43.3, 40.1, 34.3, 14.2. HRMS: m/z: [M + H]⁺ calculated for C₁₃H₁₄ClO₃⁺: 253.0626, found 253.0626.

Product **3fa** was obtained as a yellow solid in 73% yield (43.5 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.69 (s, 1H), 7.61 (d, J = 8.1 Hz, 1H), 7.55 (dd, J = 8.2, 1.1 Hz, 1H), 4.18 (q, J = 7.2 Hz, 2H), 3.86 – 3.77 (m, 1H), 2.99 (dd, J = 19.3, 7.8 Hz, 1H), 2.86 (dd, J = 16.1, 5.3 Hz, 1H), 2.58 (dd, J = 16.1, 8.9 Hz, 1H), 2.46 (dd, J = 19.3, 3.4 Hz, 1H), 1.26 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 203.9, 171.4, 158.2, 135.7, 131.7, 130.2, 128.9, 125.0, 60.9, 43.2, 40.1, 34.3, 14.2. HRMS: m/z: [M + H]⁺ calculated for C₁₃H₁₄BrO₃⁺: 297.0121, found 297.0125.

Product **3ga** was obtained as a yellow oil in 73% yield (42.7 mg). ¹H NMR (400 MHz, **CDCl**₃) δ 7.81 (d, J = 8.0 Hz, 1H), 7.69 (s, 1H), 7.65 – 7.59 (m, 3H), 7.50 – 7.45 (m, 2H), 7.43 – 7.39 (m, 1H), 4.18 (q, J = 7.1 Hz, 2H), 3.90 – 3.84 (m, 1H), 3.04 (dd, J = 19.2, 7.7 Hz, 1H), 2.94 (dd, J = 15.9, 5.1 Hz, 1H), 2.60 (dd, J = 15.9, 9.3 Hz, 1H), 2.51 (dd, J = 19.2, 3.4 Hz, 1H), 1.25 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 204.9, 171.7, 157.4, 148.0, 140.1, 135.7, 129.0, 128.5, 127.5, 127.5, 124.1, 124.0, 60.8, 43.6, 40.5, 34.6, 14.2. HRMS:

m/z: $[M + H]^+$ calculated for $C_{19}H_{19}O_3^+$: 295.1329, found 295.1331.

^t **3ha**, 38%

Product **3ha** was obtained as a white solid in 38% yield (18.7 mg). ¹H NMR (400 MHz, **CDCl**₃) δ 7.88 – 7.81 (m, 2H), 7.70 (d, J = 7.8 Hz, 1H), 4.18 (q, J = 7.1 Hz, 2H), 3.92 – 3.85 (m, 1H), 3.07 (dd, J = 19.5, 7.9 Hz, 1H), 2.87 (dd, J = 16.4, 5.6 Hz, 1H), 2.66 (dd, J = 16.4, 8.2 Hz, 1H), 2.55 (dd, J = 19.5, 3.5 Hz, 1H), 1.25 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, **CDCl**₃) δ 203.6, 171.1, 156.5, 139.8, 131.7, 129.9, 124.5, 118.0, 117.9, 61.1, 43.2, 39.8, 34.4, 14.2. HRMS: m/z: [M + H]⁺ calculated for C₁₄H₁₄NO₃⁺: 244.0968, found 244.0970.

 CO_2Et **3ia**, 66%

Product **3ia** was obtained as a white solid in 66% yield (37.7 mg). ¹H NMR (**400 MHz**, **CDCl**₃) δ 7.86 (d, J = 8.0 Hz, 1H), 7.80 (s, 1H), 7.68 (d, J = 8.0 Hz, 1H), 4.18 (qd, J = 7.1, 1.7 Hz, 2H), 3.94 – 3.85 (m, 1H), 3.08 (dd, J = 19.4, 7.8 Hz, 1H), 2.91 (dd, J = 16.1, 5.4 Hz, 1H), 2.64 (dd, J = 16.1, 8.7 Hz, 1H), 2.55 (dd, J = 19.4, 3.5 Hz, 1H), 1.25 (t, J = 7.1 Hz, 3H). ¹³C NMR (**100 MHz**, **CDCl**₃) δ 204.1, 171.3, 156.7, 139.5, 136.2 (q, J = 32.3 Hz), 125.2 (q, J = 3.5 Hz), 124.3, 123.6 (q, J = 273.2 Hz), 122.8 (q, J = 3.9 Hz), 61.0, 43.4, 40.0, 34.6, 14.1. ¹⁹F NMR (**376 MHz**, **CDCl**₃) δ -62.8. HRMS: m/z: [M + H]⁺ calculated for C₁₄H₁₄F₃O₃⁺ : 287.0890, found 287.0890.

Product **3ja** and **3ja**' was obtained as a white solid in 67% yield as a 1:1 mixture (37.7 mg). ¹**H NMR (400 MHz, CDCl₃)** δ 7.42 – 7.33 (m, 3H), 7.22 – 7.18 (m, 2H), 7.06 (dd, J = 7.5, 1.2 Hz, 1H), 4.20 – 4.11 (m, 4H), 3.91 (s, 3H), 3.89 – 3.83 (m, 4H), 3.80 – 3.72 (m, 1H), 3.27 (dd, J = 16.1, 3.5 Hz, 1H), 3.05 – 2.94 (m, 2H), 2.84 (dd, J = 15.9, 5.2 Hz, 1H), 2.56 – 2.44 (m, 3H), 2.38 (dd, J = 16.1, 10.3 Hz, 1H), 1.27 – 1.23 (m, 6H). ¹³**C NMR (100 MHz, CDCl₃)** δ 205.8, 205.2, 172.2, 171.8, 159.8, 157.2, 149.5, 144.6, 138.7, 138.1, 129.7, 126.2, 124.1, 115.5, 115.3, 104.9, 60.8, 60.6, 55.6, 55.5, 43.9, 43.4, 40.6, 38.3, 34.0, 32.8, 14.205, 14.20. HRMS: m/z: [M + H]⁺ calculated for C₁4H₁₇O₄⁺: 249.1121, found 249.1125.

Product **3ka** and **3ka**' was obtained as a colorless oil in 65% yield as a 1.5:1 mixture (33.0 mg). ¹H NMR (400 MHz, CDCl₃) Mixture: δ 7.70 (d, J = 2.0 Hz, 1H), 7.67 (d, J = 7.5 Hz, 1.5H), 7.63 – 7.54 (m, 2.5H), 7.46 (d, J = 8.2 Hz, 1H), 7.39 (t, J = 7.7 Hz, 1.5H), 4.20 – 4.10

(m, 5H), 3.95 - 3.89 (m, 1.5H), 3.85 - 3.76 (m, 1H), 3.26 (dd, J = 16.3, 3.2 Hz, 1H), 3.08 - 2.96 (m, 2.5H), 2.85 (dd, J = 16.1, 5.3 Hz, 1H), 2.62 - 2.43 (m, 5H), 1.27 - 1.20 (m, 7.5H). 13C NMR (100 MHz, CDCl3) Major: δ 204.4, 171.5, 152.9, 139.2, 135.2, 132.5, 129.7, 122.2, 60.8, 43.4, 37.9, 34.2, 14.2. Minor: δ 203.8, 154.7, 138.4, 134.9, 134.5, 126.8, 123.6, 60.9, 43.6, 40.2, 34.3, 14.15. HRMS: m/z: [M + H]⁺ calculated for C₁₃H₁₄ClO₃⁺: 253.0626, found 253.0626.

Product **3la** and **3la**' was obtained as a yellow oil in 58% yield as a 1:1 mixture (34.6 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, J = 1.9 Hz, 1H), 7.78 (dd, J = 7.8, 0.9 Hz, 1H), 7.73 – 7.70 (m, 2H), 7.41 (d, J = 8.2 Hz, 1H), 7.32 (t, J = 7.7 Hz, 1H), 4.19 – 4.10 (m, 4H), 3.90 – 3.83 (m, 1H), 3.82 – 3.74 (m, 1H), 3.29 (dd, J = 16.3, 3.1 Hz, 1H), 3.04 (dd, J = 7.7, 5.0 Hz, 1H), 2.99 (dd, J = 7.8, 5.0 Hz, 1H), 2.85 (dd, J = 16.1, 5.3 Hz, 1H), 2.63 – 2.54 (m, 2H), 2.52 – 2.43 (m, 2H), 1.26 – 1.22 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 204.5, 203.7, 171.4, 155.2, 154.8, 139.3, 138.7, 138.4, 137.6, 129.9, 127.1, 126.7, 122.8, 122.4, 121.4, 60.9, 60.8, 43.5, 43.4, 40.1, 38.1, 35.7, 34.3, 14.2, 14.15. HRMS: m/z: [M + H]⁺ calculated for C₁₃H₁₄BrO₃⁺ : 297.0121, found 297.0125.

Product **3ma** was obtained as a yellow solid in 66% yield (31.2 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, J = 7.5 Hz, 1H), 7.45 – 7.38 (m, 1H), 7.31 – 7.27 (m, 1H), 4.14 (q, J = 7.1 Hz, 2H), 4.01 – 3.91 (m, 1H), 3.13 (dd, J = 16.2, 3.8 Hz, 1H), 3.03 (dd, J = 19.4, 7.8 Hz, 1H), 2.58 – 2.50 (m, 2H), 1.23 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 204.1 (d, J = 2.0 Hz), 171.4, 160.3 (d, J = 251.1 Hz), 141.8 (d, J = 17.0 Hz), 140.0 (d, J = 4.3 Hz), 130.2 (d, J = 6.5 Hz), 121.3 (d, J = 20.5 Hz), 119.6 (d, J = 3.9 Hz), 60.8, 43.2, 38.6, 32.2, 14.2. ¹⁹F NMR (376 MHz, CDCl₃) δ -118.3. HRMS: m/z: [M + H]⁺ calculated for C₁₃H₁₄FO₃⁺: 237.0921, found 237.0924.

 CO_2Et **3na**, 77%

Product **3na** was obtained as a yellow oil in 77% yield (38.2 mg). ¹H NMR (400 MHz, **CDCl**₃) δ 7.55 (t, J = 7.9 Hz, 1H), 7.04 (d, J = 7.6 Hz, 1H), 6.83 (d, J = 8.2 Hz, 1H), 4.17 (q, J = 7.1 Hz, 2H), 3.95 (s, 3H), 3.78 – 3.71 (m, 1H), 2.97 (dd, J = 18.9, 7.8 Hz, 1H), 2.86 (dd, J = 15.9, 5.0 Hz, 1H), 2.51 (dd, J = 15.9, 9.4 Hz, 1H), 2.44 (dd, J = 18.9, 3.5 Hz, 1H), 1.26 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 203.0, 171.7, 159.4, 158.0, 136.7, 124.8, 117.1, 109.6, 60.8, 55.8, 43.8, 40.6, 34.1, 14.2. HRMS: m/z: [M + H]⁺ calculated for C₁₄H₁₇O₄⁺ : 249.1121, found 249.1118.

Product **30a** was obtained as a colorless oil in 76% yield (36.0 mg). ¹H NMR (**400 MHz**, **CDCl**₃) δ 7.62 – 7.57 (m, 1H), 7.29 (d, J = 7.7 Hz, 1H), 7.02 (t, J = 8.7 Hz, 1H), 4.17 (q, J = 7.1 Hz, 2H), 3.86 – 3.80 (m, 1H), 3.02 (dd, J = 19.1, 7.9 Hz, 1H), 2.88 (dd, J = 16.1, 5.1 Hz, 1H), 2.59 (dd, J = 16.1, 9.0 Hz, 1H), 2.50 (dd, J = 19.1, 3.5 Hz, 1H), 1.26 (t, J = 7.1 Hz, 3H). ¹³C NMR (**100 MHz, CDCl**₃) δ 201.5, 171.4, 158.9 (d, J = 2.2 Hz), 158.8 (d, J = 264.3 Hz), 136.9 (d, J = 8.3 Hz), 124.6 (d, J = 12.9 Hz), 121.2 (d, J = 4.2 Hz), 114.9 (d, J = 19.3 Hz),

136.9 (d, J = 8.5 Hz), 124.6 (d, J = 12.9 Hz), 121.2 (d, J = 4.2 Hz), 114.9 (d, J = 19.3 Hz), 60.9, 43.8, 40.2, 34.5, 14.2. ¹⁹F NMR (376 MHz, CDCl₃) δ -114.6. HRMS: m/z: [M + H]⁺ calculated for C₁₃H₁₄FO₃⁺: 237.0921, found 237.0924.

Product **3pa** was obtained as a white solid in 71% yield (35.9 mg). ¹H NMR (400 MHz, **CDCl**₃) δ 7.01 (d, J = 7.8 Hz, 1H), 6.78 (td, J = 9.0, 1.6 Hz, 1H), 4.18 (q, J = 7.1 Hz, 2H), 3.86 – 3.76 (m, 1H), 3.03 (dd, J = 19.1, 7.9 Hz, 1H), 2.84 (dd, J = 16.3, 5.5 Hz, 1H), 2.61 (dd,

J = 16.3, 8.6 Hz, 1H), 2.51 (dd, J = 19.1, 3.6 Hz, 1H), 1.26 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 199.72 (d, J = 1.9 Hz), 171.11, 167.60 (dd, J = 259.1, 11.1 Hz), 160.76 (dd, J = 10.7, 4.0 Hz), 159.36 (dd, J = 262.1, 8.9 Hz), 121.45 (dd, J = 13.2, 2.4 Hz), 108.70 (dd, J = 22.5, 4.3 Hz), 104.22 (dd, J = 26.9, 22.9 Hz), 61.0, 43.9, 39.9, 34.7, 14.2 . ¹⁹F NMR (376 MHz, CDCl₃) δ -97.7 (d, J = 13.3 Hz), -109.4 (d, J = 13.3 Hz). HRMS: m/z: [M + H]⁺ calculated for C₁₃H₁₃F₂O₃⁺: 255.0827, found 255.0826.

Product **3qa** and **3qa**' was obtained as a yellow oil in 47% yield as a 1.7:1 mixture (27.1 mg). ¹H NMR (400 MHz, CDCl₃) Mixture: δ 7.81 (s, 1H), 7.64 (s, 1H), 7.61 (d, J = 8.1 Hz, 1.7H), 7.54 (d, J = 8.1 Hz, 1.7H), 4.21 – 4.09 (m, 5.4H), 3.98 – 3.89 (m, 1.7H), 3.82 – 3.76 (m, 1H), 3.23 (dd, J = 16.4, 3.2 Hz, 1.7H), 3.03 (dd, J = 19.3, 7.8 Hz, 2.7H), 2.83 (dd, J = 16.2, 5.6 Hz, 1H), 2.65 – 2.56 (m, 2.7H), 2.56 – 2.46 (m, 2.7H), 1.25 – 1.20 (m, 8.1H). ¹³C NMR (100 MHz, CDCl₃) Major: δ 203.2, 171.2, 154.8, 139.8, 137.4, 130.9, 130.85, 122.5, 60.9, 43.6, 37.7, 34.8, 14.14. Minor: δ 202.6, 155.4, 139.4, 136.5, 133.2, 127.7, 125.2, 61.0, 43.4, 39.9, 34.0, 14.2. HRMS: m/z: [M + H]⁺ calculated for C₁₃H₁₃Cl₂O₃⁺: 287.0236, found 287.0236.

3ra+3ra', 67% (2:1)

Product **3ra** and **3ra**' was obtained as a colorless oil in 67% yield as a 2:1 mixture (38.9 mg). ¹**H** NMR (400 MHz, CDCl₃) Mixture: δ 7.35 – 7.29 (m, 3H), 7.01 (d, J = 0.6 Hz, 1H), 6.98 (d, J = 8.2 Hz, 2H), 4.37 – 4.33 (m, 10H), 4.29 – 4.22 (m, 2H), 4.20 – 4.10 (m, 6H), 3.86 – 3.80 (m, 2H), 3.75 – 3.65 (m, 1H), 3.17 (dd, J = 15.9, 3.6 Hz, 2H), 2.95 (dd, J = 19.2, 7.8 Hz, 3H), 2.80 (dd, J = 15.9, 5.3 Hz, 1H), 2.54 – 2.37 (m, 6H), 2.32 – 2.21 (m, 6H), 1.28 – 1.19 (m, 9H). ¹³C NMR (100 MHz, CDCl₃) Major: δ 204.0, 172.0, 156.5, 148.7, 147.8, 132.8, 122.5, 118.4, 70.27, 60.6, 43.7, 38.8, 32.8, 30.8, 14.19. Minor: δ 203.7, 171.7, 157.5, 152.5, 151.4, 132.0, 117.2, 115.9, 70.3, 70.2, 60.8, 43.8, 40.5, 33.9, 14.2. HRMS: m/z: [M + H]⁺ calculated for C₁₆H₁₉O₅⁺: 291.1227, found 291.1230.

3sa, 47%

Product **3sa** was obtained as a yellow solid in 47% yield (32.0 mg). ¹H NMR (400 MHz, acetone- d_6) δ 9.47 (d, J = 9.1 Hz, 1H), 8.46 – 8.42 (m, 4H), 8.34 (d, J = 9.0 Hz, 1H), 8.22 (d, J = 9.0 Hz, 1H), 8.16 (t, J = 7.7 Hz, 1H), 4.22 – 4.11 (m, 3H), 3.25 (dd, J = 12.7, 3.4 Hz, 1H), 3.22 – 3.16 (m, 1H), 2.91 – 2.82 (m, 1H), 2.72 (dd, J = 18.7, 3.6 Hz, 1H), 1.21 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, DMSO- d_6) δ 206.6, 172.1, 156.1, 136.1, 131.2, 130.9, 130.6, 130.4, 128.1, 127.8, 127.7, 127.5, 127.1, 123.8, 123.3, 122.5, 121.6, 60.5, 44.3, 34.4, 14.5.

HRMS: m/z: $[M + H]^+$ calculated for $C_{23}H_{19}O_3^+$: 343.1329, found 343.1329.

3ta+3ta', 72% (1.6:1)

Product **3ta** and **3ta**' was obtained as a yellow oil in 72% yield as a 1.6:1 mixture (38.5 mg). **¹H NMR (400 MHz, CDCl₃)** Mixture: δ 8.31 (s, 1.6H), 8.11 – 8.07 (m, 1H), 8.00 – 7.95 (m, 2.6H), 7.91 (s, 1.6H), 7.88 – 7.84 (m, 2.6H), 7.74 (d, J = 8.5 Hz, 1H), 7.69 – 7.65 (m, 1.6H), 7.61 – 7.57 (m, 2H), 7.54 – 7.49 (m, 1.6H), 4.34 – 4.29 (m, 1H), 4.22 – 4.14 (m, 5.2H), 4.02 – 3.96 (m, 1.6H), 3.20 (dd, J = 16.1, 3.0 Hz, 1H), 3.15 – 3.06 (m, 2.6H), 2.99 (dd, J = 16.0, 5.3 Hz, 1.6H), 2.70 – 2.62 (m, 2.6H), 2.57 (dd, J = 19.2, 4.1 Hz, 1.6H), 2.39 (dd, J = 16.1, 10.9 Hz, 1H), 1.27 – 1.23 (m, 7.8H). ¹³**C NMR (100 MHz, CDCl**₃) Major: δ 205.6, 171.8, 149.8, 137.1, 134.4, 130.4, 129.5, 129.46, 128.7, 128.0, 126.5, 124.5, 124.0, 119.4, 60.8, 44.0, 40.9, 34.2, 14.23. Minor: δ 205.3, 171.8, 157.1, 137.1, 134.7, 132.6, 129.5, 129.1, 127.3, 124.4, 60.9, 44.0, 41.1, 34.0, 14.2. HRMS: m/z: [M + H]⁺ calculated for C₁₇H₁₇O₃⁺ : 269.1172, found 269.1173.

Product **3ab** was obtained as a colorless oil in 87% yield (35.5 mg). ¹H NMR (400 MHz, **CDCl**₃) δ 7.76 (d, J = 7.7 Hz, 1H), 7.62 (td, J = 7.7, 1.2 Hz, 1H), 7.51 (dd, J = 7.8, 0.8 Hz, 1H), 7.44 – 7.39 (m, 1H), 3.86 – 3.80 (m, 1H), 3.72 (s, 3H), 3.01 (dd, J = 19.2, 7.7 Hz, 1H), 2.90 (dd, J = 16.1, 5.2 Hz, 1H), 2.57 (dd, J = 16.1, 9.3 Hz, 1H), 2.45 (dd, J = 19.2, 3.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 205.2, 172.2, 156.6, 136.8, 134.9, 128.1, 125.4, 123.7, 51.9, 43.3, 40.2, 34.5. HRMS: m/z: [M + H]⁺ calculated for C₁₂H₁₃O₃⁺: 205.0859, found 205.0862.

Product **3ac** was obtained as a colorless oil in 74% yield (29.8 mg). ¹H NMR (**400 MHz**, **CDCl**₃) δ 7.76 (d, J = 7.7 Hz, 1H), 7.65 – 7.59 (m, 1H), 7.51 (d, J = 7.7 Hz, 1H), 7.41 (t, J = 7.4 Hz, 1H), 4.12 (t, J = 6.7 Hz, 2H), 3.88 – 3.79 (m, 1H), 3.00 (dd, J = 19.2, 7.7 Hz, 1H), 2.90 (dd, J = 15.9, 5.1 Hz, 1H), 2.56 (dd, J = 15.9, 9.2 Hz, 1H), 2.46 (dd, J = 19.2, 3.4 Hz, 1H), 1.64 – 1.56 (m, 2H), 1.40 – 1.31 (m, 2H), 0.93 (t, J = 7.4 Hz, 3H). ¹³C NMR (100 MHz, **CDCl**₃) δ 205.3, 171.8, 156.7, 136.8, 134.9, 128.0, 125.4, 123.7, 64.7, 43.3, 40.4, 34.6, 30.6, 19.1, 13.7. HRMS: m/z: [M + H]⁺ calculated for C₁₅H₁₉O₃⁺: 247.1329, found 247.1331.

Product 3ad was obtained as a colorless oil in 57% yield (27.8 mg). ¹H NMR (400 MHz,

CDCl₃) δ 7.75 (d, J = 7.7 Hz, 1H), 7.65 – 7.59 (m, 1H), 7.52 (d, J = 7.7 Hz, 1H), 7.41 (t, J = 7.4 Hz, 1H), 3.82 – 3.76 (m, 1H), 2.98 (dd, J = 19.2, 7.7 Hz, 1H), 2.82 (dd, J = 15.6, 5.1 Hz, 1H), 2.52 – 2.46 (m, 2H), 1.42 (s, 9H). ¹³**C NMR (100 MHz, CDCl**₃) δ 205.6, 170.9, 157.0, 136.9, 134.8, 127.9, 125.5, 123.7, 81.1, 43.2, 41.5, 34.7, 28.0. HRMS: m/z: [M + H]⁺ calculated for C₁₅H₁₉O₃⁺: 247.1329, found 247.1328.

Product **3ae** was obtained as a colorless oil in 78% yield (43.5 mg). ¹H NMR (400 MHz, **CDCl**₃) δ 7.74 (d, J = 7.6 Hz, 1H), 7.58 (t, J = 7.3 Hz, 1H), 7.45 (d, J = 7.7 Hz, 1H), 7.42 – 7.30 (m, 6H), 5.20 – 5.11 (m, 2H), 3.88 – 3.79 (m, 1H), 3.02 – 2.89 (m, 2H), 2.61 (dd, J = 16.0, 9.2 Hz, 1H), 2.44 (dd, J = 19.2, 3.3 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 205.2, 171.6, 156.5, 136.8, 135.6, 134.9, 128.7, 128.5, 128.4, 128.1, 125.4, 123.8, 66.7, 43.3, 40.4, 34.6. HRMS: m/z: [M + H]⁺ calculated for C₁₈H₁₇O₃⁺: 281.1172, found 281.1172.

CN **3af**, 75%

Product **3af** was obtained as a yellow oil in 75% yield (25.6 mg). ¹H NMR (**400 MHz**, **CDCl**₃) δ 7.80 (d, J = 7.7 Hz, 1H), 7.72 – 7.64 (m, 2H), 7.52 – 7.47 (m, 1H), 3.80 – 3.74 (m, 1H), 3.05 (dd, J = 19.1, 7.8 Hz, 1H), 2.85 – 2.72 (m, 2H), 2.51 (dd, J = 19.1, 3.4 Hz, 1H). ¹³C NMR (**100 MHz, CDCl**₃) δ 203.2, 154.0, 136.8, 135.4, 129.0, 125.4, 124.1, 117.7, 42.5, 34.5, 23.8. HRMS: m/z: [M + H]⁺ calculated for C₁₁H₁₀NO⁺ : 172.0757, found 172.0755.

Bz **3ag**, 56%

Product **3ag** was obtained as a colorless oil in 56% yield (27.9 mg). ¹H NMR (**400 MHz**, **CDCl**₃) δ 7.99 – 7.95 (m, 2H), 7.77 (d, J = 7.6 Hz, 1H), 7.64 – 7.53 (m, 3H), 7.49 – 7.45 (m, 2H), 7.41 (t, J = 7.4 Hz, 1H), 4.09 – 4.03 (m, 1H), 3.57 (dd, J = 17.8, 4.8 Hz, 1H), 3.25 (dd, J = 17.8, 9.1 Hz, 1H), 3.12 (dd, J = 19.3, 7.7 Hz, 1H), 2.36 (dd, J = 19.3, 3.3 Hz, 1H). ¹³C NMR (**100 MHz, CDCl**₃) δ 205.7, 198.1, 157.6, 136.9, 136.6, 134.9, 133.5, 128.8, 128.1, 127.9, 125.7, 123.8, 45.3, 44.0, 33.7. HRMS: [M+H]⁺ calculated for C₁₇H₁₅O₂⁺: 251.1067, found 251.1068.

IV. Mechanistic Studies

H/D Exchange Experiment of the Coupling Reaction between 1a and Ethyl Acrylate 2a. To a mixture of **1a** (0.2 mmol), CsOAc (0.4 mmol), Cu(OAc)₂ (0.42 mmol), [Cp*RhCl₂] ₂ (2 mol %), and AgSbF₆ (10 mol %) in ethanol- d_6 (2 mL) was added ethyl acrylate **2a** (0.4 mmol) under N_2 atmosphere. The reaction mixture was stirred at 120 °C for 18 h. After that, the solvent was removed under reduced pressure and the residue was purified by silica gel chromatography using PE/EA to afford colorless oil product, which was characterized by ¹H NMR spectroscopy.

Post-Coupling H/D Exchange Experiment of the Product 3aa. A control experiment was conducted to exclude the H/D exchange originating from post-coupling H/D exchange. A mixture of **3aa** (0.1 mmol), CsOAc (0.4 mmol), Cu(OAc)₂ (0.42 mmol), [Cp*RhCl₂] ₂ (2 mol %), AgSbF₆ (10 mol %) in ethanol- d_6 (1 mL) was stirred at 120 °C for 18 h under N₂ atmosphere. Then the solvent was removed under vacuum and the residue was purified by silica gel chromatography. The product was characterized by ¹H NMR spectroscopy.

Measurement of Kinetic Isotope Effect (Parallel Reactions). Two pressure tubes were separately charged with **1a** (0.24 mmol) and **1a**- d_5 (0.24 mmol). To each tube was added [Cp*RhCl₂] ₂ (2 mol %), AgSbF₆ (10 mol %), CsOAc (0.4 mmol), Cu(OAc)₂ (0.42 mmol), ethyl acrylate **2a** (0.2 mmol), and EtOH (2 mL) under N₂ atmosphere. The two reaction mixtures were stirred side by side in an oil bath preheated at 100 °C for 2 hour. After that, the reaction was cooled to 0 °C rapidly and was quenched with pentane. The two mixtures were combined and the solvent was removed under vacuum.The residue was purified by silica gel chromatography using PE/EA to afford a mixture of **3aa** and **3aa**- d_n as a colorless oil (6.5 mg, 7% yield). The KIE value was determined to be $k_{\rm H}/k_{\rm D} = 2.3$ on the basis of ¹H NMR analysis.

Studies on a Possible Sequence of Phosphine Elimnation-Oxidation. To a pressure tube loaded with PPh₃ (0.1 mmol) was added H₂O (5.0 equiv.) with or without ethyl acrylate **2a** under standard conditions at 100 °C for 18 h. After that, the reaction mixture was analyzed by GC-MS and ³¹P NMR spectroscopy, and essentially no (<5%) O=PPh₃ was detected.

PPh₃
$$\xrightarrow{H_2O (5.0 \text{ equiv})}_{100 \text{ °C}}$$
 < 5% O=PPh₃

Two pressure tubes were both charged with phosphonium **1a** (0.2 mmol), and to one of the tube was added [Cp*RhCl₂]₂ (2 mol %), AgSbF₆ (10 mol %), CsOAc (0.4 mmol), Cu(OAc)₂ (0.42 mmol), and EtOH (2 mL) under N₂ atmosphere. To the other tube was added [Cp*RhCl₂]₂ (2 mol %), AgSbF₆ (10 mol %), CsOAc (0.4 mmol), and EtOH (2 mL) under N₂ atmosphere. The two reaction mixtures were stirred at 120 °C for 12 hour. After that, the reaction mixtures were characterized by ³¹P NMR spectroscopy and GC-MS analysis. Phenacyl phosphonium salt was mostly converted to O=PPh₃ even without Cu(OAc)₂.

S15

Studies on the Possible Intermediacy of an Olefin. A possible olefin intermediate **5** was prepared^[2] and was subjected to the standard conditions. No conversion was detected by GC-MS.

¹**H NMR (400 MHz, CDCl₃)** δ 8.15 (d, J = 15.9 Hz, 1H), 7.75 (dd, J = 7.6, 1.2 Hz, 1H), 7.61 – 7.57 (m, 1H), 7.52 (td, J = 7.4, 1.1 Hz, 1H), 7.46 (td, J = 7.5, 1.4 Hz, 1H), 6.28 (d, J = 15.9 Hz, 1H), 4.27 (q, J = 7.1 Hz, 2H), 2.62 (s, 3H), 1.34 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 200.9, 166.5, 143.9, 138.2, 134.8, 132.0, 129.4, 129.3, 128.4, 121.0, 60.6, 29.3, 14.3.

¹⁸O-Labeling Experiments. To a mixture of **1a** (0.2 mmol), NaOAc (0.4 mmol), Cu(OAc)₂ (0.42 mmol), [Cp*RhCl₂] ₂ (2 mol %), and AgSbF₆ (10 mol %) in EtOH (2 mL) was added ethyl acrylate (**2a**, 0.4 mmol) and H₂¹⁸O (1 mmol) under N₂ atmosphere. The reaction mixture was stirred at 120 °C for 18 h. After that, the solvent was removed under reduced pressure. The residue was characterized by HRMS analysis. The ratio of the ¹⁸O:¹⁶O in O=PPh₃ was 58:42.

To a mixture of **1a** (0.1 mmol), NaOAc (0.2 mmol), Cu(OAc)₂ (0.21 mmol), $[Cp*RhCl_2]_2$ (2 mol %), AgSbF₆ (10 mol %) in Et¹⁸OH/EtOH (1:1.5, 1 mL in total) was added ethyl acrylate **2a** (0.2 mmol) under N₂ atmosphere. The reaction mixture was stirred at 120 °C for 18 h. The reaction mixture was characterized by HRMS analysis. The ratio of the ¹⁸O:¹⁶O in O=PPh₃ was 18:82.

692

282.3032

282.2447

5.48

282.279

59690.4

) → P [†] (Ph) ₃ OTf ⁻ + 2a	standard conc Et ¹⁸ OH: EtOH	litions C → 3aa + (1:1.5)) PPh ₃ ¹⁸ 0: ¹⁶ 0:	= 18 : 82		
x10 5 +ESI Scan (0.204-0.638 min, 27 Scans) Frag=75.0V LYY-1426-1.d * 279.0954 6- 5- 4- 527.2253 3- 2- 219.1019							
100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 Counts vs. Mass-to-Charge (m/z)							
m/z	Abund	Abund %	Area	End	Start		
277.1146	68399.2	9.43	779	277.1389	277.052		
279.0954	725356.4	100	13515	279.1211	278.999		
279.1881	51057.8	7.04	854	279.1997	279.1764		
280.0973	200680.8	27.67	2327	280.1193	280.0144		
281.0985	237372.1	32.72	2789	281.1221	281.0229		
282.1014	45015.4	6.21	543	282.1267	281.9777		
282.2794	94922	13.09	1067	282.3021	282.2407		
301.076	154819	21.34	1850	301.0987	301.0172		

To a mixture of **1a** (0.2 mmol), Na¹⁸OAc (0.8 mmol), Cu(OAc)₂ (0.42 mmol), [Cp*RhCl₂] ₂ (2 mol %), AgSbF₆ (10 mol %) in EtOH (2 mL) was added ethyl acrylate **2a** (0.4 mmol) under N₂ atmosphere. The reaction mixture was stirred at 120 °C for 18 h. The reaction mixture was characterized by HRMS analysis. Essentially no ¹⁸O was incorporated.

m/z	Abund	Area	End	Start
277.114	43828.7	523	277.1382	277.0831
279.0951	650907.8	12420	279.1204	278.9896
280.0969	175298.8	2140	280.1185	280.034
281.0983	62120.1	763	281.1213	281.063
282.2788	52635.4	629	282.3014	282.2283
288.1387	308379.9	3914	288.1617	288.0849
289.1415	68930.8	851	289.164	289.1078

To a mixture of O=PPh₃ (0.2 mmol), $[Cp*RhCl_2]_2$ (2 mol %), AgSbF₆ (10 mol %), NaOAc (0.4 mmol), Cu(OAc)₂ (0.42 mmol) in EtOH (2 mL) was added H₂¹⁸O (1 mmol) at 120 °C for 18 h. The reaction mixture was characterized by HRMS analysis. No ¹⁸O-labled was detected.

To a mixture of 1-phenyl-2-(triphenylphosphoranylidene)ethanone **1aa** (the ylidic form of **1a**, 0.2 mmol), $[Cp*RhCl_2]_2$ (2 mol%), AgSbF₆ (10 mol%), and Cu(OAc)₂ (0.42 mmol) in EtOH (2 mL) was added ethyl acrylate **2a** (0.4 mmol) under N₂ atmosphere. The reaction mixture was stirred at 120 °C for 18 h. After that, the solvent was removed under reduced pressure and the residue was purified by silica gel chromatography using PE/EA to afford product **3aa** in

74% yield.

V. Gram-scale Synthesis

Phenacyl phosphonium salts **1a** (5.0 mmol), $[Cp*RhCl_2]_2$ (1 mol %), AgSbF₆ (5 mol %), CsOAc (2.0 equiv), and Cu(OAc)₂ (2.1 equiv) were charged into a pressure tube. Ethanol (40 mL) was then added to this tube. The resulting mixture was stirred for seconds under N₂ atmosphere, to which ethyl acrylate (**2a**, 2.0 equiv) was added. The mixture was stirred at 120 °C for 18 hours. The solvent was then removed under vacuum and the residue was purified by silica gel chromatography using PE/EA (30:1 – 10:1) to afford product **3aa** as a colorless oil (0.74 g, 68%).

Reference

[1] (a) Nanteuil, F. D.; Loup, J.; Waser, J. Org. Lett. 2013, 15, 3738. (b) Xu, X.; Shabashov, D.;
Zavalij, P. Y.; Doyle, M. P. Org. Lett. 2012, 14, 800. (c) Koduri, N. D.; Scott, H.; Hileman, B.;
Cox, J. D.; Coffin, M.; Glicksberg, L.; Hussaini, S. R. Org. Lett. 2012, 14, 440.
[2] Patureau, F.W.; Besset, T.; Glorius, F. Angew. Chem. Int. Ed. 2011, 50, 1064.

VI. NMR Spectra

2.16 1.05 1.05 7 6 f1 (ppm)

