Supporting Information for

$\mathbf{B}_{2}(\mathbf{O H})_{4}$-mediated one-pot synthesis of tetrahydroquinoxalines from 2amino(nitro)anilines and 1, 2-dicarbonyl compounds in water

Sensheng Liu, Yanmei Zhou, Yuebo Sui, Huan Liu, Haifeng Zhou* Hubei Key Laboratory of Natural Products Research and Development, College of Biological and

Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China.

1. General Information S2
2. General Procedure for the Synthesis of
Tetrahydroquinoxalines S2
3. Analytical Data of the Products S3
4. ${ }^{1} \mathrm{H}$ NMR \& ${ }^{13} \mathrm{C}$ NMR Spectra of the Products. S6
5. The Deuterium Labeling Experiment S32

1. General Information

Unless otherwise noted, all reagents, catalysts and solvents were purchased from commercial suppliers and used without further purification. Column Chromatography was performed with silica gel (200-300 mesh). NMR spectra were recorded on Bruker ADVANCE III (400 MHz) spectrometers. CDCl_{3} was the solvent used for the NMR analysis with tetramethylsilane as the internal standard. Chemical shifts were reported up field to TMS (0.00 ppm) for ${ }^{1} \mathrm{H}$ NMR and relative to $\mathrm{CDCl}_{3}(77.0 \mathrm{ppm})$ for ${ }^{13} \mathrm{C} \mathrm{NMR}$.

2. General Procedure for the Synthesis of Tetrahydroquinoxalines

2.1 Start from 2-Aminoanilines and 1,2-Dicarbonyl Compounds

A flask was charged with 2-aminoaniline (1a; $1 \mathbf{m m o l}, 108 \mathrm{mg}$), 2,3-butanedione (2a; 1 mmol , $86 \mathrm{mg}), \mathrm{B}_{2}(\mathrm{OH})_{4}(8 \mathrm{mmol}, 720 \mathrm{mg}, 8$ eq. $)$ and water $(3 \mathrm{~mL})$ under N_{2}. The reaction was stirred at $80^{\circ} \mathrm{C}$ for 4 h . When the reaction was complete monitored by TLC, the mixture was cooled to room temperature, extracted with ethyl acetate $(3 \times 20 \mathrm{~mL})$. The combined organic phase was washed with water, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure to give a crude product. After determination of the diastereomeric excess by ${ }^{1} \mathrm{H}$ NMR, the crude product was purified by silica gel column chromatography to give the product $\mathbf{3 a}$ as white solid.

2.2 Start from 2-Nitroanilines and 1,2-Dicarbonyl Compounds

A flask was charged with 2-nitroaniline ($\mathbf{4} \mathbf{a} ; 1 \mathrm{mmol}, 138 \mathrm{mg}$), 2,3-butanedione (2a; 1 mmol , $86 \mathrm{mg}), \mathrm{B}_{2}(\mathrm{OH})_{4}(8 \mathrm{mmol}, 720 \mathrm{mg}, 8 \mathrm{eq}$.$) and water (3 \mathrm{~mL})$ under N_{2}. The reaction was stirred at $80^{\circ} \mathrm{C}$ for 6 h . When the reaction was complete monitored by TLC, the mixture was cooled to room temperature, extracted with ethyl acetate $(3 \times 20 \mathrm{~mL})$. The combined organic phase was
washed with water, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure to give a crude product. After determination of the diastereomeric excess by ${ }^{1} \mathrm{H}$ NMR, the crude product was purified by silica gel column chromatography to give the product $\mathbf{5 a}$ as white solid.

2.3 Determination of cis/trans Ratio of the Products

The cis/trans ratio of the product was determined by ${ }^{1} \mathrm{H}$ NMR of the crude reaction mixture. For example, the reaction mixture of 3a was extracted with ethyl acetate, and the combined organic phase was washed with water, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to give a crude product. The diastereomeric excess (cis/trans of $\mathbf{3 a}=70 / 30$) was determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy of the crude product according to the corresponding signals.

3. Analytical Data of the Products

2, 3-Dimethyl-1,2,3,4-tetrahydroquinoxaline (3a)

Purified by flash column chromatography ($\mathrm{PE}: \mathrm{EA}=3: 1$), 96% yield $(155 \mathrm{mg})$, white solid. cis/trans $=70 / 30$ (separable).

2, 3-Dimethyl-1,2,3,4-tetrahydroquinoxaline (5a)

Purified by flash column chromatography ($\mathrm{PE}: \mathrm{EA}=3: 1$), 82% yield (132 mg), white solid. cis/trans $=83 / 17$ (separable).

2, 3-Dimethyl-1,2,3,4-tetrahydroquinoxaline (6)

Purified by flash column chromatography (PE: EA $=3: 1$), 23% yield (37 mg), white solid.
cis $/$ trans $=68 / 32($ separable $)$.
cis isomer (CAS: 7739-04-0) ${ }^{1,2}$
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.62\left(\mathrm{dd}, J_{1}=3.6 \mathrm{~Hz}, J_{2}=3.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.53\left(\mathrm{dd}, J_{1}=3.6 \mathrm{~Hz}, J_{2}\right.$ $=3.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.54-3.52(\mathrm{~m}, 2 \mathrm{H}), 1.17-1.16(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $=132.66,118.56,114.42,49.04,17.28$.
trans isomer (CAS: 7739-05-1) ${ }^{1,2}$
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.62\left(\mathrm{dd}, J_{1}=3.6 \mathrm{~Hz}, J_{2}=3.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.54\left(\mathrm{dd}, J_{1}=3.2 \mathrm{~Hz}, J_{2}\right.$ $=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.06(\mathrm{q}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.21(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$

2,3,6-Trimethyl-1,2,3,4-tetrahydroquinoxaline (3b)

Purified by flash column chromatography ($\mathrm{PE}: \mathrm{EA}=3: 1$), 95% yield $(167 \mathrm{mg})$, white solid.
cis/trans $=65 / 35$ (separable).

2,3,6-Trimethyl-1,2,3,4-tetrahydroquinoxaline (5b)

Purified by flash column chromatography (PE: EA $=3: 1$), 85% yield $(149 \mathrm{mg})$, white solid.
cis $/$ trans $=67 / 33($ separable $)$.
cis isomer (CAS: 1350827-80-3) ${ }^{2}$
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.45(\mathrm{t}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.38(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.52-3.49(\mathrm{~m}$, 4H), $2.22(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=132.70,130.12$, $128.17,118.96,115.15,114.69,49.18,49.15,20.75,17.24,17.21$.
trans isomer (CAS: 1350827-88-1) ${ }^{2}$
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.45(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.37(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{~s}, 2 \mathrm{H})$, $2.21(\mathrm{~s}, 3 \mathrm{H}), 1.19\left(\mathrm{dd}, J_{1}=2.0 \mathrm{~Hz}, J_{2}=1.6 \mathrm{~Hz}, 6 \mathrm{H}\right) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=133.55$, $130.94,128.20,118.92,114.66,114.21,52.21,20.71,19.08$.

Ethyl 2,3-dimethyl-1,2,3,4-tetrahydroquinoxaline-6-carboxylate (3c)

Purified by flash column chromatography (PE: EA $=5: 1$), 93% yield $(217 \mathrm{mg})$, white solid.
cis/trans $=69 / 31$ (inseparable).
Mixture of cis and trans isomer of 3c (inseparable)
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.36\left(\mathrm{dd}, J_{1}=1.6 \mathrm{~Hz}, J_{2}=2.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.23\left(\mathrm{dd}, J_{1}=2.0 \mathrm{~Hz}, J_{2}\right.$ $=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.46\left(\mathrm{dd}, J_{1}=3.6 \mathrm{~Hz}, J_{2}=4.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.33\left(\mathrm{dd}, J_{1}=7.6 \mathrm{~Hz}, J_{2}=7.6 \mathrm{~Hz}, 2 \mathrm{H}\right)$, 3.63-3.48 (m, 2H, cis), 3.16-2.99 (m, 1H, trans $), 1.38\left(\mathrm{dd}, J_{1}=6.4 \mathrm{~Hz}, J_{2}=8.0 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.22(\mathrm{~d}, J$ $=6.0 \mathrm{~Hz}, 2 \mathrm{H}$, trans $), 1.17(\mathrm{t}, J=6.4 \mathrm{~Hz}, 4 \mathrm{H}$, cis $) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=167.09$, 138.05 (trans), 137.44 (cis), 132.21 (trans), 131.43 (cis), 121.61 (trans), 121.53 (cis), 119.49 (trans), 119.45 (cis), 115.19 (trans), 114.76 (cis), 112.42 (trans), 112.02 (cis), 60.14, 52.24 (trans), 51.40 (trans), 49.22 (cis), 48.49 (cis), 19.06 (trans), 18.89 (trans), 17.35 (cis), 17.09 (cis), 14.49.

6-Fluoro-2,3-dimethyl-1,2,3,4-tetrahydroquinoxaline (3d) ${ }^{\mathbf{2}}$
Purified by flash column chromatography ($\mathrm{PE}: \mathrm{EA}=5: 1$), 90% yield $(162 \mathrm{mg})$, white solid.
cis $/$ trans $=56 / 44$ (inseparable).
6-Fluoro-2,3-dimethyl-1,2,3,4-tetrahydroquinoxaline (5c) ${ }^{2}$
Purified by flash column chromatography ($\mathrm{PE}: \mathrm{EA}=5: 1$), 76% yield $(137 \mathrm{mg})$, white solid.
cis/trans $=67 / 33$ (inseparable).
Mixture of cis and trans isomer of 3d (inseparable) ${ }^{2}$
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.40-6.37(\mathrm{~m}, 1 \mathrm{H}), 6.27-6.19(\mathrm{~m}, 2 \mathrm{H}), 3.48-3.41(\mathrm{~m}, 2 \mathrm{H}$, cis $)$, $3.04-2.92(\mathrm{~m}, 1 \mathrm{H}$, trans $), 1.16\left(\mathrm{dd}, J_{1}=1.6 \mathrm{~Hz}, J_{2}=1.6 \mathrm{~Hz}, 3 \mathrm{H}\right.$, trans $), 1.11\left(\mathrm{dd}, J_{1}=1.6 \mathrm{~Hz}, J_{2}=\right.$ $1.2 \mathrm{~Hz}, 6 \mathrm{H}$, cis); ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=157.41(\mathrm{~d}, J=300 \mathrm{~Hz}, 1 \mathrm{C}), 134.59(\mathrm{~d}, J=$ $11.0 \mathrm{~Hz}, 1 \mathrm{C}$, trans $), 133.82$ (d, $J=11.0 \mathrm{~Hz}, 1 \mathrm{C}$, cis), 129.15 (trans), 128.26 (cis), 114.80 (d, $J=$ $9.2 \mathrm{~Hz}, 1 \mathrm{C}$, cis $), 114.30(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{C}$, trans $), 103.86(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{C}$, cis $), 103.64(\mathrm{~d}, J=$ $5.4 \mathrm{~Hz}, 1 \mathrm{C}$, trans $), 101.00(\mathrm{~d}, J=25.9 \mathrm{~Hz}, 1 \mathrm{C}$, cis $), 100.55(\mathrm{~d}, J=25.9 \mathrm{~Hz}, 1 \mathrm{C}$, trans $), 52.14$ (trans), 51.87 (trans), 49.07(cis), 48.91(cis), 18.99 (trans), 18.88 (trans), 17.11(cis).

6-Chloro-2,3-dimethyl-1,2,3,4-tetrahydroquinoxaline (3e) ${ }^{\mathbf{2}}$
Purified by flash column chromatography ($\mathrm{PE}: \mathrm{EA}=5: 1$), 92% yield $(180 \mathrm{mg})$, white solid. cis/trans $=66 / 34$ (separable).

6-Chloro-2,3-dimethyl-1,2,3,4-tetrahydroquinoxaline (5d) ${ }^{\mathbf{2}}$

Purified by flash column chromatography $(P E: E A=5: 1), 81 \%$ yield $(159 \mathrm{mg})$, white solid.
cis/trans $=63 / 37$ (separable) .
cis isomer: ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.67\left(\mathrm{dd}, J_{1}=2.4 \mathrm{~Hz}, J_{2}=2.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.62(\mathrm{~d}, J=$ $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.37(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}) 3.63(\mathrm{~s}, 2 \mathrm{H}), 3.53-3.48(\mathrm{~m}, 2 \mathrm{H}), 1.14(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=134.12,131.62,120.69,116.39,115.28,109.99,48.85,48.80,17.23$, 17.16.
trans isomer: ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.54\left(\mathrm{dd}, J_{1}=2.4 \mathrm{~Hz}, J_{2}=2.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.49(\mathrm{~d}, J$ $=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.05-2.99(\mathrm{~m}, 2 \mathrm{H}), 1.19\left(\mathrm{dd}, J_{1}=1.2 \mathrm{~Hz}, J_{2}=1.2 \mathrm{~Hz}, 6 \mathrm{H}\right)$,
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=134.51,131.85,123.03,117.79,114.46,113.26,51.90,18.95$, 18.92.

6-Bromo-2,3-dimethyl-1,2,3,4-tetrahydroquinoxaline (3f) ${ }^{\mathbf{2}}$
Purified by flash column chromatography (PE: EA $=5: 1$), 89% yield $(213 \mathrm{mg})$, white solid.
cis $/$ trans $=62 / 38($ separable $)$.
6-Bromo-2,3-dimethyl-1,2,3,4-tetrahydroquinoxaline (5e) ${ }^{\mathbf{2}}$
Purified by flash column chromatography ($\mathrm{PE}: \mathrm{EA}=5: 1$), 65% yield $(156 \mathrm{mg})$, white solid.
cis/trans $=64 / 36($ separable $)$.
cis isomer (CAS: 2095787-12-3) ${ }^{1,2}$
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.54\left(\mathrm{dd}, J_{1}=3.2 \mathrm{~Hz}, J_{2}=2.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.48(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.42(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 2 \mathrm{H}), 3.54-3.49(\mathrm{~m}, 2 \mathrm{H}), 1.15(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=133.76,131.13,122.93,117.77,114.88,113.65,48.89,48.84,17.21,17.16$.
trans isomer (CAS: 2095787-26-9) ${ }^{1,2}$
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.68\left(\mathrm{dd}, J_{1}=2.0 \mathrm{~Hz}, J_{2}=2.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.63(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.39(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.07-3.00(\mathrm{~m}, 2 \mathrm{H}), 1.21(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=134.85,132.35,120.72,116.00,114.84,110.03,51.84,51.79,29.70,18.94$.

6,7-Difluoro-2,3-dimethyl-1,2,3,4-tetrahydroquinoxaline (3g)
Purified by flash column chromatography ($\mathrm{PE}: \mathrm{EA}=5: 1$), 78% yield $(154 \mathrm{mg})$, white solid. cis/trans $=79 / 21$ (separable).
cis isomer: ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.46\left(\mathrm{dd}, J_{1}=5.2 \mathrm{~Hz}, J_{2}=5.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.30-6.24$ $(\mathrm{m}, 1 \mathrm{H}), 3.54-3.47(\mathrm{~m}, 2 \mathrm{H}), 1.16(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=157.28(\mathrm{~d}$, $\mathrm{J}=233 \mathrm{~Hz}, 1 \mathrm{C}), 133.90(\mathrm{~d}, J=10 \mathrm{~Hz}, 1 \mathrm{C}), 127.76,115.11(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{C}), 103.86(\mathrm{~d}, J=22.3$ $\mathrm{Hz}, 1 \mathrm{C}), 101.01(\mathrm{~d}, J=25.9 \mathrm{~Hz}, 1 \mathrm{C}), 49.03,48.87,17.07,16.86$.
trans isomer: ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.33(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.00(\mathrm{~s}, 2 \mathrm{H}), 1.19(\mathrm{~d}, J=$ $6.0 \mathrm{~Hz}, 6 \mathrm{H}),{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=144.22(\mathrm{~d}, J=15 \mathrm{~Hz}, 1 \mathrm{C}), 141.90(\mathrm{~d}, J=16 \mathrm{~Hz}$, 1C), $129.18,102.39(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{C}), 102.29(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{C}), 51.87,18.87$.

2,3-Diethyl-1,2,3,4-tetrahydroquinoxaline (3h)

Purified by flash column chromatography ($\mathrm{PE}: \mathrm{EA}=5: 1$), 76% yield $(144 \mathrm{mg})$, yellow solid. cis/trans $=0 / 100$ (cis isomer was not detected).

2,3-Diethyl-1,2,3,4-tetrahydroquinoxaline (5f)

Purified by flash column chromatography ($\mathrm{PE}: \mathrm{EA}=5: 1$), 74% yield $(141 \mathrm{mg})$, yellow solid. cis/trans $=0 / 100($ cis isomer was not detected $)$.
trans-2,3-Diethyl-1,2,3,4-tetrahydroquinoxaline (CAS: 2095787-23-6) ${ }^{3}$
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.62(\mathrm{dd}, J=3.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.54(\mathrm{dd}, J=3.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{~s}$, $2 \mathrm{H}), 3.30\left(\mathrm{dd}, J_{1}=6.4 \mathrm{~Hz}, J_{2}=2.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 1.50(\mathrm{t}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 1.02(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=132.90,118.45,114.31,54.61,23.01,10.50$.

2-Phenyl-1,2,3,4-tetrahydroquinoxaline (3i) ${ }^{1,2}$

Purified by flash column chromatography $(\mathrm{PE}: \mathrm{EA}=10: 1), 75 \%$ yield $(157 \mathrm{mg})$, yellow solid. CAS: 5021-47-6. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.45-7.34(\mathrm{~m}, 5 \mathrm{H}), 6.70-6.67(\mathrm{~m}, 2 \mathrm{H}), 6.65-$ $6.61(\mathrm{~m}, 2 \mathrm{H}), 4.53\left(\mathrm{dd}, J_{1}=3.2 \mathrm{~Hz}, J_{2}=2.8 \mathrm{H}, 1 \mathrm{H}\right), 3.39(\mathrm{~s}, 1 \mathrm{H}), 3.50(\mathrm{dd}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.37$ $\left(\mathrm{dd}, J_{1}=8.0 \mathrm{~Hz}, J_{2}=8.4 \mathrm{H}, 1 \mathrm{H}\right) ;{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=141.84,134.18,132.70,128.67$, $127.94,127.92,127.03,127.00,119.03,118.81,114.81,114.48,54.76,49.16$.

2-Methyl-1,2,3,4-tetrahydroquinoxaline (3j) 1,2
Purified by flash column chromatography (PE : EA $=5: 1$), 81% yield $(119 \mathrm{mg})$, yellow solid. CAS: 6640-55-7. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.65\left(\mathrm{dd}, J_{1}=3.2 \mathrm{~Hz}, J_{2}=3.6 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.56$ $\left(\mathrm{dd}, J_{1}=2.8 \mathrm{~Hz}, J_{2}=2.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.58-3.34(\mathrm{~m}, 4 \mathrm{H}), 3.08\left(\mathrm{dd}, J_{1}=2.8 \mathrm{~Hz}, J_{2}=2.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.23$ $(\mathrm{d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=133.62,133.25,118.71,114.53,114.48$, 48.28, 45.74, 19.96.

References

[1] Qin, J.; Chen, F.; Ding, Z.; He, Y. M.; Xu, L.; Fan, Q. H., Org. Lett., 2011, 13, 6568.
[2] Murata, S.; Sugimoto, T.; Matsuura, S. Heterocycles, 1987, 26, 763
[3] Shi, F.; Tan, W.; Zhang, H. H.; Li, M.; Q. Ye, G.; Ma, H.; Tu, S. J.; Li, G., Adv. Synth. Catal., 2013, 355, 3715.
[4] George, H. F.; Harry, P. S. J. Org. Chem., 1974, 39, 635.
[5] Li, S. L; Meng, W.; Du, H.F., Org. Lett., 2017, 19, 2604.

4. ${ }^{1} \mathrm{H}$ NMR \& ${ }^{13} \mathrm{C}$ NMR Spectra of the Products

cis/trans of $\mathbf{3 a}=70 / 30$ determined by ${ }^{1} \mathrm{H}$ NMR of the crude product

cis/trans of $\mathbf{5 a}=83 / 17$ determined by ${ }^{1} \mathrm{H}$ NMR of the crude product

cis/trans $=83 / 17$

cis/trans of $\mathbf{6}=68 / 32$ determined by ${ }^{1} \mathrm{H}$ NMR of the crude product

$\stackrel{刃}{\stackrel{\circ}{\sim}}$

-132.663
-118.562
-114.422
ボ
$\stackrel{\overline{0}}{\stackrel{\rightharpoonup}{1}}$

으N

cis/trans of $\mathbf{3} \mathbf{b}=65 / 35$ determined by ${ }^{1} \mathrm{H}$ NMR of the crude product.

$\stackrel{\infty}{\stackrel{\infty}{\top}}$		$\stackrel{\gtrless}{\stackrel{\circ}{1}}$

cis/trans of $\mathbf{5 b}=67 / 33$ determined by ${ }^{1} \mathrm{H}$ NMR of the crude product.

충

$\underset{\substack{n \\ \sim}}{\substack{n}}$
N
Nion
N

cis/trans of $\mathbf{3 c}=69 / 31$ determined by ${ }^{1} \mathrm{H}$ NMR of the crude product.

cis/trans of $\mathbf{3 d}=56 / 44$ determined by ${ }^{1} \mathrm{H}$ NMR of the crude product.

cis/trans of $\mathbf{5 c}=67 / 33$ determined by ${ }^{1} \mathrm{H}$ NMR of the crude product.

cis/trans of $\mathbf{3 e}=66 / 34$ determined by ${ }^{1} \mathrm{H}$ NMR of the crude product.

cis/trans of $\mathbf{5 d}=63 / 37$ determined by ${ }^{1} \mathrm{H}$ NMR of the crude product.

$\begin{gathered} \bar{n} \\ \text { लें } \\ \hline \end{gathered}$

-51.900
$\stackrel{\stackrel{i}{c}}{\stackrel{N}{\infty}}$

cis/trans of $\mathbf{3 f}=62 / 38$ determined by ${ }^{1} \mathrm{H}$ NMR of the crude product.

cis/trans of $\mathbf{5 e}=64 / 36$ determined by ${ }^{1} \mathrm{H}$ NMR of the crude product.

$\stackrel{8}{\square}$

$\stackrel{\bar{\sim}}{\bar{\sim}}$

-134.855
-132.356
120.721
-116.001
14.841
-110.037

$\stackrel{\sim}{\circ}^{\circ}$	$\widetilde{\sim}$
的玄	~

$\begin{array}{ll}140 & 135 & 130 & 125 & 120 & 115 & 110 & 105 & 100 & 95 & 90 & 85 & 80 & 75 & 70 & 65 & 60 & 55 & 50 & 45 & 40 & 35 & 30 & 25 & 20 & 15 & 10\end{array}$

cis/trans of $\mathbf{3 g}=79 / 21$ determined by ${ }^{1} \mathrm{H}$ NMR of the crude product.

$\underset{\substack{4 \\ 1 \\ \hline}}{ }$

cis/trans of $\mathbf{3 h}=0 / 100$ determined by ${ }^{1} \mathrm{H}$ NMR of the crude product (cis isomer was not detected).

©
,

cis/trans of $\mathbf{5 f}=0 / 100$ determined by ${ }^{1} \mathrm{H}$ NMR of the crude product (cis isomer was not detected).

-132.902
-118.451
-114.313

5. The Deuterium Labeling Experiment

A flask was charged with 2-nitroaniline ($\mathbf{4 a}, 1 \mathrm{mmol}, 138 \mathrm{mg}$), 2,3-butanedione ($\mathbf{2 a}, 1 \mathrm{mmol}, 86$ $\mathrm{mg}), \mathrm{B}_{2}(\mathrm{OH})_{4}$ or $\mathrm{B}_{2}(\mathrm{cat})_{2}(8 \mathrm{mmol})$ and $\mathrm{D}_{2} \mathrm{O}(3 \mathrm{~mL})$ under N_{2}. The reaction was stirred at $80^{\circ} \mathrm{C}$ for 4 h . When the reaction was complete monitored by TLC, the mixture was cooled to room temperature, extracted with ethyl acetate $(3 \times 20 \mathrm{~mL})$. The combined organic phase was washed with water, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography to give the product 7. The products were determined by ${ }^{1} \mathrm{H}$ NMR and GC-MS

$\mathrm{B}_{2}(\mathrm{OH})_{4}$:

$\mathbf{B}_{2}(\mathrm{OH})_{4}: 69 \% \mathrm{D}$
$\mathbf{B}_{\mathbf{2}}$ (cat) $)_{2}: 100 \% \mathrm{D}$
GC-MS for 7: $166.2(\mathrm{~m} / \mathrm{z})$

$\mathbf{B}_{\mathbf{2}}$ (cat) $\mathbf{2}_{\mathbf{2}}$:

GC-MS:

