Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2017

Supporting Information for

B₂(OH)₄-mediated one-pot synthesis of tetrahydroquinoxalines from 2amino(nitro)anilines and 1, 2-dicarbonyl compounds in water

Sensheng Liu, Yanmei Zhou, Yuebo Sui, Huan Liu, Haifeng Zhou*

Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China. Corresponding author: zhouhf@ctgu.edu.cn, Fax: +86(717)639-5580

1. General Information						S2	
2.	General	Procedure	for	the	Synthesis	of	
Tetrahyo	droquinoxalines.		S2				
3. Analytical Data of the Products						S3	
4. ¹ H NMR & ¹³ C NMR Spectra of the Products						S6	
5. The Deuterium Labeling Experiment						S32	

1. General Information

Unless otherwise noted, all reagents, catalysts and solvents were purchased from commercial suppliers and used without further purification. Column Chromatography was performed with silica gel (200-300 mesh). NMR spectra were recorded on Bruker ADVANCE III (400 MHz) spectrometers. CDCl₃ was the solvent used for the NMR analysis with tetramethylsilane as the internal standard. Chemical shifts were reported up field to TMS (0.00 ppm) for ¹H NMR and relative to CDCl₃ (77.0 ppm) for ¹³C NMR.

2. General Procedure for the Synthesis of Tetrahydroquinoxalines

2.1 Start from 2-Aminoanilines and 1,2-Dicarbonyl Compounds

A flask was charged with 2-aminoaniline (1a; 1 mmol, 108 mg), 2,3-butanedione (2a; 1 mmol, 86 mg), $B_2(OH)_4$ (8 mmol, 720 mg, 8 eq.) and water (3 mL) under N₂. The reaction was stirred at 80 °C for 4 h. When the reaction was complete monitored by TLC, the mixture was cooled to room temperature, extracted with ethyl acetate (3×20 mL). The combined organic phase was washed with water, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure to give a crude product. After determination of the diastereomeric excess by ¹H NMR, the crude product was purified by silica gel column chromatography to give the product **3a** as white solid.

2.2 Start from 2-Nitroanilines and 1,2-Dicarbonyl Compounds

A flask was charged with 2-nitroaniline (**4a**; 1 mmol, 138 mg), 2,3-butanedione (**2a**; 1 mmol, 86 mg), $B_2(OH)_4$ (8 mmol, 720 mg, 8 eq.) and water (3 mL) under N₂. The reaction was stirred at 80 °C for 6 h. When the reaction was complete monitored by TLC, the mixture was cooled to room temperature, extracted with ethyl acetate (3×20 mL). The combined organic phase was

washed with water, dried over anhydrous Na_2SO_4 , filtered, and concentrated under reduced pressure to give a crude product. After determination of the diastereomeric excess by ¹H NMR, the crude product was purified by silica gel column chromatography to give the product **5a** as white solid.

2.3 Determination of cis/trans Ratio of the Products

The *cis/trans* ratio of the product was determined by ¹H NMR of the crude reaction mixture. For example, the reaction mixture of **3a** was extracted with ethyl acetate, and the combined organic phase was washed with water, dried over anhydrous Na₂SO₄, filtered, and concentrated to give a crude product. The diastereomeric excess (*cis/trans* of **3a** = 70/30) was determined by ¹H NMR spectroscopy of the crude product according to the corresponding signals.

3. Analytical Data of the Products

2, 3-Dimethyl-1,2,3,4-tetrahydroquinoxaline (3a)

Purified by flash column chromatography (PE: EA = 3:1), 96% yield (155 mg), white solid. cis/trans = 70/30 (separable).

2, 3-Dimethyl-1,2,3,4-tetrahydroquinoxaline (5a)

Purified by flash column chromatography (PE: EA = 3:1), 82% yield (132mg), white solid. cis/trans = 83/17 (separable).

2, 3-Dimethyl-1,2,3,4-tetrahydroquinoxaline (6)

Purified by flash column chromatography (PE: EA = 3:1), 23% yield (37 mg), white solid.

cis/trans = 68/32 (separable).

cis isomer (CAS: 7739-04-0) ^{1, 2}

¹**H NMR** (400 MHz, CDCl₃): $\delta = 6.62$ (dd, $J_1 = 3.6$ Hz, $J_2 = 3.2$ Hz, 2H), 6.53 (dd, $J_1 = 3.6$ Hz, $J_2 = 3.2$ Hz, 2H), 3.54-3.52 (m, 2H), 1.17-1.16 (d, J = 6.4 Hz, 6H); ¹³**C NMR** (100 MHz, CDCl₃): $\delta = 132.66$, 118.56, 114.42, 49.04, 17.28.

trans isomer (CAS: 7739-05-1)^{1,2}

¹**H NMR** (400 MHz, CDCl₃): $\delta = 6.62$ (dd, $J_1 = 3.6$ Hz, $J_2 = 3.2$ Hz, 2H), 6.54 (dd, $J_1 = 3.2$ Hz, $J_2 = 3.6$ Hz, 2H), 3.06 (q, J = 2.0 Hz, 2H), 1.21 (d, J = 6.0 Hz, 6H); ¹³**C NMR** (100 MHz, CDCl₃): δ

= 133.50, 118.59, 113.93, 52.05, 19.04.

2,3,6-Trimethyl-1,2,3,4-tetrahydroquinoxaline (3b)

Purified by flash column chromatography (PE: EA = 3:1), 95% yield (167 mg), white solid. *cis/trans* = 65/35 (separable).

2,3,6-Trimethyl-1,2,3,4-tetrahydroquinoxaline (5b)

Purified by flash column chromatography (PE: EA = 3:1), 85% yield (149 mg), white solid.

cis/trans = 67/33 (separable).

cis isomer (CAS: 1350827-80-3)²

¹H NMR (400 MHz, CDCl₃): δ = 6.45 (t, J = 3.6 Hz, 2H), 6.38 (d, J = 1.6 Hz, 1H), 3.52-3.49 (m, 4H), 2.22 (s, 3H), 1.16 (d, J = 6.4 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): δ = 132.70, 130.12, 128.17, 118.96, 115.15, 114.69, 49.18, 49.15, 20.75, 17.24, 17.21.

trans isomer (CAS: 1350827-88-1)²

¹**H NMR** (400 MHz, CDCl₃): δ =6.45 (t, *J* = 8.0 Hz, 2H), 6.37 (d, *J* = 2.0 Hz, 1H), 3.09 (s, 2H), 2.21 (s, 3H), 1.19 (dd, *J*₁ = 2.0 Hz, *J*₂ = 1.6 Hz, 6H); ¹³**C NMR** (100 MHz, CDCl₃): δ = 133.55, 130.94, 128.20, 118.92, 114.66, 114.21, 52.21, 20.71, 19.08.

Ethyl 2,3-dimethyl-1,2,3,4-tetrahydroquinoxaline-6-carboxylate (3c)

Purified by flash column chromatography (PE: EA = 5:1), 93% yield (217 mg), white solid. cis/trans = 69/31 (inseparable).

Mixture of cis and trans isomer of 3c (inseparable)

¹**H NMR** (400 MHz, CDCl₃): $\delta = 7.36$ (dd, $J_1 = 1.6$ Hz, $J_2 = 2.0$ Hz, 1H), 7.23 (dd, $J_1 = 2.0$ Hz, $J_2 = 2.0$ Hz, 1H), 6.46 (dd, $J_1 = 3.6$ Hz, $J_2 = 4.0$ Hz, 1H), 4.33 (dd, $J_1 = 7.6$ Hz, $J_2 = 7.6$ Hz, 2H), 3.63-3.48 (m, 2H, *cis*), 3.16-2.99 (m, 1H, *trans*), 1.38 (dd, $J_1 = 6.4$ Hz, $J_2 = 8.0$ Hz, 3H), 1.22 (d, J = 6.0 Hz, 2H, *trans*), 1.17 (t, J = 6.4 Hz, 4H, *cis*); ¹³**C NMR** (100 MHz, CDCl₃): $\delta = 167.09$, 138.05 (*trans*), 137.44 (*cis*), 132.21 (*trans*), 131.43 (*cis*), 121.61 (*trans*), 121.53 (*cis*), 119.49 (*trans*), 119.45 (*cis*), 115.19 (*trans*), 114.76 (*cis*), 112.42 (*trans*), 112.02 (*cis*), 60.14, 52.24 (*trans*), 51.40 (*trans*), 49.22 (*cis*), 48.49 (*cis*), 19.06 (*trans*), 18.89 (*trans*), 17.35 (*cis*), 17.09 (*cis*), 14.49.

6-Fluoro-2,3-dimethyl-1,2,3,4-tetrahydroquinoxaline (3d)²

Purified by flash column chromatography (PE: EA = 5:1), 90% yield (162 mg), white solid. cis/trans = 56/44 (inseparable).

6-Fluoro-2,3-dimethyl-1,2,3,4-tetrahydroquinoxaline (5c)²

Purified by flash column chromatography (PE: EA = 5:1), 76% yield (137 mg), white solid. cis/trans = 67/33 (inseparable).

Mixture of *cis* and *trans* isomer of 3d (inseparable)²

¹**H NMR** (400 MHz, CDCl₃): $\delta = 6.40-6.37$ (m, 1H), 6.27-6.19 (m, 2H), 3.48-3.41 (m, 2H, *cis*), 3.04-2.92 (m, 1H, *trans*), 1.16 (dd, $J_1 = 1.6$ Hz, $J_2 = 1.6$ Hz, 3H, *trans*), 1.11 (dd, $J_1 = 1.6$ Hz, $J_2 = 1.2$ Hz, 6H, *cis*); ¹³**C NMR** (100 MHz, CDCl₃): $\delta = 157.41$ (d, J = 300 Hz, 1C), 134.59 (d, J = 11.0 Hz, 1C, *trans*), 133.82 (d, J = 11.0 Hz, 1C, *cis*), 129.15 (*trans*), 128.26 (*cis*), 114.80 (d, J = 9.2 Hz, 1C, *cis*), 114.30 (d, J = 9.2 Hz, 1C, *trans*), 103.86 (d, J = 5.4 Hz, 1C, *cis*), 103.64 (d, J = 5.4 Hz, 1C, *trans*), 101.00 (d, J = 25.9 Hz, 1C, *cis*), 100.55 (d, J = 25.9 Hz, 1C, *trans*), 52.14 (*trans*), 51.87 (*trans*), 49.07(*cis*), 48.91(*cis*), 18.99 (*trans*), 18.88 (*trans*), 17.11(*cis*).

6-Chloro-2,3-dimethyl-1,2,3,4-tetrahydroquinoxaline (3e)²

Purified by flash column chromatography (PE: EA = 5:1), 92% yield (180 mg), white solid. cis/trans = 66/34 (separable).

6-Chloro-2,3-dimethyl-1,2,3,4-tetrahydroquinoxaline (5d)²

Purified by flash column chromatography (PE: EA = 5:1), 81% yield (159 mg), white solid. cis/trans = 63/37 (separable).

cis isomer: ¹H NMR (400 MHz, CDCl₃): δ = 6.67 (dd, J₁ = 2.4 Hz, J₂ = 2.0 Hz, 1H), 6.62 (d, J = 2.4 Hz, 1H), 6.37 (d, J = 8.4 Hz, 1H) 3.63 (s, 2H), 3.53-3.48 (m, 2H), 1.14 (d, J = 6.4 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): δ = 134.12,131.62, 120.69, 116.39, 115.28, 109.99, 48.85, 48.80, 17.23, 17.16.

trans isomer: ¹H NMR (400 MHz, CDCl₃): $\delta = 6.54$ (dd, $J_1 = 2.4$ Hz, $J_2 = 2.0$ Hz, 1H), 6.49 (d, J = 2.0 Hz, 1H), 6.43 (d, J = 8.4 Hz, 1H), 3.05-2.99 (m, 2H), 1.19 (dd, $J_1 = 1.2$ Hz, $J_2 = 1.2$ Hz, 6H),

¹³C NMR (100 MHz, CDCl₃): *δ* = 134.51, 131.85, 123.03, 117.79, 114.46, 113.26, 51.90, 18.95,

18.92.

6-Bromo-2,3-dimethyl-1,2,3,4-tetrahydroquinoxaline (3f)²

Purified by flash column chromatography (PE: EA = 5:1), 89% yield (213 mg), white solid.

cis/trans = 62/38(separable).

6-Bromo-2,3-dimethyl-1,2,3,4-tetrahydroquinoxaline (5e)²

Purified by flash column chromatography (PE: EA = 5:1), 65% yield (156 mg), white solid.

cis/trans = 64/36(separable).

cis isomer (CAS: 2095787-12-3) ^{1, 2}

¹**H NMR** (400 MHz, CDCl₃): $\delta = 6.54$ (dd, $J_1 = 3.2$ Hz, $J_2 = 2.8$ Hz, 1H), 6.48 (d, J = 2.4 Hz, 1H), 6.42 (d, J = 8.4 Hz, 1H), 3.71 (s, 2H), 3.54-3.49 (m, 2H), 1.15 (d, J = 3.2 Hz, 6H); ¹³**C NMR** (100 MHz, CDCl₃): $\delta = 133.76$, 131.13, 122.93, 117.77, 114.88, 113.65, 48.89, 48.84, 17.21, 17.16.

trans isomer (CAS: 2095787-26-9) 1, 2

¹**H NMR** (400 MHz, CDCl₃): $\delta = 6.68$ (dd, $J_1 = 2.0$ Hz, $J_2 = 2.0$ Hz, 1H), 6.63 (d, J = 3.6 Hz, 1H), 6.39 (d, J = 8.4 Hz, 1H), 3.07-3.00 (m, 2H), 1.21 (d, J = 4.4 Hz, 6H); ¹³**C NMR** (100 MHz, CDCl₃): $\delta = 134.85$, 132.35, 120.72, 116.00, 114.84, 110.03, 51.84, 51.79, 29.70, 18.94.

6,7-Difluoro-2,3-dimethyl-1,2,3,4-tetrahydroquinoxaline (3g)

Purified by flash column chromatography (PE: EA = 5:1), 78% yield (154 mg), white solid. cis/trans = 79/21 (separable).

cis isomer: ¹H NMR (400 MHz, CDCl₃): $\delta = 6.46$ (dd, $J_1 = 5.2$ Hz, $J_2 = 5.2$ Hz, 1H), 6.30-6.24 (m, 1H), 3.54-3.47 (m, 2H), 1.16 (d, J = 6.4 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 157.28$ (d, J = 233 Hz, 1C), 133.90 (d, J = 10 Hz, 1C), 127.76, 115.11 (d, J = 9.2 Hz, 1C), 103.86 (d, J = 22.3 Hz, 1C), 101.01 (d, J = 25.9 Hz, 1C), 49.03, 48.87, 17.07, 16.86.

trans isomer: ¹H NMR (400 MHz, CDCl₃): δ = 6.33 (t, J = 8.4 Hz, 2H), 3.00 (s, 2H), 1.19 (d, J = 6.0 Hz, 6H), ¹³C NMR (100 MHz, CDCl₃): δ = 144.22 (d, J = 15 Hz, 1C), 141.90 (d, J = 16 Hz, 1C), 129.18, 102.39 (d, J = 8.4 Hz, 1C), 102.29 (d, J = 8.4 Hz, 1C), 51.87, 18.87.

2,3-Diethyl-1,2,3,4-tetrahydroquinoxaline (3h)

Purified by flash column chromatography (PE: EA = 5:1), 76% yield (144 mg), yellow solid. cis/trans = 0/100 (*cis* isomer was not detected).

2,3-Diethyl-1,2,3,4-tetrahydroquinoxaline (5f)

Purified by flash column chromatography (PE: EA = 5:1), 74% yield (141 mg), yellow solid. cis/trans = 0/100 (*cis* isomer was not detected).

trans-2,3-Diethyl-1,2,3,4-tetrahydroquinoxaline (CAS: 2095787-23-6)³

¹**H** NMR (400 MHz, CDCl₃): $\delta = 6.62$ (dd, J = 3.2 Hz, 2H), 6.54 (dd, J = 3.2 Hz, 2H), 3.78 (s, 2H), 3.30 (dd, $J_1 = 6.4$ Hz, $J_2 = 2.4$ Hz, 2H), 1.50 (t, J = 7.2 Hz, 4H), 1.02 (t, J = 7.2 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 132.90$, 118.45, 114.31, 54.61, 23.01, 10.50.

2-Phenyl-1,2,3,4-tetrahydroquinoxaline (3i)^{1, 2}

Purified by flash column chromatography (PE: EA = 10:1), 75% yield (157 mg), yellow solid. CAS: 5021-47-6. ¹H NMR (400 MHz, CDCl₃): δ = 7.45-7.34 (m, 5H), 6.70-6.67 (m, 2H), 6.65-6.61 (m, 2H), 4.53 (dd, J_1 = 3.2 Hz, J_2 = 2.8 H, 1H), 3.39 (s, 1H), 3.50 (dd, J = 3.2 Hz, 1H), 3.37 (dd, J_1 = 8.0 Hz, J_2 = 8.4 H, 1H); ¹³C NMR (100 MHz, CDCl₃): δ =141.84, 134.18, 132.70, 128.67, 127.94, 127.92, 127.03, 127.00,119.03, 118.81, 114.81, 114.48, 54.76, 49.16.

2-Methyl-1,2,3,4-tetrahydroquinoxaline (3j) ^{1, 2}

Purified by flash column chromatography (PE: EA = 5:1), 81% yield (119 mg), yellow solid. CAS: 6640-55-7. ¹H NMR (400 MHz, CDCl₃): δ = 6.65 (dd, J_1 = 3.2 Hz, J_2 = 3.6 Hz, 2H), 6.56 (dd, J_1 = 2.8 Hz, J_2 = 2.8 Hz, 2H), 3.58-3.34 (m, 4H), 3.08 (dd, J_1 = 2.8 Hz, J_2 = 2.8 Hz, 1H), 1.23 (d, J = 7.2 Hz, 3H), ¹³C NMR (100 MHz, CDCl₃): δ = 133.62, 133.25, 118.71, 114.53, 114.48, 48.28, 45.74, 19.96.

References

- [1] Qin, J.; Chen, F.; Ding, Z.; He, Y. M.; Xu, L.; Fan, Q. H., Org. Lett., 2011, 13, 6568.
- [2] Murata, S.; Sugimoto, T.; Matsuura, S. Heterocycles, 1987, 26, 763
- [3] Shi, F.; Tan, W.; Zhang, H. H.; Li, M.; Q. Ye, G.; Ma, H.; Tu, S. J.; Li, G., Adv. Synth. Catal., 2013, 355, 3715.
- [4] George, H. F.; Harry, P. S. J. Org. Chem., 1974, 39, 635.
- [5] Li, S. L; Meng, W.; Du, H.F., Org. Lett., 2017, 19, 2604.

4. ¹H NMR & ¹³C NMR Spectra of the Products

$$\bigcup_{\substack{\mathsf{H}\\\mathsf{H}\\\mathsf{H}}} \overset{\mathsf{CH}_3}{\underset{\mathsf{CH}_3}{\overset{\mathsf{CH}_3}{\overset{\mathsf{a} \text{ or } 5a \text{ or } 6}}} \mathbf{3a \text{ or } 5a \text{ or } 6}$$

cis/trans of 3a = 70/30 determined by ¹H NMR of the crude product

cis/trans of 5a = 83/17 determined by ¹H NMR of the crude product

cis/trans of 6 = 68/32 determined by ¹H NMR of the crude product

cis/trans of 3b = 65/35 determined by ¹H NMR of the crude product.

cis/trans of 5b = 67/33 determined by ¹H NMR of the crude product.

cis/trans of 3c = 69/31 determined by ¹H NMR of the crude product.

cis/trans of 3d = 56/44 determined by ¹H NMR of the crude product.

cis/trans of 5c = 67/33 determined by ¹H NMR of the crude product.

$$\begin{array}{c} \mathsf{CI} & \overset{H}{\underset{N}{\overset{}}} \mathsf{CH}_3 \\ \overset{N}{\underset{H}{\overset{}}} \mathsf{CH}_3 \\ \overset{G}{\underset{H}{\overset{}}} \mathsf{CH}_3 \end{array} \mathbf{3e} \ (\mathbf{5d}) \end{array}$$

cis/trans of 3e = 66/34 determined by ¹H NMR of the crude product.

cis/trans of 5d = 63/37 determined by ¹H NMR of the crude product.

cis/trans of 3f = 62/38 determined by ¹H NMR of the crude product.

cis/trans of 5e = 64/36determined by ¹H NMR of the crude product.

cis/trans of 3g = 79/21 determined by ¹H NMR of the crude product.

cis/trans of 3h = 0/100 determined by ¹H NMR of the crude product (*cis* isomer was not detected).

5. The Deuterium Labeling Experiment

A flask was charged with 2-nitroaniline (**4a**, 1 mmol, 138 mg), 2,3-butanedione (**2a**, 1 mmol, 86 mg), $B_2(OH)_4$ or $B_2(cat)_2(8 \text{ mmol})$ and $D_2O(3 \text{ mL})$ under N_2 . The reaction was stirred at 80 °C for 4 h. When the reaction was complete monitored by TLC, the mixture was cooled to room temperature, extracted with ethyl acetate (3×20 mL). The combined organic phase was washed with water, dried over anhydrous Na_2SO_4 , filtered, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography to give the product 7. The products were determined by ¹H NMR and GC-MS.

B₂(cat)₂:

GC-MS:

