Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2017

Supporting information

Facile Synthesis of 1-Aminoindoles via Rh(III)-catalyzed Three-Component Annulation

Zi Yang, Xing Lin, Lianhui Wang and Xiuling Cui

Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, P. R. China

E-mail: cuixl@hqu.edu.cn

Table of Contents

1.	General information	
2.	Typical procedure for synthesis of 4	
3.	Characterization data of compounds 4	
4.	X-ray Crystallographic data of 41	
5.	Reference	S17
6.	NMR Spectra of compounds 4 and 5a	S18

1. General Information

All chemicals were analytically pure and used directly after purchased. All solvents were used without any particular precautions to extrude moisture. Melting points were determined in open glass capillaries and were uncorrected. ¹H NMR spectra were recorded on 400 MHz spectrometers, and ¹³C NMR spectra were recorded on a 100 MHz spectrometer. Chemical shifts (in ppm) were referenced to tetramethylsilane ($\delta = 0$ ppm) in CDCl₃ as an internal standard at room temperature. ¹³C NMR spectra were obtained by using the same NMR spectrometers and were calibrated with CDCl₃($\delta = 77.00$ ppm). High-resolution mass spectra (HRMS) were equipped with an ESI source and a TOF detector. Column chromatography was performed on silica gel (70-230 mesh ASTM) using the reported eluents. Thin-layer chromatography (TLC) was carried out on 4×15 cm plates with a layer thickness of 0.2 mm (silica gel 60 F254). Diazo compounds^[1] and phenylhydrazine hydrochloride-[D₅]^[2] were synthesized according to the previously reported procedure.

2. Typical procedure for synthesis of 4

To a test tube equipped with magnetic stir bar, phenylhydrazine hydrochloride (1a, 28.9 mg, 0.20 mmol), ethyl diazoacetoacetate (2a, 46.8 mg. 0.30 mmol, 1.5 equiv), $[RhCp*Cl_2]_2$ (3.09 mg, 0.005 mmol, 2.5 mmol %) and NaOAc (16.4 mg, 0.20 mmol, 1.0 equiv) were added sequentially. The tube was evacuated and backfilled with nitrogen for three cycles. Acetone (3a, 23.2 mg, 0.40 mmol, 2.0 equiv) was dissolved in MeOH (2.0 mL), and added under nitrogen atmosphere and the tube was sealed. The tube was immersed in an oil bath (80 °C) and stirred for 12 h. After removal of the solvent under reduced pressure, purification was performed by flash column chromatography on silica gel with petroleum ether/ethyl acetate (gradient mixture ratio from 100:0 to 90:15) as eluent to afford 4a (45 mg, 87%).

3. Characterization data of compounds 4

Ethyl 2-methyl-1-(propan-2-ylideneamino)-1H-indole-3-carboxylate (4a)

Yield: 87%, brown oil.

¹**H NMR (400 MHz, CDCl₃)** δ 8.15 (d, *J* = 7.6 Hz, 1H), 7.24 – 7.14 (m, 2H), 6.96 (d, *J* = 7.9 Hz, 1H), 4.40 (q, *J* = 14.2, 7.1 Hz, 2H), 2.58 (s, 3H), 2.38 (s, 3H), 1.76 (s, 3H), 1.45 (t, *J* = 7.1 Hz, 3H). ¹³**C NMR (100 MHz, CDCl₃)** δ 181.1, 166.1, 141.3, 131.9, 125.0, 121.9, 121.6, 121.3, 108.8, 101.9, 59.3, 24.8, 20.0, 14.5, 11.5. **HRMS (ESI)**: Calcd for C₁₅H₁₈N₂O₂ [M+H]⁺: 259.1441; found: 259.1445. Ethyl 5-fluoro-2-methyl-1-(propan-2-ylideneamino)-1H-indole-3-carboxylate (4b)

Yield: 80%, brown oil.

¹H NMR (400 MHz, CDCl₃) δ 7.80 (dd, J = 9.9, 2.2 Hz, 1H), 6.93 (dd, J = 8.8, 2.4 Hz, 1H), 6.91 - 6.86 (m, 1H), 4.40 (q, J = 7.1 Hz, 2H), 2.57 (s, 3H), 2.40 (s, 3H), 1.78 (s, 3H), 1.45 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 181.5, 165.8, 159.2 (d, $J_{CF}= 235.9$ Hz), 142.5, 128.6, 125.7 (d, $J_{CF}= 11.2$ Hz), 110.2 (d, $J_{CF}= 26.5$ Hz), 109.6 (d, $J_{CF}= 9.8$ Hz), 106.8 (d, $J_{CF}= 25.5$ Hz), 102.1 (d, $J_{CF}= 4.2$ Hz), 59.5, 24.9, 20.0, 14.6, 11.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -122.01. HRMS (ESI): Calcd for C₁₅H₁₇FN₂O₂ [M+H]⁺: 277.1347; found: 277.1346

Ethyl 5-chloro-2-methyl-1-(propan-2-ylideneamino)-1H-indole-3-carboxylate (4c)

Yield: 77%, brown oil.

¹**H NMR (400 MHz, CDCl₃)** δ 8.12 (d, J = 2.0 Hz, 1H), 7.13 (dd, J = 8.6, 2.0 Hz, 1H), 6.88 (d, J = 8.6 Hz, 1H), 4.41 (q, J = 7.1 Hz, 2H), 2.57 (s, 3H), 2.40 (s, 3H), 1.77 (s, 3H), 1.46 (t, J = 7.1 Hz, 3H). ¹³**C NMR (100 MHz, CDCl₃)** δ 181.6, 165.6, 142.4, 130.4, 127.5, 126.0, 122.3, 121.0, 109.90, 101.9, 59.6, 24.9, 20.0, 14.6, 11.6. **HRMS (ESI)**: Calcd for C₁₅H₁₇ClN₂O₂ [M+H]⁺: 293.1051; found: 293.1032.

Ethyl 5-bromo-2-methyl-1-(propan-2-ylideneamino)-1H-indole-3-carboxylate (4d)

Yield: 81%, brown oil.

¹**H** NMR (400 MHz, CDCl₃) δ 8.28 (s, 1H), 7.26 (d, *J* = 8.6 Hz, 1H), 6.84 (d, *J* = 8.6 Hz, 1H), 4.41 (q, *J* = 7.1 Hz, 2H), 2.57 (s, 3H), 2.39 (s, 3H), 1.76 (s, 3H), 1.45 (t, *J* = 7.1 Hz, 3H). ¹³**C** NMR (100 MHz, CDCl₃) δ 181.7, 165.6, 142.2, 130.7, 126.6, 124.9, 124.0, 115.3, 110.3, 101.8, 59.6, 25.0, 20.1, 14.6, 11.6. HRMS (ESI): Calcd for C₁₅H₁₇BrN₂O₂ [M+H]⁺: 377.0546; found: 377.0546.

Ethyl 2,5-dimethyl-1-(propan-2-ylideneamino)-1H-indole-3-carboxylate (4e)

Yield: 74%, brown oil.

¹**H NMR (400 MHz, CDCl₃)** δ 7.95 (s, 1H), 7.00 (d, J = 8.1 Hz, 1H), 6.85 (d, J = 8.3 Hz, 1H), 4.41 (q, J = 7.0 Hz, 2H), 2.56 (s, 3H), 2.47 (s, 3H), 2.38 (s, 3H), 1.76 (s, 3H), 1.45 (t, J = 7.1 Hz, 3H). ¹³**C NMR (100 MHz, CDCl₃)** δ 180.9, 166.2, 141.1, 131.1, 130.4, 125.3, 123.4, 121.1, 108.6, 101.4, 59.3, 24.9, 21.6, 20.0, 14.6, 11.6. **HRMS (ESI)**: Calcd for C₁₆H₂₀N₂O₂ [M+H]⁺: 273.1598; found: 273.1594.

Ethyl 5-isopropyl-2-methyl-1-(propan-2-ylideneamino)-1H-indole-3-carboxylate (4f)

Yield: 51%, brown oil.

¹**H** NMR (400 MHz, CDCl₃) δ 8.03 (s, 1H), 7.06 (d, J = 8.4 Hz, 1H), 6.88 (d, J = 8.4 Hz, 1H), 4.41 (q, J = 13.7, 6.7 Hz, 2H), 3.10 – 2.98 (m, 1H), 2.56 (s, 3H), 2.38 (s, 3H), 1.78 (s, 3H), 1.46 (t, J = 6.7 Hz, 3H), 1.32 (d, J = 6.9 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 180.7, 166.2, 142.5, 141.2, 130.7, 125.2, 121.1, 118.4, 108.7, 101.7, 59.2, 34.3, 24.9, 24.5, 24.5, 20.1, 14.6, 11.6. HRMS (ESI): Calcd for C₁₈H₂₄N₂O₂ [M+H]⁺: 301.1911; found: 301.1912.

Ethyl 5-(tert-butyl)-2-methyl-1-(propan-2-ylideneamino)-1H-indole-3-carboxylate (4g)

Yield: 51%, yellow oil.

¹**H NMR (400 MHz, CDCl₃)** δ 8.21 (d, J = 1.1 Hz, 1H), 7.27 – 7.23 (m, 1H), 6.89 (d, J = 8.6 Hz, 1H), 4.40 (q, J = 7.1 Hz, 2H), 2.57 (s, 3H), 2.38 (s, 3H), 1.78 (s, 3H), 1.47 (t, J = 7.1 Hz, 3H), 1.40 (s, 9H). ¹³**C NMR (100 MHz, CDCl₃)** δ 180.7, 166.3, 144.7, 141.3, 130.3, 124.9, 120.2, 117.3, 108.5, 101.8, 59.3, 34.7, 31.8, 24.9, 20.3, 14.6, 11.6. **HRMS (ESI)**: Calcd for C₁₉H₂₆N₂O₂ [M+H]⁺: 315.2067; found: 315.2067.

Ethyl 5-methoxy-2-methyl-1-(propan-2-ylideneamino)-1H-indole-3-carboxylate (4h)

Yield: 60%, yellow oil.

¹**H** NMR (400 MHz, CDCl₃) δ 7.68 (d, J = 1.9 Hz, 1H), 6.83 (dt, J = 8.8, 5.4 Hz, 2H), 4.40 (q, J = 13.8, 6.8 Hz, 2H), 3.88 (s, 3H), 2.55 (s, 3H), 2.38 (s, 3H), 1.78 (s, 3H), 1.45 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 181.0, 166.1, 155.7, 141.1, 127.2, 126.0, 111.8, 109.7, 103.42, 101.6, 59.3, 55.6, 24.9, 20.0, 14.6, 11.7. HRMS (ESI): Calcd for C₁₆H₂₀N₂O₃ [M+H]⁺: 289.1547; found: 289.1545.

Ethyl 5-cyano-2-methyl-1-(propan-2-ylideneamino)-1H-indole-3-carboxylate (4i)

Yield: 54%, white solid, mp 105-107 °C.

¹**H NMR (400 MHz, CDCl₃)** δ 8.49 (d, J = 1.4 Hz, 1H), 7.41 (dd, J = 8.5, 1.5 Hz, 1H), 7.04 (d, J = 8.5 Hz, 1H), 4.43 (q, J = 7.1 Hz, 2H), 2.61 (s, 3H), 2.43 (s, 3H), 1.78 (s, 3H), 1.47 (t, J = 7.1 Hz, 3H). ¹³**C NMR (100 MHz, CDCl₃)** δ 182.4, 165.1, 143.7, 133.3, 126.9, 125.1, 124.7, 120.5, 109.7, 104.7, 103.0, 59.9, 25.0, 20.1, 14.6, 11.6. **HRMS (ESI)**: Calcd for C₁₆H₁₇N₃O₂ [M+H]⁺: 284.1394; found: 284.1394.

Ethyl2-methyl-1-(propan-2-ylideneamino)-5-(trifluoromethyl)-1H-indole-3-carboxylate (4j)

Yield: 73%, white solid, mp 180-182 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.47 (s, 1H), 7.41 (dd, J = 8.6, 1.5 Hz, 1H), 7.04 (d, J = 8.5 Hz, 1H), 4.43 (q, J = 7.1 Hz, 2H), 2.61 (s, 3H), 2.42 (s, 3H), 1.77 (s, 3H), 1.47 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 182.0, 165.5, 143.1, 133.1, 125.2 (q, $J_{CF}= 271.7$ Hz), 124.5, 123.9 (q, $J_{CF}= 31.7$ Hz), 119.2 (q, $J_{CF}= 4.4$ Hz), 118.8 (q, $J_{CF}= 3.5$ Hz), 109.1, 102.9, 59.7, 25.0, 20.1, 14.5, 11.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -60.48. HRMS (ESI): Calcd for C₁₆H₁₇F₃N₂O₂ [M+H]⁺: 327.1315; found: 327.1303.

Ethyl 2,7-dimethyl-1-(propan-2-ylideneamino)-1H-indole-3-carboxylate (4k)

Yield: 85%, yellow oil.

¹**H NMR (400 MHz, CDCl₃)** δ 8.02 (d, J = 8.0 Hz, 1H), 7.08 (t, J = 7.6 Hz, 1H), 6.90 (d, J = 7.1 Hz, 1H), 4.40 (q, J = 7.0 Hz, 2H), 2.50 (s, 3H), 2.41 (s, 3H), 2.36 (s, 3H), 1.72 (s, 3H), 1.45 (t, J = 7.1 Hz, 3H). ¹³**C NMR (100 MHz, CDCl₃)** δ 181.6, 166.2, 140.2, 131.4, 125.5, 124.6, 121.5, 120.3, 119.1, 101.8, 59.3, 24.7, 19.9, 19.0, 14.6, 11.3. **HRMS (ESI)**: Calcd for C₁₆H₂₀N₂O₂ [M+H]⁺: 273.1598; found: 273.1602.

Ethyl 7-fluoro-2-methyl-1-(propan-2-ylideneamino)-1H-indole-3-carboxylate (41)

Yield: 76%, white solid, mp 83-85 °C.

¹**H NMR (400 MHz, CDCl₃)** δ 7.93 (d, J = 8.1 Hz, 1H), 7.09 (td, J = 8.0, 4.7 Hz, 1H), 6.85 (dd, J = 12.2, 7.9 Hz, 1H), 4.40 (q, J = 7.1 Hz, 2H), 2.58 (s, 3H), 2.35 (s, 3H), 1.84 (s, 3H), 1.45 (t, J = 7.1 Hz, 3H). ¹³**C NMR (100 MHz, CDCl₃)** δ 181.3, 165.8, 148.5 (d, J = 245.2 Hz), 142.5, 128.8 (d, J = 4.0 Hz), 121.6 (d, J = 6.6 Hz), 120.3 (d, J = 9.2 Hz), 117.1 (d, J = 3.6 Hz), 107.9 (d, J = 17.5 Hz), 102.7, 59.5, 24.9, 19.7 (d, J = 3.6 Hz). 14.6, 11.4. ¹⁹**F NMR (376 MHz, CDCl₃)** δ - 137.03. **HRMS (ESI)**: Calcd for C₁₅H₁₇FN₂O₂ [M+H]⁺: 277.1347; found: 277.1343

Ethyl 6-chloro-2-methyl-1-(propan-2-ylideneamino)-1H-indole-3-carboxylate (4m)

Yield: 54%, yellow oil.

¹**H** NMR (400 MHz, CDCl₃) δ 8.05 (d, J = 8.5 Hz, 1H), 7.17 (d, J = 8.5 Hz, 1H), 6.97 (s, 1H), 4.40 (q, J = 7.1 Hz, 2H), 2.56 (s, 3H), 2.40 (s, 3H), 1.78 (s, 3H), 1.44 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 181.8, 165.7, 142.0, 132.3, 127.9, 123.6, 122.3, 122.2, 108.8, 102.3, 59.5, 24.9, 20.0, 14.5, 11.5. HRMS (ESI): Calcd for C₁₅H₁₇ClN₂O₂ [M+H]⁺: 293.1051; found: 293.1033.

Ethyl 2,6-dimethyl-1-(propan-2-ylideneamino)-1H-indole-3-carboxylate (4n)

Yield: 69%, brown oil.

¹**H NMR (400 MHz, CDCl₃)** δ 8.01 (d, J = 8.1 Hz, 1H), 7.04 (d, J = 8.0 Hz, 1H), 6.75 (s, 1H), 4.39 (q, J = 7.0 Hz, 2H), 2.56 (s, 3H), 2.44 (s, 3H), 2.40 (s, 3H), 1.77 (s, 3H), 1.44 (t, J = 7.1 Hz, 3H). ¹³**C NMR (100 MHz, CDCl₃)** δ 181.0, 166.2, 140.7, 132.3, 131.9, 123.3, 122.9, 121.0, 108.8, 101.8, 59.2, 24.9, 21.6, 20.0, 14.6, 11.5. **HRMS (ESI)**: Calcd for C₁₆H₂₀N₂O₂ [M+H]⁺: 273.1598; found: 273.1594.

Ethyl 6-fluoro-2-methyl-1-(propan-2-ylideneamino)-1H-indole-3-carboxylate (40)

Yield: 19%, yellow oil.

¹**H NMR** (400 **MHz**, **CDCl**₃) δ 8.07 (dd, J = 8.8, 5.4 Hz, 1H), 6.97 (ddd, J = 9.6, 8.8, 2.4 Hz, 1H), 6.66 (dd, J = 9.1, 2.3 Hz, 1H), 4.40 (q, J = 7.1 Hz, 2H), 2.56 (s, 3H), 2.40 (s, 3H), 1.79 (s, 3H), 1.45 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (100 **MHz**, **CDCl**₃) δ 181.6, 165.8, 159.7 (d, J_{CF} = 238.9 Hz), 141.9 (d, J_{CF} = 2.9 Hz), 131.9 (d, J_{CF} = 12.1 Hz), 122.4 (d, J_{CF} = 9.6 Hz), 121.4, 110.0 (d, J_{CF} = 23.8 Hz), 102.2, 95.5 (d, J_{CF} = 26.8 Hz), 59.5, 24.9, 20.0, 14.6, 11.6. ¹⁹F **NMR** (376 **MHz**, **CDCl**₃) δ - 120.47. **HRMS** (ESI): Calcd for C₁₅H₁₇FN₂O₂ [M+H]⁺: 277.1347; found: 277.1347.

Ethyl 4-fluoro-2-methyl-1-(propan-2-ylideneamino)-1H-indole-3-carboxylate (4o')

Yield: 53%, yellow oil.

¹**H NMR** (400 MHz, CDCl₃) δ 7.09 (td, J = 8.0, 4.5 Hz, 1H), 6.87 (ddd, J = 11.5, 7.9, 0.7 Hz, 1H), 6.74 (dd, J = 8.1, 0.6 Hz, 1H), 4.38 (q, J = 7.1 Hz, 2H), 2.54 (s, 3H), 2.39 (s, 3H), 1.76 (s, 3H), 1.42 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 181.8, 165.2, 155.7 (d, $J_{CF}= 252.4$ Hz), 141.1, 134.5 (d, $J_{CF}= 10.4$ Hz), 122.6 (d, $J_{CF}= 8.1$ Hz), 112.8 (d, $J_{CF}= 19.4$ Hz), 107.9 (d, $J_{CF}=$ 22.3 Hz), 105.0 (d, $J_{CF}= 3.9$ Hz), 101.5 (d, $J_{CF}= 3.3$ Hz), 59.8, 24.9, 20.0, 14.3, 11.6. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -112.25. HRMS (ESI): Calcd for C₁₅H₁₇FN₂O₂ [M+H]⁺: 277.1347; found: 277.1344.

Ethyl 2,5,6-trimethyl-1-(propan-2-ylideneamino)-1H-indole-3-carboxylate (4p)

Yield: 55%, brown oil.

¹H NMR (400 MHz, CDCl₃) δ 7.90 (s, 1H), 6.73 (s, 1H), 4.40 (q, *J* = 7.1 Hz, 2H), 2.54 (s, 3H), 2.39 (s, 3H), 2.37 (s, 3H), 2.34 (s, 3H), 1.77 (s, 3H), 1.45 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 180.9, 166.3, 140.3, 131.1, 131.0, 130.4, 123.5, 121.6, 109.3, 101.4, 59.3, 24.9, 20.4, 20.2, 20.1, 14.7, 11.6. HRMS (ESI): Calcd for C₁₇H₂₂N₂O₂ [M+H]⁺: 287.1754; found: 287.1757.

Ethyl 5,6-dichloro-2-methyl-1-(propan-2-ylideneamino)-1H-indole-3-carboxylate (4q)

Yield: 53%, yellow oil.

¹**H NMR (400 MHz, CDCl₃)** δ 8.21 (s, 1H), 7.08 (s, 1H), 4.40 (q, *J* = 7.1 Hz, 2H), 2.55 (s, 3H), 2.41 (s, 3H), 1.79 (s, 3H), 1.45 (t, *J* = 7.1 Hz, 3H). ¹³**C NMR (100 MHz, CDCl₃)** δ 182.3, 165.3, 143.1, 130.8, 126.0, 125.8, 124.6, 122.6, 110.4, 101.9, 59.7, 25.0, 20.1, 14.6, 11.7. **HRMS (ESI)**: Calcd for C₁₅H₁₆Cl₂N₂O₂ [M+H]⁺: 327.0662; found: 327.0656.

Ethyl 6-chloro-5-fluoro-2-methyl-1-(propan-2-ylideneamino)-1H-indole-3-carboxylate (4r)

Yield: 49%, brown solid, mp 108-110 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, J = 10.1 Hz, 1H), 7.00 (d, J = 6.1 Hz, 1H), 4.40 (q, J = 7.1 Hz, 2H), 2.55 (s, 3H), 2.41 (s, 3H), 1.79 (s, 3H), 1.45 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 182.3, 165.4, 154.3 (d, J = 239.3 Hz), 143.0, 128.4, 124.2 (d, J = 9.9 Hz), 115.7 (d, J = 21.6 Hz), 110.1, 108.0 (d, J = 25.3 Hz), 102.4 (d, J = 4.3 Hz), 59.7, 25.0, 20.1, 14.6, 11.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -124.22. HRMS (ESI): Calcd for C₁₅H₁₆ClFN₂O₂ [M+H]⁺: 311.0957; found: 311.0947.

Ethyl 7-chloro-4-fluoro-2-methyl-1-(propan-2-ylideneamino)-1H-indole-3-carboxylate (4s)

Yield: 47%, yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 7.05 (dd, J = 8.5, 3.9 Hz, 1H), 6.79 (dd, J = 10.6, 8.5 Hz, 1H), 4.38 (q, J = 7.1 Hz, 2H), 2.49 (s, 3H), 2.38 (s, 3H), 1.76 (s, 3H), 1.41 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 183.3, 164.8, 154.4 (d, J = 252.2 Hz), 141.7, 129.8 (d, J = 10.2 Hz), 124.0 (d, J = 8.2 Hz), 115.3 (d, J = 20.6 Hz), 110.8 (d, J = 4.0 Hz), 108.2 (d, J = 23.8 Hz), 102.2 (d, J = 3.7 Hz), 60.2, 24.8, 20.2, 14.3, 11.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -114.25. HRMS (ESI): Calcd for C₁₅H₁₆ClFN₂O₂ [M+H]⁺: 311.0957; found: 311.0952.

Ethyl 2-ethyl-1-(propan-2-ylideneamino)-1H-indole-3-carboxylate (4t)

Yield: 75%, yellow oil.

¹**H** NMR (400 MHz, CDCl₃) δ 8.17 (d, J = 7.8 Hz, 1H), 7.24 – 7.15 (m, 2H), 6.91 (d, J = 7.9 Hz, 1H), 4.41 (q, J = 7.1 Hz, 2H), 3.07 (q, J = 11.2 Hz, 2H), 2.39 (s, 3H), 1.78 (s, 3H), 1.45 (t, J = 7.1 Hz, 3H), 1.20 (t, J = 7.4 Hz, 3H). ¹³**C** NMR (100 MHz, CDCl₃) δ 180.6, 165.8, 147.1, 131.7, 125.2, 122.0, 121.6, 121.5, 108.9, 101.1, 59.3, 24.9, 20.2, 18.8, 14.5, 13.0. HRMS (ESI): Calcd for C₁₆H₂₀N₂O₂ [M+H]⁺: 273.1598; found: 273.1598.

Ethyl 1-(propan-2-ylideneamino)-2-propyl-1H-indole-3-carboxylate (4u)

Yield: 65%, yellow oil.

¹**H NMR (400 MHz, CDCl₃)** δ 8.18 (d, J = 7.5 Hz, 1H), 7.20 (td, J = 15.0, 7.2 Hz, 2H), 6.90 (d, J = 7.7 Hz, 1H), 4.40 (q, J = 6.7 Hz, 2H), 3.18 – 2.89 (m, 2H), 2.39 (s, 3H), 1.77 (s, 3H), 1.63 (m, 2H), 1.45 (t, J = 7.1 Hz, 3H), 0.98 (t, J = 7.3 Hz, 3H). ¹³**C NMR (100 MHz, CDCl₃)** δ 180.4, 165.8, 145.8, 131.6, 125.2, 122.0, 121.6, 121.5, 108.9, 101.7, 59.3, 27.2, 24.9, 22.1, 20.3, 14.5, 14.0. **HRMS (ESI)**: Calcd for C₁₇H₂₂N₂O₂ [M+H]⁺: 287.1754; found: 287.1758.

Methyl 2-methyl-1-(propan-2-ylideneamino)-1H-indole-3-carboxylate (4v)

Yield: 63%, brown oil.

¹**H** NMR (400 MHz, CDCl₃) δ 8.13 (d, J = 7.6 Hz, 1H), 7.25 – 7.14 (m, 2H), 6.96 (d, J = 7.9 Hz, 1H), 3.93 (s, 3H), 2.58 (s, 3H), 2.39 (s, 3H), 1.77 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 181.1, 166.5, 141.4, 131.9, 125.0, 122.0, 121.7, 121.3, 108.93, 101.8, 50.6, 24.9, 20.0, 11.5. HRMS (ESI): Calcd for C₁₄H₁₆N₂O₂ [M+H]⁺: 245.1285; found: 245.1281.

Isopropyl 2-methyl-1-(propan-2-ylideneamino)-1H-indole-3-carboxylate (4w)

Yield: 72%, brown oil.

¹**H NMR (400 MHz, CDCl₃)** δ 8.16 (d, J = 7.5 Hz, 1H), 7.25 – 7.15 (m, 2H), 6.96 (d, J = 8.0 Hz, 1H), 5.30 (m, J = 12.6, 6.2 Hz, 1H), 2.59 (s, 3H), 2.39 (s, 3H), 1.77 (s, 3H), 1.44 (s, 3H), 1.42 (s, 3H). ¹³**C NMR (100 MHz, CDCl₃)** δ 181.0, 165.7, 141.3, 131.9, 125.1, 121.9, 121.6, 121.4, 108.8, 102.3, 66.5, 24.9, 22.3, 22.3, 20.0, 11.5. **HRMS (ESI)**: Calcd for C₁₆H₂₀N₂O₂ [M+H]⁺: 273.1598; found: 273.1596.

Tert-butyl 2-methyl-1-(propan-2-ylideneamino)-1H-indole-3-carboxylate (4x)

Yield: 84%, yellow oil.

¹**H NMR (400 MHz, CDCl₃)** δ 8.13 (d, J = 7.8 Hz, 1H), 7.24 – 7.13 (m, 2H), 6.95 (d, J = 7.6 Hz, 1H), 2.57 (s, 3H), 2.38 (s, 3H), 1.76 (s, 3H), 1.67 (s, 9H). ¹³**C NMR (100 MHz, CDCl₃)** δ 180.9, 165.5, 141.0, 131.8, 125.1, 121.8, 121.5, 121.3, 108.8, 103.3, 79.6, 28.7, 24.9, 20.0, 11.5. **HRMS (ESI)**: Calcd for C₁₇H₂₂N₂O₂ [M+H]⁺: 287.1754; found: 287.1756.

Benzyl 2-methyl-1-(propan-2-ylideneamino)-1H-indole-3-carboxylate (4y)

Yield: 52%, yellow oil.

¹**H NMR (400 MHz, CDCl₃)** δ 8.14 (d, *J* = 7.3 Hz, 1H), 7.49 (t, *J* = 6.8 Hz, 2H), 7.39 (t, *J* = 7.6 Hz, 2H), 7.35 – 7.30 (m, 1H), 7.24 – 7.14 (m, 2H), 6.96 (d, *J* = 7.2 Hz, 1H), 5.42 (s, 2H), 2.59 (s, 3H), 2.39 (s, 3H), 1.77 (s, 3H). ¹³**C NMR (100 MHz, CDCl₃)** δ 181.2, 165.8, 141.7, 137.0, 132.0, 128.5, 128.0, 127.8, 125.0, 122.0, 121.8, 121.4, 108.9, 101.6, 65.2, 24.9, 20.1, 11.6. **HRMS (ESI)**: Calcd for C₂₀H₂₀N₂O₂ [M+H]⁺: 321.1598; found: 321.1600.

Ethyl 2-methyl-1-(pentan-3-ylideneamino)-1H-indole-3-carboxylate (4z)

Yield: 37%, yellow oil.

¹**H NMR (400 MHz, CDCl₃)** δ 8.15 (d, J = 7.4 Hz, 1H), 7.19 (dtd, J = 15.0, 7.2, 1.2 Hz, 2H), 6.95 (d, J = 7.7 Hz, 1H), 4.41 (q, J = 7.1 Hz, 2H), 2.70 (q, J = 7.4 Hz, 2H), 2.59 (s, 3H), 2.10 (q, J = 11.2, 5.3 Hz, 2H), 1.46 (t, J = 7.1 Hz, 3H), 1.38 (t, J = 7.4 Hz, 3H), 0.96 (t, J = 7.7 Hz, 3H). ¹³C **NMR (100 MHz, CDCl₃)** δ 189.5, 166.1, 141.5, 132.2, 125.1, 121.9, 121.6, 121.3, 108.8, 101.9, 59.3, 29.0, 25.0, 14.6, 11.6, 11.1, 10.5. **HRMS (ESI)**: Calcd for C₁₇H₂₂N₂O₂ [M+H]⁺: 287.1754; found: 287.1751.

Ethyl 1-(cyclopentylideneamino)-2-methyl-1H-indole-3-carboxylate (4za)

Yield: 77%, yellow oil.

¹**H NMR (400 MHz, CDCl₃)** δ 8.16 (d, J = 7.3 Hz, 1H), 7.25 – 7.15 (m, 2H), 7.01 (d, J = 7.8 Hz, 1H), 4.40 (q, J = 7.1 Hz, 2H), 2.83 (t, J = 7.4 Hz, 2H), 2.62 (s, 3H), 2.12 (t, J = 7.2 Hz, 2H), 2.01 – 1.91 (m, 2H), 1.86 – 1.77 (m, 2H), 1.45 (t, J = 7.1 Hz, 3H). ¹³**C NMR (100 MHz, CDCl₃)** δ 194.1, 166.1, 141.0, 131.2, 125.1, 121.9, 121.6, 121.4, 108.8, 101.8, 59.3, 33.7, 31.7, 24.5, 24.4, 14.6, 11.6. **HRMS (ESI)**: Calcd for C₁₇H₂₀N₂O₂ [M+H]⁺: 285.1598; found: 285.1598.

Ethyl 1-(cyclohexylideneamino)-2-methyl-1H-indole-3-carboxylate (4zb)

Yield: 56%, brown oil.

¹H NMR (400 MHz, CDCl₃) δ 8.14 (d, J = 7.4 Hz, 1H), 7.20 (ddd, J = 17.6, 11.6, 4.0 Hz, 2H), 6.99 (d, J = 7.7 Hz, 1H), 4.41 (q, J = 7.0 Hz, 2H), 2.71 (t, J = 6.3 Hz, 2H), 2.60 (s, 3H), 2.05 (t, J= 6.3 Hz, 2H), 1.95 (dt, J = 12.9, 6.3 Hz, 2H), 1.75 – 1.62 (m, 4H), 1.45 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 186.6, 166.2, 141.5, 132.5, 125.0, 121.9, 121.6, 121.2, 108.9, 101.8, 59.3, 35.5, 30.3, 27.8, 26.9, 25.4, 14.6, 11.5. HRMS (ESI): Calcd for C₁₈H₂₂N₂O₂ [M+H]⁺: 299.1754; found: 299.1756.

4. X-ray Crystallographic data of 4l

X-ray molecular structure of 41

Table 1 Crystal data and structure refinement for 4l.

Empirical formula	$C_{15}H_{17}FN_2O_2$
Formula weight	276.30
Temperature/K	293(2)
Crystal system	triclinic
Space group	P-1
a/Å	9.5214(8)
b/Å	9.6784(8)
c/Å	9.8861(8)
$\alpha/^{\circ}$	114.205(8)
β/°	92.568(7)
γ/°	116.743(8)
Volume/Å ³	712.05(12)
Z	2
$\rho_{calc}g/cm^3$	1.289
μ/mm^{-1}	0.790
F(000)	292.0
Crystal size/mm ³	$0.25\times0.2\times0.15$
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
2Θ range for data collection/	° 10.224 to 134.144
Index ranges	-11 \leq h \leq 11, -11 \leq k \leq 11, -8 \leq l \leq 11
Reflections collected	4970
Independent reflections	2536 [$R_{int} = 0.0165, R_{sigma} = 0.0230$]

Data/restraints/parameters	2536/0/186
Goodness-of-fit on F ²	1.042
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0376, wR_2 = 0.1015$
Final R indexes [all data]	$R_1 = 0.0440, wR_2 = 0.1075$
Largest diff. peak/hole / e Å-	³ 0.18/-0.13

Table 2 Fractional Atomic Coordinates (×10 ⁴) and Equivalent Isotropic Displacement
Parameters (Å ² ×10 ³) for 4l. U_{eq} is defined as 1/3 of of the trace of the orthogonalised
U _{IJ} tensor.

Atom	x	У	Z	U(eq)
C_1	10462.3(19)	2007.8(19)	3321.3(17)	46.5(4)
C ₂	12074(2)	2913(2)	4114.3(19)	54.0(4)
C ₃	12593.2(19)	4126(2)	5684.6(19)	53.6(4)
C_4	11523.9(18)	4461(2)	6455.8(17)	47.0(4)
C ₅	9859.8(17)	3530.3(18)	5647.3(16)	40.0(3)
C ₆	9345.1(17)	2284.6(18)	4069.9(16)	40.7(3)
C ₇	8416.2(17)	3523.3(18)	6035.6(16)	41.4(3)
C ₈	7119.1(17)	2313.8(19)	4713.7(17)	43.8(3)
C ₉	5359.2(19)	1795(2)	4404(2)	59.6(4)
C ₁₀	8292.2(18)	4604(2)	7518.8(17)	46.2(4)
C ₁₁	9802(2)	6920(2)	10079.1(18)	57.0(4)
C ₁₂	11550(2)	8187(2)	10999(2)	70.0(5)
C ₁₃	6370.4(18)	-1196(2)	1460.6(18)	50.8(4)
C ₁₄	6878(2)	-1932(2)	2306(2)	63.1(5)
C ₁₅	5368(3)	-2431(3)	-184(2)	79.1(6)
F_1	9955.6(12)	847.1(13)	1787.7(10)	62.9(3)
N_1	7666.6(14)	1540.5(15)	3548.0(13)	44.1(3)
N_2	6679.3(16)	391.6(17)	1993.8(14)	52.3(4)
O ₁	7043.5(15)	4504.8(18)	7816.6(14)	69.5(4)
O ₂	9764.4(13)	5766.9(14)	8559.8(11)	51.8(3)

Table 3 Anisotropic Displacement Parameters (Å ² ×10 ³) for 4l.	The Anisotropic displacement
factor exponent takes the form: $-2\pi^2$ h ² a ^{*2} U ₁₁ +2hka*b*U ₁₂ +].

Atom	U ₁₁	U_{22}	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C_1	53.9(9)	44.3(8)	41.5(8)	15.6(7)	13.0(7)	30.0(7)
C ₂	50.2(9)	58.8(10)	61(1)	26.7(8)	21.2(8)	35.6(8)
C ₃	40.5(8)	58.3(9)	57.6(10)	24.8(8)	7.4(7)	25.5(7)
C_4	43.0(8)	48.0(8)	40.5(8)	15.6(6)	4.1(6)	22.2(7)
C ₅	40.6(8)	38.3(7)	38.1(7)	16.2(6)	7.0(6)	20.5(6)

C ₆	41.5(8)	37.8(7)	39.2(8)	14.9(6)	6.2(6)	21.4(6)
C ₇	40.9(8)	41.1(7)	38.7(8)	16.4(6)	9.3(6)	21.1(6)
C ₈	40.1(8)	43.3(8)	44.7(8)	18.4(6)	9.1(6)	21.9(6)
C ₉	39.8(8)	65.8(10)	62.1(10)	24.1(9)	8.2(7)	25.5(8)
C ₁₀	45.2(8)	47.5(8)	43.5(8)	19.8(7)	13.0(7)	23.8(7)
C ₁₁	68.2(11)	55.5(9)	38.9(8)	13.0(7)	15.4(8)	34.2(9)
C ₁₂	78.8(13)	59.8(11)	46.9(10)	10.6(8)	4.9(9)	32(1)
C ₁₃	41.6(8)	44.9(8)	47.1(9)	11.5(7)	10.4(7)	18.0(7)
C_{14}	64.7(11)	49.4(9)	74.8(12)	29.2(9)	26.2(9)	29.1(8)
C ₁₅	66.6(12)	65.0(12)	53.2(11)	-1.5(9)	-0.5(9)	23(1)
F_1	70.1(6)	62.2(6)	44.8(5)	10.8(4)	17.0(5)	38.6(5)
N_1	41.6(7)	40.0(6)	38.2(6)	9.9(5)	1.6(5)	20.3(5)
N_2	50.6(8)	49.4(7)	39.4(7)	11.1(6)	-2.0(6)	23.2(6)
O_1	51.4(7)	81.3(9)	57.9(7)	18.8(6)	22.0(6)	33.4(6)
O_2	50.9(6)	53.1(6)	37.6(6)	9.9(5)	10.3(5)	27.2(5)

Table 4 Bond Lengths for 4l.

Aton	n Atom	Length/Å	Aton	n Atom	Length/Å
C_1	C_2	1.363(2)	C_8	C ₉	1.492(2)
C ₁	C ₆	1.384(2)	C_8	N_1	1.3629(19)
C_1	F_1	1.3578(17)	C_{10}	O_1	1.2089(18)
C ₂	C ₃	1.395(2)	C_{10}	O_2	1.3387(18)
C ₃	C_4	1.374(2)	C ₁₁	C ₁₂	1.488(3)
C_4	C ₅	1.4044(19)	C ₁₁	O_2	1.4450(18)
C ₅	C ₆	1.4084(19)	C ₁₃	C ₁₄	1.483(2)
C ₅	C ₇	1.4415(19)	C ₁₃	C ₁₅	1.492(2)
C ₆	N_1	1.3873(18)	C ₁₃	N_2	1.281(2)
C ₇	C ₈	1.380(2)	N_1	N_2	1.4176(16)
C_7	C ₁₀	1.458(2)			

Table 5 Bond Angles for 4l.

Aton	n Ator	n Atom	Angle/°	Atom	Aton	n Atom	Angle/°
C_2	C_1	C_6	120.21(14)	C_7	C_8	C ₉	131.54(14)
F_1	C_1	C_2	119.83(14)	N_1	C_8	C_7	108.93(12)
F_1	C_1	C_6	119.95(13)	N_1	C_8	C ₉	119.53(13)
C_1	C_2	C ₃	119.60(14)	O_1	C ₁₀	C_7	126.04(15)
C_4	C ₃	C_2	121.71(14)	O_1	C ₁₀	O_2	122.43(14)

C ₃	C_4	C ₅	119.01(14) O ₂	C_{10}	C_7	111.52(13)
C_4	C_5	C ₆	118.76(13) O ₂	C ₁₁	C ₁₂	107.70(14)
C_4	C_5	C ₇	135.05(13) C ₁₄	C ₁₃	C ₁₅	117.17(15)
C ₆	C_5	C ₇	106.19(12) N ₂	C ₁₃	C ₁₄	127.11(15)
C_1	C_6	C ₅	120.68(13) N ₂	C ₁₃	C ₁₅	115.72(16)
C_1	C_6	N_1	131.68(13) C ₆	N_1	N_2	126.54(12)
N_1	C_6	C ₅	107.63(12) C ₈	N_1	C ₆	109.71(12)
C_5	C_7	C ₁₀	128.07(13) C ₈	N_1	N_2	122.83(12)
C_8	C_7	C ₅	107.48(12) C ₁₃	N_2	N_1	114.29(13)
C ₈	C_7	C ₁₀	124.43(13) C ₁₀	O_2	C ₁₁	116.73(12)

Table 6 Torsion Angles for 4l.

ABC D	Angle/°	A B C D	Angle/°
$C_1 C_2 C_3 C_4$	-1.2(3)	$C_6\ N_1\ N_2\ C_1$	3 76.11(19)
$C_1 C_6 N_1 C_8$	-176.95(15)	$C_7 \ C_5 \ C_6 \ C_1$	178.15(13)
$C_1 C_6 N_1 N_2$	-7.7(2)	$C_7 \ C_5 \ C_6 \ N_1$	-1.20(15)
$C_2 C_1 C_6 C_5$	1.5(2)	$C_7\ C_8\ N_1\ C_6$	-2.52(16)
$C_2 C_1 C_6 N_1$	-179.35(15)	$C_7 \ C_8 \ N_1 \ N_2$	-172.23(12)
$C_2C_3C_4$ C_5	1.4(2)	$C_7 \ C_{10} O_2 \ C_1$	1 179.83(13)
$C_{3}C_{4}C_{5}C_{6}$	-0.1(2)	$C_8 \ C_7 \ C_{10}O_1$	5.3(3)
$C_{3}C_{4}C_{5}C_{7}$	-179.36(15)	$C_8 \ C_7 \ C_{10}O_2$	-174.56(13)
$C_4C_5C_6C_1$	-1.3(2)	$C_8\ N_1\ N_2\ C_1$	³ -115.97(16)
$C_4 C_5 C_6 N_1$	179.34(12)	$C_{9} C_{8} N_{1} C_{6}$	176.79(13)
$C_4 C_5 C_7 C_8$	179.04(15)	C ₉ C ₈ N ₁ N ₂	7.1(2)
$C_4 C_5 C_7 C_1$	0.7(3)	$C_{10}C_7 \ C_8 \ C_9$	0.9(3)
$C_5 C_6 N_1 C_8$	2.31(16)	$C_{10}C_7 \ C_8 \ N_1$	-179.88(13)
$C_5 C_6 N_1 N_2$	171.55(12)	$C_{12}C_{11}O_2 \ C_1$	o -175.49(13)
$C_5 C_7 C_8 C_9$	-177.50(16)	$C_{14}C_{13}N_2 N_1$	2.5(2)
$C_5 C_7 C_8 N_1$	1.70(16)	$C_{15}C_{13}N_2 N_1$	-178.58(14)
$C_5 C_7 C_{10} O_1$	-176.60(15)	$F_1 \ C_1 \ C_2 \ C_3$	178.95(14)
$C_5 C_7 C_{10} O_2$	3.5(2)	F_1 C_1 C_6 C_5	-177.70(12)
$C_6C_1C_2$ C_3	-0.2(2)	$F_1 \ C_1 \ C_6 \ N_1$	1.5(2)
$C_6C_5C_7C_8$	-0.28(15)	$O_1 \ C_{10} O_2 \ C_1$	¹ -0.1(2)
$C_6C_5C_7C_1$	o -178.62(14)		

Atom	x	У	z	U(eq)
H_2	12824	2724	3612	65
H ₃	13691	4723	6223	64
H_4	11896	5292	7498	56
H _{9A}	5019	1763	3457	89
H _{9B}	5221	2641	5239	89
H _{9C}	4705	648	4316	89
H _{11A}	9223	6237	10573	68
H_{11B}	9277	7553	10001	68
$\mathrm{H}_{12\mathrm{A}}$	12099	8896	10528	105
H_{12B}	12069	7546	11032	105
H_{12C}	11610	8937	12032	105
$\mathrm{H}_{\mathrm{14A}}$	7643	-2244	1878	95
$\mathrm{H}_{14\mathrm{B}}$	5932	-2964	2209	95
$\mathrm{H}_{14\mathrm{C}}$	7387	-1063	3378	95
H_{15A}	5029	-1837	-576	119
H_{15B}	4418	-3438	-249	119
H _{15C}	6010	-2813	-787	119

Table 7 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Ų×10³) for 4l.

5. Reference:

- 1. Koduri, N. D.; Scott, H.; Hileman, B.; Cox, J. D.; Coffin, M.; Glicksberg, L.; Hussaini, S. R., *Org. Lett.* **2012**, 14, 440.
- 2. Zhang, P.; Zhang, Y.; Xue, X.; Wang, C.; Wang, Z.; Huang, L. Anal. Biochem. 2011, 418, 1.

6. NMR Spectra of compounds 4

¹H, ¹³C spectra of 4a

¹H, ¹³C, ¹⁹F spectra of 4b

20-2020 + 0 0 8 8 P	P 0 0 4	
	1000	-6 v.e.
x x x x x x x x x x x x x x x x x x x	4400	NW 1-444
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ਚ ਚ ਚ ਚ	







110 100 90 fl (ppm) 



















# ¹H, ¹³C spectra of 4k





4.422 4.404 4.386 4.369  $\begin{array}{c} \begin{array}{c} 2.503 \\ \hline 2.361 \\ \hline 2.361 \\ \hline 2.361 \\ \hline 1.725 \\ \hline 1.445 \\ 1.447 \\ \hline 1.447 \\ 1.430 \end{array}$ 











0

Ó

























### ¹H, ¹³C, ¹⁹F spectra of 4s



100 90 fl (ppm) 























