Supporting Information

Pd-Catalyzed C-H arylation of benzothioamides with boronic acids

using thioamides as directing groups

Kai-xiang Tang, Chun-Meng Wang, Tian-Hong Gao, Cong Pan, and Li-ping Sun*

Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China. E-mail: chslp@cpu.edu.cn

Table of Contents

Genaral Information and Procedure	
1. General information	S2
2. General procedure for the preparation of thioamides substrates	S2
3. Synthesis and reactivity of palladacycle intermediate	S2
4. General procedure for arylation of C(sp2)-H bonds	S3
5. Analytical data of products	S3
6. References	S12
7. Copies of ¹ H, ¹³ C NMR Spectra	S13

1. General information

All solvents and chemicals were used directly without further purification. Flash chromatography was performed on silica gel (200-300 mesh). ¹H NMR spectra were recorded on Bruker AV-300 instrument (300 MHz). The following abbreviations (or combinations thereof) were used to explain multiplicities: singlet (s), doublet (d), doublet of doublets (dd), multiplet (m), triplet (t). Coupling constants, *J*, were reported in Hertz unit (Hz). ¹³C NMR spectra were recorded on Bruker AV-300 instrument (75 MHz). Chemical shifts were reported in ppm referenced to the center line of a triplet peak at 77.0 ppm of CDCl3. High-resolution mass spectra (HRMS) were recorded using ESI-TOF (electrospray ionization-time of flight).

2. General procedure for the preparation of thioamides substrates

To a 100 ml flask charged with a magnetic stirbar was added an *N*,*N*-disubstituted amine (1.1 eq, 11 mmol). Dichloromethane (50 ml, 0.2 M) was added and the mixture was cooled to 0°C with an ice bath. Triethylamine(2.8 ml, 1.25 eq, 20 mmol) was added in one portion. an benzoyl chloride derivative (1.0 eq, 10 mmol) was then added dropwise and the reaction was stirred for 1-2h before quenching with sat. NaHCO3. The organic layer was separated, washed with brine, dried over anhydrous magnesium sulfate, and filtered to the crude amide,^[1] which was used without further purification. The crude amide was added to a 250 ml flask equipped with a magnetic stirbar. Toluene (50 ml) and Lawesson's reagent (2.43g, 0.6 eq, 6 mmol) were added. After the mixture was refluxed overnight., The reaction was cooled to room temperature and then concentrated in vacuo. The product was then purified by flash chromatography with ethyl acetate/petroleum ether as the eluent to ensure elimination of sulfur contaminants.^[2]

3. Synthesis and reactivity of palladacycle intermediate

To a 10 ml round bottom equipped with a magnetic stirbar was added thioamide **1d** (65 mg, 0.34 mmol, 1.2 eq), PdCl₂ (50 mg, 0.28 mmol, 1.0 eq), and *t*BuOH (5 ml). The mixture was refluxed, with rapid stirring for 3 hour. A pale yellow precipitate formed in the reaction mixture. The reaction was cooled to room temperature and the precipitate was collected, washed with methanol, and dried to provide the palladacycle **5d** (79 mg, 85% yield) as an air-stable pale yellow solid. 1H NMR (400 MHz, CDCl3) δ = 7.61 (dd, *J* = 6.8, 2.8 Hz, 2H), 7.45 (q, *J* = 3.6 Hz, 2H), 4.26 – 4.08 (m, 2H), 3.56 – 3.35 (m, 2H), 2.23 – 2.02 (m, 2H), 2.00 – 1.84 (m, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 193.91, 130.24, 128.73, 128.56, 128.19, 128.05, 127.53, 55.45, 54.63, 25.77, 25.13.

A mixture of the the palladacycle 5d (66 mg, 0.2 mmol of monomer, 1.0 eq), arylboronic acid (3mmol, 1.5 eq), 1,4-benzoquinone (24 mg, 0.22 mmol, 1.1 eq), potassium bicarbonate (40 mg, 0.4 mmol, 2.0 eq), and *tert*-butyl alcohol (5.0 ml, non-anhydrous) was added to a oven-dried round-bottomed flask (25 mL) equipped with a reflux condenser. The flask was stirred rapidly and heated in an oil bath at 85 °C under N₂. The reaction was cooled to room temperature and diluted with 2 ml EtOAc. The mixture was filtered through a pad of celite. The celite was washed thoroughly with EtOAc and dichloromethane and the combined organics were concentrated *in vacuo*. The crude residue was purified by by flash column chromatography (petroleum ether/ethyl acetate = 60:1) to afford the desired products.

4. General procedure for arylation of C(sp2)-H bonds

A mixture of the thioamide (0.1 mmol, 1.0 eq), arylboronic acid (1.5 mmol, 1.5 eq), 1,4-benzoquinone (12 mg, 0.11 mmol, 1.1 eq, unless otherwise noted), potassium bicarbonate (20 mg, 0.2 mmol, 2.0 eq), palladium(II) trifluoroacetate (0.02 mmol, 0.2 eq), and tert-butyl alcohol (5.0 ml, non-anhydrous) was added to a oven-dried round-bottomed flask (25 mL) equipped with a reflux condenser. The flask was stirred rapidly at room temperature for several minutes, providing a deep red reaction mixture and then heated in an oil bath at 85 °C under N₂. The reaction was cooled to room temperature and diluted with 2 ml EtOAc. The mixture was filtered through a pad of celite. The celite was washed thoroughly with EtOAc and dichloromethane and the combined organics were concentrated *in vacuo*. The crude residue was purified by by flash column chromatography (petroleum ether/ethyl acetate = 60:1) to afford the desired products.

5. Analytical data of products

(3-methyl-[1,1'-biphenyl]-2-yl)(pyrrolidin-1-yl)methanethione (3a)

Yellow solid(24mg, 84%); mp: 74-77 °C. ¹H NMR (300 MHz, CDCl₃) δ = 7.64 – 7.56 (m, 2H), 7.40 – 7.33 (m, 2H), 7.33 – 7.27 (m, 2H), 7.24 – 7.17 (m, 2H), 3.94 – 3.81 (m, 1H), 3.58 – 3.45 (m, 1H), 3.14 – 3.01 (m, 1H), 2.86 – 2.74 (m, 1H), 2.38 (s, 3H), 1.92 – 1.78 (m, 1H), 1.78 – 1.64 (m, 1H), 1.54 – 1.46 (m, 1H), 1.44 – 1.33 (m, 1H). ¹³C NMR (75 MHz, CDCl₃) δ = 196.68, 142.16, 140.02, 137.53, 133.31, 130.04, 129.67, 128.69, 128.64, 128.32, 127.29, 52.85, 52.46, 25.87, 24.27, 21.07. HRMS (ESI) m/z Calcd for C₁₈H₁₉NS (M+H⁺): 282.1311, found: 282.1312.

Followed by the aforementioned general procedure, compounds **3b-3h** (except **3g**) and **4b-4q** were synthesized on 0.1 mmol scale using Pd(TFA)2 as a catalyst, respectively, as indicated in the Table 2 and 3 (see main text for details). The physical characterization data for these biaryl compounds were outlined in the following section.

(5-methyl-[1,1'-biphenyl]-2-yl)(pyrrolidin-1-yl)methanethione (3b)

Yellow solid(19mg, 68%); mp: 118-120 °C. ¹H NMR (300 MHz, CDCl₃) δ = 7.61 (dd, *J* = 8.0, 1.6 Hz, 2H), 7.43 – 7.29 (m, 4H), 7.17 (d, *J* = 7.4 Hz, 2H), 3.88 (dt, *J* = 14.8, 7.6 Hz, 1H), 3.57 – 3.45 (m, 1H), 3.07 (dt, *J* = 12.3, 6.2 Hz, 1H), 2.80 (dt, *J* = 12.7, 7.3 Hz, 1H), 2.39 (s, 3H), 1.92 – 1.78 (m, 1H), 1.74 – 1.63 (m, 1H), 1.55 – 1.45 (m, 1H), 1.37 (dq, *J* = 11.7, 5.9 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 196.82, 140.21, 139.82, 139.02, 135.96, 130.29, 128.98, 128.69, 128.28, 127.94, 127.42, 52.83, 52.44, 25.84, 24.26, 21.23. HRMS (ESI) m/z Calcd for C₁₈H₁₉NS (M+H⁺): 282.1311, found: 282.1311.

(5-methoxy-[1,1'-biphenyl]-2-yl)(pyrrolidin-1-yl)methanethione (3c)

Yellow solid(13mg, 43%); mp: 87-89 °C. ¹H NMR (300 MHz, CDCl₃) δ= 7.62 (d, *J* = 8.1 Hz, 2H), 7.47 (dd, *J* = 8.5, 1.7 Hz, 1H), 7.42 – 7.28 (m, 3H), 6.90 (dt, *J* = 8.3, 2.1 Hz, 1H), 6.86 (d, *J* = 2.2 Hz, 1H), 3.94 – 3.87 (m, 1H), 3.85 (s, 3H), 3.56 – 3.44 (m, 1H), 3.15 – 3.02 (m, 1H), 2.85 – 2.71 (m, 1H), 1.91 – 1.80 (m, 1H), 1.74 – 1.63 (m, 1H), 1.55 – 1.45 (m, 1H), 1.45 – 1.34 (m, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 196.63, 160.04, 140.07, 137.65, 135.45, 129.93, 128.60, 128.34, 127.65, 114.86, 113.06, 55.46, 52.94, 52.45, 25.84, 24.28. HRMS (ESI) m/z Calcd for C₁₈H₁₉NOS (M+H⁺): 298.1260, found: 298.1258.

[1,1'-biphenyl]-2-yl(pyrrolidin-1-yl)methanethione (3d)

Yellow solid(18mg, 69%); mp: 87-90 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.63 (dd, J = 8.2, 1.4 Hz, 2H), 7.56 – 7.45 (m, 2H), 7.42 – 7.32 (m, 5H), 3.95 – 3.82 (m, 1H), 3.58 – 3.46 (m, 1H), 3.13 – 3.02 (m, 1H), 2.87 – 2.75 (m, 1H), 1.93 – 1.81 (m, 1H), 1.77 – 1.66 (m, 1H), 1.64 – 1.57 (m, 1H), 1.47 – 1.35 (m, 1H). ¹³C NMR (75 MHz, CDCl₃) δ = 195.23, 140.80, 138.74, 134.77, 129.66, 129.57, 128.86, 128.58, 128.49, 128.14, 128.09, 127.66, 52.87, 52.45, 25.87, 24.21. HRMS (ESI) m/z Calcd for C₁₇H17NS (M+H⁺): 268.1154, found: 268.1152.

(5-chloro-[1,1'-biphenyl]-2-yl)(pyrrolidin-1-yl)methanethione (3e)

Yellow solid(22mg, 72%); mp: 84-87 °C. ¹H NMR (300 MHz, CDCl₃) δ = 7.61 (dd, *J* = 8.0, 1.7 Hz, 2H), 7.46 (d, *J* = 8.4 Hz, 2H), 7.40 (s, 1H), 7.36 (d, *J* = 6.1 Hz, 3H), 3.93 – 3.81 (m, 1H), 3.57 – 3.44 (m, 1H), 3.14 – 3.00 (m, 1H), 2.86 – 2.73 (m, 1H), 1.94 – 1.81 (m, 1H), 1.76 – 1.66 (m, 1H), 1.55 – 1.47 (m, 1H), 1.46 – 1.37 (m, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 195.23, 140.80, 138.74, 129.66, 129.57, 128.86, 128.58, 128.49, 128.14, 128.09, 127.66, 52.87, 52.45, 25.87, 24.21. HRMS (ESI) m/z Calcd for C₁₇H₁₆CINS (M+H⁺): 302.0765, found: 302.0770.

(5-nitro-[1,1'-biphenyl]-2-yl)(pyrrolidin-1-yl)methanethione (3f)

Yellow solid(21mg, 66%); mp: 110-112 °C. ¹H NMR (300 MHz, CDCl₃) δ= 8.22 (d, *J* = 17.4 Hz, 2H), 7.66 (d, *J* = 7.6 Hz, 3H), 7.43 (d, *J* = 7.5 Hz, 3H), 3.96 – 3.81 (m, 1H), 3.61 – 3.46 (m, 1H), 3.16 – 3.03 (m, 1H), 2.90 – 2.74 (m, 1H), 1.99 – 1.84 (m, 1H), 1.84 – 1.71 (m, 1H), 1.71 – 1.60 (m, 1H), 1.51 – 1.39 (m, 1H). ¹³C NMR (75 MHz, CDCl₃) δ= 193.52, 147.55, 137.75, 137.50, 129.40, 128.74, 128.71, 128.62, 128.39, 125.02, 122.41, 52.78, 52.42, 25.92, 24.09. HRMS (ESI) m/z Calcd for $C_{17}H_{16}N_2O_2S$ (M+H⁺): 313.1005, found: 313.1005.

N,N-diethyl-3-methyl-[1,1'-biphenyl]-2-carbothioamide (3h)

Yellow solid(8mg, 29%); mp: 74-76 °C. ¹H NMR (300 MHz, CDCl₃) δ = 7.57 (dd, *J* = 7.8, 1.9 Hz, 2H), 7.35 – 7.26 (m, 3H), 7.24 (d, *J* = 3.0 Hz, 1H), 7.21 (d, *J* = 5.2 Hz, 1H), 7.10 (dd, *J* = 7.2, 1.8 Hz, 1H), 4.51 – 4.37 (m, 1H), 3.44 – 3.35 (m, 1H), 3.35 – 3.25 (m, 1H), 2.94 – 2.80 (m, 1H), 2.40 (s, 3H), 0.88 (t, *J* = 7.2 Hz, 3H), 0.83 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ = 197.62, 140.80, 140.23, 136.55, 132.88, 129.96, 129.51, 127.78, 127.66, 127.59, 127.19, 46.94, 44.36, 20.21, 12.74, 9.98. HRMS (ESI) m/z Calcd for C₁₈H₂₁NS (M+H⁺): 284.1467, found: 284.1471.

(3,4'-dimethyl-[1,1'-biphenyl]-2-yl)(pyrrolidin-1-yl)methanethione (4b)

Yellow solid(22mg, 76%); mp: 113-115 °C. ¹H NMR (300 MHz, CDCl₃) δ = 7.49 (d, *J* = 8.1 Hz, 2H), 7.31 (s, 1H), 7.21 (d, *J* = 3.2 Hz, 2H), 7.17 (d, *J* = 7.7 Hz, 2H), 3.95 – 3.83 (m, 1H), 3.61 – 3.49 (m, 1H), 3.14 – 3.03 (m, 1H), 2.86 – 2.76 (m, 1H), 2.37 (s, 3H), 2.36 (s, 3H), 1.93 – 1.80 (m, 1H), 1.76 – 1.67 (m, 1H), 1.67 – 1.57 (m, 1H), 1.48 – 1.39 (m, 1H). ¹³C NMR (75 MHz, CDCl₃) δ = 196.89, 142.16, 137.14, 136.95, 133.33, 129.92, 129.62, 129.00, 128.68, 128.57, 128.53, 52.78, 52.38, 25.86, 24.26, 21.16, 21.00. HRMS (ESI) m/z Calcd for C₁₉H₂₁NS (M+H⁺): 296.1467, found: 296.1467.

pyrrolidin-1-yl(3,3',5'-trimethyl-[1,1'-biphenyl]-2-yl)methanethione (4c)

Yellow solid(19mg, 60%); mp: 123-126°C. ¹H NMR (300 MHz, CDCl₃) δ = 7.30 (s, 1H), 7.23 (s, 3H), 7.18 (d, *J* = 7.7 Hz, 1H), 6.93 (s, 1H), 3.95 – 3.84 (m, 1H), 3.57 – 3.46 (m, 1H), 3.12 – 3.02 (m, 1H), 2.89 – 2.78 (m, 1H), 2.37 (s, 3H), 2.32 (s, 6H), 1.93 – 1.83 (m, 1H), 1.76 – 1.66 (m, 1H), 1.65 – 1.57 (m, 1H), 1.48 – 1.38 (m, 1H). ¹³C NMR (75 MHz, CDCl₃) δ = 196.93, 142.18, 139.89, 137.70, 137.18, 133.46, 129.86, 129.55, 128.83, 128.57, 126.41, 52.89, 52.45, 25.87, 24.27, 21.33, 21.02. HRMS (ESI) m/z Calcd for C₂₀H₂₃NS (M+H⁺): 310.1624, found: 310.1629.

(4'-(tert-butyl)-3-methyl-[1,1'-biphenyl]-2-yl)(pyrrolidin-1-yl)methanethione (4d)

Yellow solid(22mg, 65%); mp: 91-93 °C. ¹H NMR (300 MHz, CDCl₃) δ = 7.59 – 7.53 (m, 2H), 7.44 – 7.38 (m, 2H), 7.34 (d, *J* = 2.7 Hz, 1H), 7.28 (s, 1H), 7.22 (dd, *J* = 8.2, 1.9 Hz, 1H), 3.94 – 3.82 (m, 1H), 3.63 – 3.51 (m, 1H), 3.12 – 3.01 (m, 1H), 2.87 – 2.76 (m, 1H), 2.40 (s, 3H), 1.93 – 1.82 (m, 1H), 1.76 – 1.64 (m, 1H), 1.56 – 1.46 (m, 1H), 1.46 – 1.36 (m, 1H), 1.34 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ = 196.92, 150.29, 142.19, 137.18, 137.03, 133.24, 129.97, 129.47, 128.67, 128.36, 125.10, 52.85, 52.33, 34.53, 31.33, 25.80, 24.27, 21.01. HRMS (ESI) m/z Calcd for C₂₂H₂₇NS (M+H⁺): 338.1937, found: 338.1936.

(3'-methoxy-3-methyl-[1,1'-biphenyl]-2-yl)(pyrrolidin-1-yl)methanethione (4e)

Yellow solid(15mg, 47%); mp: 98-101°C. ¹H NMR (300 MHz, CDCl₃) δ = 7.30 (d, *J* = 8.3 Hz, 3H), 7.25 (s, 1H), 7.21 (d, *J* = 8.0 Hz, 1H), 7.14 (d, *J* = 7.6 Hz, 1H), 6.85 (dd, *J* = 7.9, 2.2 Hz, 1H), 3.95 – 3.85 (m, 1H), 3.82 (s, 3H), 3.61 – 3.48 (m, 1H), 3.14 – 3.03 (m, 1H), 2.92 – 2.80 (m, 1H), 2.39 (s, 3H), 1.93 – 1.81 (m, 1H), 1.77 – 1.69 (m, 1H), 1.67 – 1.58 (m, 1H), 1.50 – 1.42 (m, 1H). ¹³C NMR (75 MHz, CDCl₃) δ = 196.79, 159.40, 142.22, 141.43, 137.60, 133.30, 129.93, 129.56, 129.33, 128.54, 120.86, 113.88, 113.48, 77.49, 77.07, 76.64, 55.52, 52.85, 52.40, 25.90, 24.27, 21.02. HRMS (ESI) m/z Calcd for C₁₉H₂₁NOS (M+H⁺): 312.1417, found: 312.1419.

(3-methyl-4'-(trifluoromethoxy)-[1,1'-biphenyl]-2-yl)(pyrrolidin-1-yl)methanethione (4f)

Yellow solid(20mg, 54%); mp: 81-83°C. ¹H NMR (300 MHz, CDCl₃) δ = 7.67 (dd, *J* = 8.7, 1.7 Hz, 2H), 7.33 (s, 1H), 7.28 (d, *J* = 1.6 Hz, 1H), 7.25 – 7.20 (m, 3H), 3.96 – 3.83 (m, 1H), 3.61 – 3.49 (m, 1H), 3.17 – 3.06 (m, 1H), 2.85 – 2.72 (m, 1H), 2.41 (s, 3H), 1.98 – 1.85 (m, 1H), 1.83 – 1.70 (m, 1H), 1.69 –

1.59 (m, 1H), 1.52 – 1.41 (m, 1H). ¹³C NMR (75 MHz, CDCl₃) δ = 196.43, 148.45, 142.31, 138.76, 138.10, 131.77, 130.17, 130.05, 129.52, 122.16, 120.68, 120.46(d, *J* = 255.0Hz), 52.81, 52.46, 25.88, 24.21, 21.02. HRMS (ESI) m/z Calcd for C₁₉H₁₈F₃NOS (M+H⁺): 366.1134, found: 366.1135.

(3-methyl-3'-(trifluoromethoxy)-[1,1'-biphenyl]-2-yl)(pyrrolidin-1-yl)methanethione (4g)

Yellow solid(26mg, 70%); mp: 85-87°C. ¹H NMR (300 MHz, CDCl₃) δ = 7.59 (dd, *J* = 7.8, 1.0 Hz, 1H), 7.46 (s, 1H), 7.40 (t, *J* = 8.0 Hz, 1H), 7.30 (s, 1H), 7.22 (d, *J* = 1.2 Hz, 2H), 7.17 (d, *J* = 8.3 Hz, 1H), 3.92 – 3.80 (m, 1H), 3.61 – 3.49 (m, 1H), 3.17 – 3.07 (m, 1H), 2.86 – 2.75 (m, 1H), 2.39 (s, 3H), 1.96 – 1.83 (m, 1H), 1.82 – 1.70 (m, 1H), 1.68 – 1.58 (m, 1H), 1.52 – 1.42 (m, 1H). ¹³C NMR (75 MHz, CDCl₃) δ = 196.21, 149.12, 142.35, 142.14, 138.34, 131.63, 130.02, 129.63, 129.56, 128.53, 127.35, 121.25, 120.48(d, *J*=255.8 Hz), 119.82, 52.73, 52.51, 25.88, 24.22, 21.02. HRMS (ESI) m/z Calcd for C₁₉H₁₈F₃NOS (M+H⁺): 366.1134, found: 366.1135.

(2'-fluoro-3-methyl-[1,1'-biphenyl]-2-yl)(pyrrolidin-1-yl)methanethione (4h)

Yellow solid(20mg, 69%); mp: 128-132 °C. ¹H NMR (300 MHz, CDCl₃) δ = 7.64 (t, *J* = 7.7 Hz, 1H), 7.26 – 7.20 (m, 3H), 7.17 (d, *J* = 7.6 Hz, 1H), 7.12 (d, *J* = 8.5 Hz, 1H), 7.06 (d, *J* = 8.6 Hz, 1H), 3.92 – 3.76 (m, 1H), 3.55 – 3.41 (m, 1H), 3.28 – 3.15 (m, 1H), 3.15 – 3.02 (m, 1H), 2.40 – 2.28 (m, 3H), 1.95 – 1.81 (m, 1H), 1.81 – 1.72 (m, 1H), 1.71 – 1.62 (m, 1H), 1.60 – 1.53 (m, 1H). ¹³C NMR (75 MHz, CDCl₃) δ = 196.07, 159.36(d, *J*=245.4 Hz) 143.05, 138.10, 132.09 (d, *J* = 3.0 Hz), 131.03 (d, *J* = 2.7 Hz), 129.28, 129.20, 129.17, 127.80, 127.31, 127.30(d, *J*=14.2 Hz), 123.82 (d, *J* = 3.6 Hz), 115.48 (d, *J* = 22.6 Hz), 52.66, 52.59, 52.56, 26.04, 24.34, 21.15. HRMS (ESI) m/z Calcd for C₁₈H₁₈FNS (M+H⁺): 300.1217, found: 300.1221.

(3',4'-difluoro-3-methyl-[1,1'-biphenyl]-2-yl)(pyrrolidin-1-yl)methanethione (4i)

Yellow solid(23mg, 71%); mp: 89-92 °C. ¹H NMR (300 MHz, CDCl₃) δ = 7.51 – 7.35 (m, 2H), 7.28 (d, J = 1.1 Hz, 1H), 7.25 – 7.11 (m, 3H), 4.00 – 3.87 (m, 1H), 3.65 – 3.53 (m, 1H), 3.22 – 3.10 (m, 1H), 2.89 – 2.77 (m, 1H), 2.40 (s, 3H), 2.03 – 1.90 (m, 1H), 1.88 – 1.77 (m, 1H), 1.77 – 1.68 (m, 1H), 1.68 – 1.59 (m, 1H). ¹³C NMR (75 MHz, CDCl₃) δ = 196.28, 151.45 (dd, J = 20.5, 13.0 Hz), 148.16 (dd, J = 20.9, 12.7 Hz), 142.29, 138.27, 137.04 (dd, J = 9.2, 2.6 Hz), 131.07, 129.99, 129.55, 128.39, 124.96 (dd, J = 5.8, 3.7 Hz), 117.59 (d, J = 17.8 Hz), 117.07 (d, J = 17.1 Hz), 52.77, 52.52, 25.97, 24.27, 21.00. HRMS (ESI) m/z Calcd for C₁₈H₁₇F₂NS (M+H⁺): 318.1123, found: 318.1121.

(4'-fluoro-3-methyl-[1,1'-biphenyl]-2-yl)(pyrrolidin-1-yl)methanethione (4j)

Yellow solid(22mg, 74%); mp: 87-89 °C. ¹H NMR (300 MHz, CDCl₃) δ = 7.59 (dd, *J* = 8.5, 5.5 Hz, 2H), 7.29 (s, 1H), 7.20 (s, 2H), 7.06 (t, *J* = 8.7 Hz, 2H), 3.96 – 3.82 (m, 1H), 3.60 – 3.44 (m, 1H), 3.16 – 3.03 (m, 1H), 2.86 – 2.71 (m, 1H), 2.38 (s, 3H), 1.96 – 1.83 (m, 1H), 1.81 – 1.68 (m, 1H), 1.67 – 1.58 (m, 1H), 1.52 – 1.41 (m, 1H). ¹³C NMR (75 MHz, CDCl₃) δ = 196.58, 162.14 (d, *J* = 246.7 Hz), 142.25, 137.68, 136.05 (d, *J* = 3.2 Hz), 132.19, 130.39 (d, *J* = 7.9 Hz), 129.80 (d, *J* = 29.3 Hz), 128.49, 115.36, 115.08, 52.78, 52.45, 25.91, 24.26, 21.02. HRMS (ESI) m/z Calcd for C₁₈H₁₈FNS (M+H⁺): 300.1217, found: 300.1218.

(3'-fluoro-3-methyl-[1,1'-biphenyl]-2-yl)(pyrrolidin-1-yl)methanethione (4k)

Yellow solid(23mg, 76%); mp: 83-85 °C. ¹H NMR (300 MHz, CDCl₃) δ = 7.42 (dt, *J* = 7.8, 1.3 Hz, 1H), 7.37 – 7.32 (m, 1H), 7.30 (d, *J* = 5.0 Hz, 2H), 7.22 (d, *J* = 0.9 Hz, 2H), 7.00 (tdd, *J* = 8.4, 2.7, 1.1 Hz, 1H), 3.95 – 3.82 (m, 1H), 3.63 – 3.50 (m, 1H), 3.17 – 3.06 (m, 1H), 2.88 – 2.76 (m, 1H), 2.38 (s, 3H), 1.95 – 1.83 (m, 1H), 1.83 – 1.70 (m, 1H), 1.69 – 1.58 (m, 1H), 1.55 – 1.43 (m, 1H). ¹³C NMR (75 MHz, CDCl₃) δ = 196.37, 162.61 (d, *J* = 245.8 Hz), 142.28 (d, *J* = 7.5Hz), 138.14, 131.95, 130.02, 129.75 (d, *J* = 8.3 Hz), 129.58, 128.55, 124.52 (d, *J* = 2.9 Hz), 115.47 (d, *J* = 22.1 Hz), 114.14 (d, *J* = 21.0 Hz), 52.83, 52.50, 25.94, 24.27, 21.05. HRMS (ESI) m/z Calcd for C₁₈H₁₈FNS (M+H⁺): 300.1217, found: 300.1214.

(2'-chloro-3-methyl-[1,1'-biphenyl]-2-yl)(pyrrolidin-1-yl)methanethione (4l)

Yellow solid(21mg, 66%); mp: 84-86 °C. ¹H NMR (300 MHz, CDCl₃) δ = 7.76 (s, 1H), 7.48 – 7.42 (m, 1H), 7.30 (d, *J* = 3.1 Hz, 1H), 7.29 – 7.24 (m, 3H), 7.22 (d, *J* = 7.8 Hz, 1H), 3.95 – 3.81 (m, 1H), 3.54 – 3.39 (m, 1H), 3.34 – 3.19 (m, 2H), 2.42 (s, 3H), 1.99 – 1.86 (m, 1H), 1.86 – 1.76 (m, 1H), 1.75 – 1.58 (m, 2H). ¹³C NMR (75 MHz, CDCl₃) δ = 195.83, 142.93, 138.09, 137.84, 132.75, 132.73, 131.36, 129.69, 128.84, 128.79, 127.88, 127.83, 126.39, 77.47, 77.05, 76.63, 52.68, 52.64, 26.03, 24.28, 21.19. HRMS (ESI) m/z Calcd for C₁₈H₁₈CINS (M+H⁺): 316.0921, found: 316.0923.

(4'-chloro-3-methyl-[1,1'-biphenyl]-2-yl)(pyrrolidin-1-yl)methanethione (4m)

Yellow solid(21mg, 65%); mp: 139-141 °C. ¹H NMR (300 MHz, CDCl₃) δ = 7.56 (d, *J* = 8.4 Hz, 2H), 7.38 – 7.27 (m, 3H), 7.20 (s, 2H), 3.97 – 3.82 (m, 1H), 3.61 – 3.48 (m, 1H), 3.16 – 3.05 (m, 1H), 2.86 – 2.72 (m, 1H), 2.38 (s, 3H), 1.96 – 1.83 (m, 1H), 1.82 – 1.69 (m, 1H), 1.69 – 1.59 (m, 1H), 1.54 – 1.43 (m, 1H). ¹³C NMR (75 MHz, CDCl₃) δ = 196.45, 142.21, 138.51, 137.96, 133.33, 131.99, 130.03, 129.55, 128.52, 128.48, 52.80, 52.48, 25.92, 24.26, 21.04. HRMS (ESI) m/z Calcd for C₁₈H₁₈CINS (M+H⁺): 316.0921, found: 316.0927.

CF3 S N

(3-methyl-4'-(trifluoromethyl)-[1,1'-biphenyl]-2-yl)(pyrrolidin-1-yl)methanethione (4n)

Yellow solid(25mg, 71%); mp: 172-175 °C. ¹H NMR (300 MHz, CDCl₃) δ = 7.80 (d, *J* = 8.1 Hz, 2H), 7.68 (d, *J* = 7.1 Hz, 2H), 7.36 (s, 1H), 7.28 (s, 2H), 4.01 – 3.85 (m, 1H), 3.66 – 3.51 (m, 1H), 3.27 – 3.10 (m, 1H), 2.90 – 2.73 (m, 1H), 2.45 (s, 3H), 2.02 – 1.88 (m, 1H), 1.88 – 1.72 (m, 1H), 1.71 – 1.61 (m, 1H), 1.56 – 1.45 (m, 1H). ¹³C NMR (75 MHz, CDCl₃) δ = 196.25, 143.74, 142.35, 138.56, 131.79, 129.88 (d, *J* = 30.3 Hz), 129.55, 129.06, 128.52, 125.96, 125.18 (q, *J* = 3.8 Hz), 120.55 (d, *J* = 272.2 Hz), 52.80, 52.53, 25.91, 24.22, 21.06. HRMS (ESI) m/z Calcd for C₁₉H₁₈F₃NS (M+H⁺): 350.1185, found: 350.1190.

ethyl 3'-methyl-2'-(pyrrolidine-1-carbonothioyl)-[1,1'-biphenyl]-4-carboxylate (40)

Yellow solid(24mg, 67%); mp: 92-94 °C. ¹H NMR (300 MHz, CDCl₃) δ = 8.04 (dd, *J* = 7.6, 3.1 Hz, 2H), 7.68 (dd, *J* = 8.7, 2.2 Hz, 2H), 7.31 (s, 1H), 7.25 – 7.18 (m, 2H), 4.46 – 4.32 (m, 2H), 3.94 – 3.81 (m, 1H), 3.59 – 3.44 (m, 1H), 3.16 – 3.03 (m, 1H), 2.84 – 2.68 (m, 1H), 2.39 (s, 3H), 1.93 – 1.80 (m, 1H), 1.80 – 1.66 (m, 1H), 1.63 – 1.48 (m, 2H), 1.40 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ = 196.36, 166.42, 144.67, 142.33, 138.36, 132.27, 130.00, 129.63, 129.52, 129.23, 128.66, 128.59, 61.01, 52.77, 52.49, 25.90, 24.20, 21.05, 14.31. HRMS (ESI) m/z Calcd for C₂₁H₂₃NO₂S (M+H⁺): 354.1522, found: 354.1522.

(2-methyl-6-(naphthalen-1-yl)phenyl)(pyrrolidin-1-yl)methanethione (4p)

Yellow solid(19mg, 58%); mp: 128-131 °C. ¹H NMR (300 MHz, CDCl₃) δ = 7.94 (t, *J* = 7.5 Hz, 2H), 7.84 (d, *J* = 7.7 Hz, 1H), 7.61 – 7.37 (m, 4H), 7.34 (d, *J* = 7.8 Hz, 1H), 7.29 (d, *J* = 2.6 Hz, 1H), 7.26 (s, 1H), 3.91 – 3.75 (m, 1H), 3.46 – 3.31 (m, 1H), 3.24 – 3.07 (m, 1H), 2.94 – 2.74 (m, 1H), 2.48 (s, 3H), 1.85 – 1.72 (m, 1H), 1.56 – 1.46 (m, 1H), 1.46 – 1.28 (m, 1H), 1.14 – 0.89 (m, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 196.48, 143.78, 137.57, 136.24, 133.96, 131.85, 131.56, 131.43, 128.82, 128.73, 128.65, 128.39, 127.76, 126.01, 125.40, 125.25, 124.87, 52.50, 52.46, 25.56, 23.98, 21.15. HRMS (ESI) m/z Calcd for C₂₂H₂₁NS (M+H⁺):332.1467, found: 332.1468.

(2-(benzofuran-2-yl)-6-methylphenyl)(pyrrolidin-1-yl)methanethione (4q)

Yellow solid(7mg, 21%); mp: 155-157 °C. ¹H NMR (300 MHz, CDCl₃) δ = 7.83 (d, *J* = 8.1 Hz, 1H), 7.56 (dd, *J* = 7.6, 2.1 Hz, 1H), 7.48 (d, *J* = 8.8 Hz, 1H), 7.30 (dd, *J* = 7.3, 1.4 Hz, 1H), 7.26 – 7.23 (m, 1H), 7.21 (d, *J* = 1.3 Hz, 1H), 7.19 (d, *J* = 2.6 Hz, 1H), 7.03 (s, 1H), 4.12 – 3.99 (m, 1H), 3.99 – 3.88 (m, 1H), 3.32 – 3.21 (m, 1H), 3.13 – 3.01 (m, 1H), 2.39 (s, 3H), 2.10 – 1.97 (m, 1H), 1.97 – 1.89 (m, 1H), 1.89 – 1.82 (m, 1H), 1.82 – 1.71 (m, 1H). ¹³C NMR (75 MHz, CDCl₃) δ = 196.34, 156.04, 153.55,

139.36, 139.16, 129.39, 129.26, 127.64, 127.59, 127.13, 124.43, 122.88, 121.24, 110.93, 104.17, 52.90, 52.46, 26.10, 24.42, 21.23. HRMS (ESI) m/z Calcd for $C_{20}H_{19}NOS$ (M+H⁺): 322.1260, found: 322.1264.

6. References

L. Hie, N. F. Fine Nathel, T. K. Shah, E. L. Baker, X. Hong, Y.-F. Yang, P. Liu, K. N. Houk, N. K. Garg, *Nature*. 2015, 524, 79-83.

[2] J. E. Spangler, Y. Kobayashi, P. Verma, D.-H. Wang, J.-Q. Yu, J. Am. Chem. Soc. 2015, 137, 11876-11879.

7. Copies of ¹H, ¹³C NMR Spectra

¹H-NMR Spectrum of Compound 3a

¹H-NMR Spectrum of Compound 3b

¹H-NMR Spectrum of Compound 3c

¹H-NMR Spectrum of Compound 3d

¹H-NMR Spectrum of Compound 3e

¹H-NMR Spectrum of Compound 3f

۵ -1

10

0 -1

¹H-NMR Spectrum of Compound 4b

¹H-NMR Spectrum of Compound 4c

¹H-NMR Spectrum of Compound 4d

¹H-NMR Spectrum of Compound 4e

¹³C-NMR Spectrum of Compound 4e

. 43	74 52 52 52 52 52 52 52 52 52 52 52 52 52	05 63	81 46	88 02 02
-196	$\begin{array}{c} 1122 \\ 11$	777. \777. \76.	52.	25. 24. 21.

¹H-NMR Spectrum of Compound 4f

And the second second

the second second second

The second s

¹H-NMR Spectrum of Compound 4g

220 210 200 190 180 170 160 150 140 130 120

S26

100 90 80 70 60 50 40 30 20 10 0 -1

IID fl (ppm)

¹H-NMR Spectrum of Compound 4h

¹H-NMR Spectrum of Compound 4i

¹H-NMR Spectrum of Compound 4j

¹H-NMR Spectrum of Compound 4k

and the second second

¹H-NMR Spectrum of Compound 41

¹H-NMR Spectrum of Compound 4n

IID fl (ppm) -1

¹H-NMR Spectrum of Compound 40

IID fl (ppm) -1

¹H-NMR Spectrum of Compound 4p

