Supplementary Data

Synthesis of substituted 4-hydroxalkyl-quinoline derivatives by a three-component reaction using CuCl/AuCl as sequential catalysts

Kun-Ming Jiang,^{[a],‡} Jing-An Kang,^{[a],‡} Yi Jin,^{[a],*} and Jun Lin,^{[a],*}

^a Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University),

Ministry Education, School of Chemical Science and Technology, Yunnan University,

Kunming, 650091, P. R. China.

‡ The authors contributed equally to this work.

* Corresponding author. Tel./fax: +86-871-6503-3215 (J. L.).

*E-mail: jinyi@ynu.edu.cn. *E-mail: <u>linjun@ynu.edu.cn</u>.

Contents

1. General considerations	2
2. General procedure for synthesis of quinoline derivatives	2
3. Computational data	19
3. Copies of ¹ H NMR and ¹³ C NMR Spectra	29
References	61

1. General considerations

All compounds were fully characterized by IR, NMR, and LC/MS. NMR spectra were recorded on a Bruker DRX400 (¹H: 400 MHz, ¹³C: 100 MHz) using deuterated CDCl₃ and DMSO- d_6 as solvents. Chemical shifts (δ) are expressed in ppm and J values given in Hz. IR spectra were recorded on a FT-IR Thermo Nicolet Avatar 360 using a KBr pellet. Reactions were monitored by thin layer chromatography (TLC) using silica gel GF₂₅₄. The melting points were determined using a XT-4A melting point apparatus and were uncorrected. HRMS (High Resolution Mass Spectrometry) were performed on an Agilent LC/MSD TOF instrument. All chemicals and solvents were used as received without further purification, unless otherwise stated. Column chromatography was performed on silica gel (200–300 mesh). Substituted benzaldehyde, substituted aniline, substituted alkyne, CuCl and AuCl₃ were purchased from Adamas-Beta Corporation Limited.

2. General procedure for synthesis of quinoline derivatives

Substituted aniline (1 mmol), substituted benzaldehyde (1.1 mmol) and substituted alkyne (1.1 mmol) were dissolved in 25 mL THF into a 50 mL round-bottom flask. Then, 0.1 mmol CuCl and 0.05 mmol AuCl were added to reaction bottle. The mixture was stirred at reflux temperature for 6 h and monitored by TLC. Upon completion, the solvent was removed by rotary evaporator, then water was added to the residue, extracted with ethyl acetate, dried over Na₂SO₄, and concentrated by rotary evaporator to yield quinoline derivatives (64 to 93% yields).

2-(2-Phenylquinolin-4-yl)ethan-1-ol (5a).

Yellowish-brown solid; m.p. = 93.1-93.4 °C; IR (KBr): 3308, 3061, 2933, 2866, 1713, 1595, 1545, 1501, 1448, 1408, 1353, 1221, 1155, 1039, 846, 761, 695, 558 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 8.12 (d, *J* = 8.4 Hz, 1H, ArH), 7.93-7.92 (m, 2H, ArH), 7.58 (d, *J* = 8.0 Hz, 1H, ArH), 7.68 (d, *J* = 6.0 Hz, 1H, ArH), 7.57 (s, 1H, CH), 7.43 (d, *J* = 7.2 Hz, 4H, ArH), 3.92 (s, 2H, CH₂), 3.25 (s, 2H, CH₂); ¹³C NMR (100 MHz, CDCl₃): δ = 156.3, 148.2, 145.6, 139.2, 130.2, 129.4, 129.3, 128.7, 127.5, 126.5, 123.3, 119.9, 62.1, 35.9; HRMS (ESI⁺): m/z calcd. for C₁₇H₁₆NO [M+H]⁺ 250.1226; found 250.1227.

2-(2-(4-Nitrophenyl)quinolin-4-yl)ethan-1-ol (5b).

Yellowish-brown solid; m.p. = 155.1-155.8 °C; IR (KBr): 3274, 2930, 2352, 1599, 1512, 1432, 1341, 1087, 1039, 845, 763, 697, 462 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 8.37$ (s, 2H, ArH), 8.28 (s, 2H, ArH), 8.23 (d, J = 8.4 Hz, 1H, ArH), 8.07 (d, J = 8.4 Hz, 1H, ArH), 7.79 (d, J = 7.6 Hz, 2H, ArH), 7.64-7.59 (m, 1H, CH), 4.10 (d, J = 8.8 Hz, 2H, CH₂), 3.43 (d, J = 12.8 Hz, 2H, CH₂); ¹³C NMR (100 MHz, CDCl₃): $\delta = 154.1$, 148.5, 148.3, 146.2, 145.3, 130.7, 130.0, 128.3, 127.3, 127.0, 124.0, 123.4, 120.0, 62.2, 35.7; HRMS (ESI⁺): m/z calcd. for C₁₇H₁₅N₂O₃ [M+H]⁺ 295.1077; found 295.1072.

2-(2-(3,4-Difluorophenyl)quinolin-4-yl)ethan-1-ol (5c).

Yellow solid; m.p. = 122.0-122.8 °C; IR (KBr): 3311, 3070, 2946, 2880, 1601, 1512,

1440, 1357, 1271, 1179, 1116, 1051, 925, 826, 766, 716 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 8.16 (d, *J* = 8.4 Hz, 1H, ArH), 8.00-7.90 (m, 2H, ArH), 7.82-7.74 (m, 2H, ArH), 7.64 (s, 1H, CH), 7.58-7.54 (m, 1H, ArH), 7.31-7.24 (m, 1H, ArH), 4.06 (t, *J* = 6.0 Hz, 2H, CH₂), 3.38 (t, *J* = 6.0 Hz, 2H, CH₂); ¹³C NMR (100 MHz, CDCl₃): δ = 154.4, 148.3, 145.9, 136.5, 130.4, 129.8, 126.6, 123.5, 123.3, 119.2, 117.5, 117.4, 116.6, 116.4, 62.2, 35.8; HRMS (ESI⁺): m/z calcd. for C₁₇H₁₄F₂NO [M+H]⁺ 286.1038; found 286.1041.

2-(6-Methyl-2-phenylquinolin-4-yl)ethan-1-ol (5d).

Yellow solid; m.p. = 187.1-187.4 °C; IR (KBr): 3305, 3050, 2930, 2864, 1596, 1550, 1499, 1448, 1354, 1224, 1046, 824, 774, 701, 651 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6): δ = 8.24 (d, J = 7.6 Hz, 2H, ArH), 7.78-7.16 (m, 3H, ArH), 7.60-7.46 (m, 4H, ArH), 4.88 (s, 1H, OH), 3.82 (d, J = 4.4 Hz, 2H, CH₂), 3.23 (t, J = 6.4 Hz, 2H, CH₂), 2.54 (s, 3H, CH₃); ¹³C NMR (100 MHz, DMSO- d_6): δ = 155.1, 146.8, 146.3, 139.4, 136.1, 132.0, 130.0, 129.7, 129.2, 127.5, 126.9, 123.2, 119.7, 61.4, 35.7, 21.9; HRMS (ESI⁺): m/z calcd. for C₁₈H₁₈NO [M+H]⁺ 264.1383; found 264.1380.

2-(2-(4-Chlorophenyl)-6-methylquinolin-4-yl)ethan-1-ol (5e).

Yellow solid; m.p. = 185.7-185.9 °C; IR (KBr): 3287, 2926, 2873, 1595, 1550, 1499, 1493, 1410, 1359, 1224, 1088, 964, 827, 712, 649 cm⁻¹; ¹H NMR (400 MHz,

DMSO- d_6): $\delta = 8.26$ (d, J = 8.4 Hz, 2H, ArH), 7.95 (t, J = 7.2 Hz, 3H, ArH), 7.59 (d, J = 8.4 Hz, 3H, ArH), 4.87 (t, J = 5.2 Hz, 1H, OH), 3.84-3.79 (m, 2H, CH₂), 3.27 (t, J = 6.8 Hz, 2H, CH₂), 2.52 (d, J = 11.2 Hz, 3H, CH₃); ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 153.8$, 146.7, 146.6, 138.1, 136.4, 134.6, 132.1, 130.0, 129.2, 127.0, 123.2, 119.4, 61.4, 35.7, 21.9; HRMS (ESI⁺): m/z calcd. for C₁₈H₁₇ClNO [M+H]⁺ 298.0993; found 298.0996.

2-(2-(4-Fluorophenyl)-6-methylquinolin-4-yl)ethan-1-ol (5f).

Yellow solid; m.p. = 180.8-181.2 °C; IR (KBr): 3303, 2929, 2863, 1598, 1506, 1448, 1358, 1218, 1156, 1048, 833, 728, 598cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 8.03-7.96 (m, 3H, ArH), 7.67 (s, 1H, CH), 7.56-7.54 (m, 2H, ArH), 7.16-7.12 (m, 2H, ArH), 4.00 (t, J = 6.4 Hz, 2H, CH₂), 3.00 (t, J = 6.4 Hz, 2H, CH₂), 2.54 (s, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 154.8, 146.8, 144.7, 136.2, 135.5, 131.8, 129.9, 129.7, 129.3, 129.2, 126.3, 122.3, 119.5, 115.7, 115.5, 62.2, 35.8, 21.9; HRMS (ESI⁺): m/z calcd. for C₁₈H₁₇FNO [M+H]⁺ 282.1289; found 282.1286.

2-(6-Methyl-2-(4-nitrophenyl)quinolin-4-yl)ethan-1-ol (5g).

Yellow solid; m.p. = 184.4-185.2 °C; ¹H NMR (400 MHz, DMSO- d_6): δ = 8.50 (d, J = 8.8 Hz, 2H, ArH), 8.37 (d, J = 8.8 Hz, 2H, ArH), 8.08 (s, 1H, CH), 8.02-7.97 (m, 2H, ArH), 7.65-7.63 (m, 1H, ArH), 4.86 (t, J = 5.6 Hz, 1H, OH), 4.88-4.85 (m, 2H, CH₂),

3.50 (t, J = 6.4 Hz, 2H, CH₂), 2.55 (s, 3H, CH₃); ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 152.2$, 148.2, 147.0, 146.8, 145.2, 137.2, 132.4, 130.7, 128.6, 127.5, 124.4, 123.3, 120.0, 61.3, 35.7, 21.9; HRMS (ESI⁺): m/z calcd. for C₁₈H₁₇N₂O₃ [M+H]⁺ 309.1234; found 309.1232.

2-(2-(4-Chlorophenyl)-6-ethylquinolin-4-yl)ethan-1-ol (5h).

Yellow solid; m.p. = 101.7-102.1 °C; IR (KBr): 3316, 2928, 1735, 1598, 1555, 1508, 1420, 1361, 1312, 1224, 1156, 1048, 884, 835, 777, 651 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6): δ = 8.27 (d, J = 8.4 Hz, 2H, ArH), 7.99 (d, J = 8.0 Hz, 2H, ArH), 7.94 (s, 1H, CH), 7.65 (d, J = 8.8 Hz, 1H, ArH), 7.60 (d, J = 8.4 Hz, 2H, ArH), 4.87 (s, 1H, OH), 3.83 (s, 2H, CH₂), 3.29 (t, J = 6.4 Hz, 2H, CH₂), 2.87-2.81 (m, 2H, CH₂), 1.30 (t, J = 7.6 Hz, 3H, CH₃); ¹³C NMR (100 MHz, DMSO- d_6): δ = 153.9, 146.9, 146.8, 142.6, 138.1, 134.6, 131.0, 130.2, 129.2, 127.0, 122.0, 119.4, 61.4, 35.7, 29.0, 16.1; HRMS (ESI⁺): m/z calcd. for C₁₉H₁₉CINO [M+H]⁺ 312.1150; found 312.1149.

2-(6-Ethyl-2-(4-fluorophenyl)quinolin-4-yl)ethan-1-ol (5i).

Yellow solid; m.p. = 115.9-116.3 °C; IR (KBr): 3265, 2948, 2878, 1598, 1506, 1425, 1362, 1224, 1158, 1048, 889, 777, 596 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 7.99 (d, J = 8.4 Hz, 1H, ArH), 7.84-7.80 (m, 2H, ArH), 7.57-7.43 (m, 2H, ArH), 7.52 (s, 1H, CH), 7.07 (t, J = 8.8 Hz, 2H, ArH), 3.92 (t, J = 6.0 Hz, 2H, CH₂), 3.46 (s, 1H, OH),

3.22 (t, J = 6.0 Hz, 2H, CH₂), 2.82-2.76 (m, 2H, CH₂), 1.31 (t, J = 7.6 Hz, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃): $\delta = 164.8$, 162.3, 154.6, 146.8, 145.1, 142.3, 135.3, 130.6, 129.8, 129.2, 129.1, 126.3, 121.0, 119.6, 115.6, 115.4, 61.9, 35.9, 29.1, 15.4; HRMS (ESI⁺): m/z calcd. for C₁₉H₁₉FNO [M+H]⁺ 296.1445; found 296.1446.

2-(6-Fluoro-2-phenylquinolin-4-yl)ethan-1-ol (5j)

Yellow solid; m.p. = 101.5-102.3 °C; IR (KBr): 3429, 3233, 3175, 2921, 1648, 1593, 1518, 1316, 1349, 1281, 1124, 1112, 1047, 755 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 8.27-8.11 (m, 2H), 7.87 (s, 1H), 7.61 (dd, J = 8.8, 4.8 Hz, 1H), 7.50 (dd, J = 9.7, 2.4 Hz, 1H), 7.47-7.35 (m, 4H), 4.04 (td, J = 6.6, 3.0 Hz, 2H), 3.25 (t, J = 6.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ = 164.8, 162.2, 155.7, 145.1, 139.4, 137.6, 131.9, 129.4, 128.3, 128.3, 124.9, 122.6, 121.0, 115.1, 62.8, 36.0; HRMS (ESI⁺): m/z calcd. for C₁₇H₁₅FNO [M+H]⁺ 268.1132; found 268.1131.

2-(6-Fluoro-2-(p-tolyl)quinolin-4-yl)ethan-1-ol (5k)

Yellow solid; m.p. = 146.1-147.9 °C; IR (KBr): 3493, 3329, 3236, 3166, 2939, 1649, 1598, 1532, 1473, 1409, 1233, 1130, 995 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 8.16-8.04 (m, 2H), 7.80 (t, *J* = 1.0 Hz, 1H), 7.61 (dd, *J* = 8.8, 4.8 Hz, 1H), 7.55-7.38 (m, 2H), 7.36-7.27 (m, 2H), 4.04 (td, *J* = 6.6, 3.1 Hz, 2H), 3.25 (dd, *J* = 7.0, 6.2 Hz, 2H), 2.41 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 164.8, 162.2, 155.9, 145.1, 141.4,

139.4, 136.3, 131.9, 128.6, 127.4, 124.4, 122.6, 121.0, 115.1, 62.8, 36.0, 21.8; HRMS (ESI⁺): m/z calcd. for C₁₈H₁₇FNO [M+H]⁺ 282.1289; found 282.1286.

3-(2-(4-Fluorophenyl)-6-methylquinolin-4-yl)propan-1-ol (5l)

Yellow solid; m.p. = 164.9-166.1 °C; IR (KBr): 3593, 3529, 3137, 3076, 1643, 1593, 1520, 1400, 1220, 1036 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 8.07-7.99 (m, 2H), 7.90 (s, 1H), 7.83 (d, *J* = 8.6 Hz, 1H), 7.59 (dd, *J* = 8.6, 1.8 Hz, 1H), 7.56 (d, *J* = 0.9 Hz, 1H), 7.11-7.02 (m, 2H), 3.77 (td, *J* = 6.3, 4.9 Hz, 2H), 3.15 (t, *J* = 6.9 Hz, 2H), 2.51 (s, 3H), 2.14 (td, *J* = 6.7, 1.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ = 164.3, 161.8, 157.9, 146.3, 142.6, 137.9, 132.7, 129.5, 129.5, 128.9, 127.1, 126.8, 122.5, 115.3, 62.1, 35.6, 29.7, 20.6; HRMS (ESI⁺): m/z calcd. for C₁₉H₁₉FNO [M+H]⁺ 296.1445; found 296.1448.

(6-Methyl-2-phenylquinolin-4-yl)methanol (5m)

Yellow solid; m.p. = 99.9-100.3 °C; IR (KBr): 3243, 3063, 2313, 1742, 1648, 1594, 1511, 1467, 1301, 1239, 1175, 1032, 824, 769 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 8.24-8.14 (m, 2H), 7.96 (s, 1H), 7.82 (s, 1H), 7.73 (d, J = 8.6 Hz, 1H), 7.66-7.59 (m, 1H), 7.54 – 7.44 (m, 2H), 7.42 – 7.32 (m, 1H), 4.78 (d, J = 5.3 Hz, 2H), 2.56 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 156.0, 151.7, 141.8, 138.2, 135.7, 129.9, 129.8, 129.0, 128.3, 126.0, 124.6, 122.8, 122.0, 77.7, 77.4, 77.1, 63.2, 18.4; HRMS (ESI⁺): m/z calcd. for C₁₇H₁₆NO [M+H]⁺ 250.1226; found 250.1228.

(2-(4-Fluorophenyl)quinolin-4-yl)methanol (5n)

Yellow solid; m.p. = 136.2-138.3 °C; IR (KBr): 3693, 3529, 3139, 2351, 1646, 1597, 1504, 1452, 1248, 1110, 1041, 757 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 8.14 (d, *J* = 7.8 Hz, 1H), 8.11-8.02 (m, 2H), 8.01-7.93 (m, 1H), 7.90 (s, 1H), 7.64 (td, *J* = 7.6, 1.4 Hz, 1H), 7.35 (td, *J* = 7.7, 1.5 Hz, 1H), 7.24-7.09 (m, 2H), 4.81 (d, *J* = 5.3 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ = 164.3, 161.8, 157.7, 153.1, 143.5, 138.0, 130.8, 129.9, 129.5, 127.9, 126.0, 125.4, 122.2, 116.4, 63.7; HRMS (ESI⁺): m/z calcd. for C₁₆H₁₃FNO [M+H]⁺ 254.0976; found 254.0979.

3-(2-(4-Chlorophenyl)-6,7-dimethylquinolin-4-yl)propan-1-ol (50)

Yellow solid; m.p. = 194.3-195.2 °C; IR (KBr): 3381, 3261, 2971, 2355, 1637, 1524, 1516, 1325, 1171, 1103, 1051 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 8.10-7.96 (m, 2H), 7.74 (d, *J* = 1.8 Hz, 2H), 7.63-7.51 (m, 2H), 7.40 (d, *J* = 1.0 Hz, 1H), 3.77 (td, *J* = 6.3, 4.9 Hz, 2H), 3.28-3.10 (m, 2H), 2.51 (s, 3H), 2.41 (s, 3H), 2.22-2.04 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ = 157.7, 146.7, 143.4, 142.8, 138.0, 133.2, 131.6, 128.5, 128.0, 128.0, 127.0, 126.9, 126.8, 62.1, 57.2, 35.6, 29.8, 21.8, 20.2; HRMS (ESI⁺): m/z calcd. for C₂₀H₂₁CINO [M+H]⁺ 326.1306; found 326.1309.

3-(2-(p-Tolyl)benzo[h]quinolin-4-yl)propan-1-ol (5p)

Yellow solid; m.p. = 213.5-214.3 °C; IR (KBr): 3265, 1651, 1590, 1506, 1469, 1245, 1243, 1036 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 9.22 (d, *J* = 8.0 Hz, 1H), 8.53 (d, *J* = 9.4 Hz, 1H), 8.07 (d, *J* = 8.3 Hz, 2H), 7.94 (d, *J* = 8.0 Hz, 1H), 7.67 (dd, *J* = 9.3, 0.8 Hz, 1H), 7.56 (d, *J* = 1.0 Hz, 1H), 7.39 (td, *J* = 7.6, 1.6 Hz, 1H), 7.34-7.22 (m, 5H), 3.77 (td, *J* = 6.2, 4.9 Hz, 2H), 3.34-3.20 (m, 2H), 2.41 (s, 3H), 2.28-2.08 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ = 157.33, 143.66, 142.98, 141.40, 138.33, 130.86, 130.50, 128.95, 128.69, 127.99, 127.79, 127.20, 126.80, 126.35, 123.29, 120.26, 62.10, 35.65, 30.01, 21.80; HRMS (ESI⁺): m/z calcd. for C₂₃H₂₂NO [M+H]⁺ 328.1696; found 328.1694.

2-(3-Phenylbenzo[f]quinolin-1-yl)ethan-1-ol (5q).

Yellow solid; ¹H NMR (400 MHz, DMSO-*d*₆): $\delta = 9.19$ (s, 1H, ArH), 8.92 (d, J = 8.0 Hz, 1H, ArH), 8.09-8.05 (m, 2H, ArH), 7.90 (d, J = 9.2 Hz, 1H, ArH), 7.80-7.70 (m, 2H, ArH), 7.64 (d, J = 6.8 Hz, 2H, ArH), 7.55-7.42 (m, 3H, ArH) , 4.77 (s, 1H, OH), 3.68 (s, 2H, CH₂), 3.06 (t, J = 6.8 Hz, 2H, CH₂); ¹³C NMR (100 MHz, DMSO-*d*₆): $\delta = 159.7$, 145.9, 140.9, 133.0, 131.7, 131.5, 130.8, 129.6, 129.4, 129.0, 128.5, 128.4, 128.0, 127.8, 127.7, 124.3, 123.9, 61.7, 36.2; HRMS (ESI⁺): m/z calcd. for C₂₁H₁₈NO [M+H]⁺ 300.1383; found 300.1385.

4-(2-(4-Fluorophenyl)-6-methylquinolin-4-yl)butan-1-ol (5r)

Yellow solid; m.p. = 146.9-148.2 °C; IR (KBr): 3433, 3288, 1646, 1588, 1518, 1243, 1025, 824 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 8.10-7.99 (m, 2H), 7.91 (s, 1H), 7.83 (d, J = 8.6 Hz, 1H), 7.59 (dd, J = 8.6, 1.7 Hz, 1H), 7.53 (d, J = 0.9 Hz, 1H), 7.14-7.01 (m, 2H), 3.76 (td, J = 6.2, 4.5 Hz, 2H), 3.13 (t, J = 7.0 Hz, 2H), 2.51 (s, 3H), 1.85 (dt, J = 7.5, 6.6 Hz, 2H), 1.78-1.61 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ = 164.3, 161.8, 158.2, 146.7, 142.5, 137.9, 132.7, 129.5, 129.5, 128.8, 127.2, 127.0, 122.5, 115.3, 62.7, 32.4, 31.9, 27.1, 20.6; HRMS (ESI⁺): m/z calcd. for C₂₀H₂₁FNO [M+H]⁺ 310.1602; found 310.1604.

1-(2-(4-Fluorophenyl)-6-methylquinolin-4-yl)propan-2-ol (5s)

Yellow solid; m.p. = 178.1-179.3 °C; IR (KBr): 3432, 3266, 1648, 1593, 1510, 1411, 1234, 1131 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 8.10-7.99 (m, 2H), 7.92 (s, 1H), 7.84 (d, J = 8.6 Hz, 1H), 7.64 (d, J = 1.0 Hz, 1H), 7.59 (dd, J = 8.6, 1.7 Hz, 1H), 7.13-7.00 (m, 2H), 4.44 (dddd, J = 10.2, 6.1, 4.8, 1.2 Hz, 1H), 3.22 (dd, J = 14.0, 1.5 Hz, 1H), 3.13-3.00 (m, 1H), 2.51 (s, 3H), 1.54-1.41 (m, 1H), 1.41-1.31 (m, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 164.3, 157.8, 132.8, 129.9, 129.5, 129.5, 128.8, 126.8, 122.6, 115.3, 69.8, 42.0, 22.0, 20.6; HRMS (ESI⁺): m/z calcd. for C₁₉H₁₉FNO [M+H]⁺ 296.1445; found 296.1447.

1-(6-Methylquinolin-4-yl)propan-2-ol (5t)

Yellow solid; m.p. = 125.5-127.4 °C; IR (KBr): 3393, 3147, 1649, 1594, 1516, 1448, 1286, 1247, 1042, 820 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 8.56 (d, *J* = 4.4 Hz, 1H), 7.89 (s, 1H), 7.77 (d, *J* = 8.6 Hz, 1H), 7.62-7.53 (m, 1H), 7.32 (d, *J* = 4.5 Hz, 1H), 4.45 (dt, *J* = 10.8, 5.7 Hz, 1H), 3.23-2.96 (m, 2H), 2.51 (d, *J* = 0.8 Hz, 3H), 1.76 (s, 1H), 1.41 (d, *J* = 6.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 149.7, 146.2, 139.9, 132.9, 129.6, 127.5, 126.9, 122.8, 121.6, 70.0, 41.2, 22.2, 20.6; HRMS (ESI⁺): m/z calcd. for C₁₃H₁₆NO [M+H]⁺ 202.1226; found 202.1229.

(2-(2,2-Dimethyl-1,3-dioxolan-4-yl)-6-methylquinolin-4-yl)methanol (5u)

Yellow solid; m.p. = 186.1-187.3 °C; IR (KBr): 3290, 1647, 1589, 1530, 1519, 1250, 1120 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 7.98 (d, *J* = 1.5 Hz, 1H), 7.80 (d, *J* = 2.1 Hz, 2H), 7.73 (s, 1H), 5.43-5.29 (m, 1H), 4.77 (d, *J* = 5.3 Hz, 2H), 4.48-4.32 (m, 1H), 3.94-3.80 (m, 1H), 2.56 (s, 3H), 1.48 (d, *J* = 1.0 Hz, 3H), 1.43 (d, *J* = 1.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 157.0, 149.1, 141.9, 136.7, 130.1, 129.6, 126.1, 125.0, 120.1, 108.9, 82.4, 76.8, 70.3, 70.3, 62.0, 26.3, 24.9, 18.4; HRMS (ESI⁺): m/z calcd. for C₁₆H₂₀NO₃ [M+H]⁺ 274.1438; found 274.1441.

4-Butyl-6-methyl-2-phenylquinoline (5v).

Yellow solid; m.p. = 79.0-81.2 °C; IR (KBr): 3452, 2955, 2864, 1594, 1551, 1448, 1219, 874, 777, 596 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 8.10 (d, *J* = 8.0 Hz, 2H, ArH), 8.05 (d, *J* = 8.0 Hz, 1H, ArH), 7.70 (s, 1H, ArH), 7.60 (s, 1H, CH), 7.75-6.35 (m, 4H, ArH), 3.10 (t, *J* = 6.8 Hz, 2H, CH₂), 3.60 (s, 3H, CH₃), 1.85-1.75 (m, 2H, CH₂), 1.55-1.45 (m, 2H, CH₂), 1.00 (t, *J* = 6.9 Hz, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 156.0, 148.3, 146.9, 139.9, 135.5, 131.2, 130.1, 129.6, 128.8, 128.6, 127.3, 126.4, 122.2, 118.4, 32.1, 29.6, 22.7, 21.8, 13.8; HRMS (ESI⁺): m/z calcd. for C₂₀H₂₂N [M+H]⁺ 276.1747; found 276.1751.

2, 4-Diphenylquinoline (5w).

Yellow solid; m.p. = 124.1-125.6 °C; IR (KBr): 1634, 1588, 1519, 1489, 1446, 1343, 1260, 967, 768, 701, 596 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 8.24 (d, *J* = 8.4 Hz, 1H, ArH), 8.19 (d, *J* = 6.8 Hz, 2H, ArH), 7.89 (d, *J* = 8.0 Hz, 1H, ArH), 7.82 (s, 1H, ArH), 7.75-7.74 (m, 1H, ArH), 7.55-7.45 (m, 9H, ArH); ¹³C NMR (100 MHz, CDCl₃): δ = 156.9, 149.2, 148.8, 139.6, 138.4, 130.1, 129.6, 129.5, 129.3, 128.8, 128.6, 128.4, 127.6, 126.3, 125.6, 119.3; HRMS (ESI⁺): m/z calcd. for C₂₁H₁₆N [M+H]⁺ 282.1277; found 282.1270.

Methyl 2-(4-fluorophenyl)-6-methylquinoline-4-carboxylate (5x)

Yellow solid; m.p. = 136.9-138.3 °C; IR (KBr): 3395, 2982, 2312, 1640, 1524, 1049, 899, 777, 696 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 8.62 (s, 1H), 8.28 (s, 1H), 8.16-8.04 (m, 2H), 7.99 (d, *J* = 8.6 Hz, 1H), 7.64 (d, *J* = 8.6 Hz, 1H), 7.17-6.97 (m, 2H), 3.97 (s, 3H), 2.51 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 170.1, 164.3, 161.8, 158.2, 146.1, 137.7, 136.7, 132.5, 132.4, 129.3, 128.9, 127.6, 126.0, 124.9, 115.2, 114.1, 77.6, 51.9, 21.1; HRMS (ESI⁺): m/z calcd. for C₁₈H₁₅FNO₂ [M+H]⁺ 296.1081; found 296.1084.

2-(6-nitro-2-phenylquinolin-4-yl)ethan-1-ol (5y)

Yellow solid; m.p. = 143.3-145.1 °C; IR (KBr): 3206, 1678, 1614, 1549, 1465, 1427, 1275, 751 cm⁻¹; ¹H NMR (400 MHZ, CDCl₃): δ = 8.85 (d, *J* = 2.2 Hz, 1H), 8.45 (dd, *J* = 9.2, 2.2 Hz, 1H), 8.24 – 8.15 (m, 2H), 8.04 – 7.95 (m, 2H), 7.44 – 7.34 (m, 3H), 4.13 (td, *J* = 6.7, 4.1 Hz, 2H), 3.38 (dd, *J* = 7.2, 6.1 Hz, 2H); ¹³C NMR (100 MHZ, CDCl₃): δ = 155.97, 152.68, 146.23, 145.09, 137.58, 129.57, 128.65, 128.41, 128.30, 125.53, 124.82, 122.76, 77.45, 77.13, 76.81, 62.30, 35.01; HRMS (ESI⁺): m/z calcd. for C₁₇H₁₄N₂O₃ [M+H]⁺ 295.1077; found 295.1080.

2-(6-chloro-2-phenylquinolin-4-yl)ethan-1-ol (5z)

White solid; m.p. = 127.3-126.9 °C; IR (KBr): 3274, 2912, 2873, 1561, 1550, 1493, 1410, 1349, 1222, 1078, 961, 827, 701, 639 cm⁻¹; ¹H NMR (400 MHZ, CDCl₃): δ = 8.23 – 8.16 (m, 2H), 7.96 (d, J = 8.9 Hz, 1H), 7.92 (d, J = 0.7 Hz, 1H), 7.82 (d, J = 2.2 Hz, 1H), 7.58 (dd, J = 8.9, 2.2 Hz, 1H), 7.44 – 7.33 (m, 3H), 4.07 (td, J = 6.7, 4.1 Hz, 2H), 3.21 (td, J = 6.5, 6.0, 0.9 Hz, 2H); ¹³C NMR (100 MHZ, CDCl₃): δ = 156.00, 147.78, 141.98, 137.58, 131.75, 129.94, 129.57, 128.41, 128.30, 127.48, 124.56, 122.65, 77.45, 77.13, 76.81, 62.28, 36.20; HRMS (ESI⁺): m/z calcd. for C₁₇H₁₄ClNO [M+H]⁺ 284.0837; found 284.0834.

2-(6-methoxy-2-phenylquinolin-4-yl)ethan-1-ol (5aa)

White solid; m.p. = 174.7-176.3 °C; IR (KBr): 3410, 3073, 2953, 2882, 1601, 1532, 1440, 1365, 1270, 1159, 1113, 1051, 823, 766, 715 cm⁻¹; ¹H NMR (400 MHZ, CDCl₃): δ = 8.20 (d, J = 2.1 Hz, 1H), 8.18 (t, J = 2.0 Hz, 1H), 8.11 (d, J = 8.9 Hz, 1H), 7.84 (s, 1H), 7.46 – 7.35 (m, 4H), 7.31 (d, J = 2.2 Hz, 1H), 4.07 – 4.01 (m, 2H), 3.99 (s, 3H), 3.27 (dd, J = 7.2, 6.1 Hz, 2H); ¹³C NMR (100 MHZ, CDCl₃): δ = 160.48, 155.89, 144.52, 137.58, 136.35, 129.57, 128.41, 128.30, 128.04, 126.62, 124.59, 121.74, 99.49, 77.39, 77.07, 76.75, 62.55, 56.20, 36.31; HRMS (ESI⁺): m/z calcd. for C₁₈H₁₇NO₂ [M+H]⁺ 280.1332; found 280.1337.

4-cyclopropyl-2-phenylquinoline (5ab)

White solid; m.p. = 151.5-153.1 °C; IR (KBr): 3230, 3051, 1674, 1583, 1531, 1417, 1343, 1257, 761, 690 cm⁻¹; ¹H NMR (400 MHZ, CDCl₃): δ = 8.27 – 8.20 (m, 1H), 8.20 – 8.13 (m, 2H), 8.10 (dd, *J* = 7.7, 1.5 Hz, 1H), 7.68 (s, 1H), 7.61 (td, *J* = 7.5, 1.3 Hz, 1H), 7.33 (dtd, *J* = 8.6, 7.5, 1.4 Hz, 2H), 7.07 – 6.97 (m, 2H), 2.49 – 2.35 (m, 1H), 1.30 – 1.20 (m, 2H), 1.17 – 1.06 (m, 2H); ¹³C NMR (100 MHZ, CDCl₃): δ = 154.62, 149.72, 144.48, 137.76, 132.80, 131.19, 130.82, 129.26, 128.80, 128.30, 127.11, 125.19, 118.59, 77.46, 77.14, 76.82, 22.55, 11.34; HRMS (ESI⁺): m/z calcd. for C₁₈H₁₅N [M+H]⁺ 246.1277; found 246.1280.

4-ethyl-6-nitro-2-phenylquinoline (5ac)

White solid; m.p. = 184.1-186.1 °C; IR (KBr): 3796, 3438, 3262, 1644, 1581, 1515, 1415, 1287, 1221, 763 cm⁻¹; ¹H NMR (400 MHZ, CDCl₃): δ = 8.82 (d, *J* = 2.2 Hz, 1H), 8.45 (dd, *J* = 9.2, 2.2 Hz, 1H), 8.23 – 8.15 (m, 2H), 8.00 (d, *J* = 9.2 Hz, 1H), 7.90 (d, *J* = 0.8 Hz, 1H), 7.46 – 7.33 (m, 3H), 2.96 (q, *J* = 7.4 Hz, 2H), 1.23 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (100 MHZ, CDCl₃): δ = 152.66, 149.33, 146.18, 137.53, 129.57, 128.73, 128.60, 128.41, 128.30, 125.51, 122.95, 122.76, 77.80, 77.76, 77.48, 77.44, 77.16, 77.11, 23.63, 15.37; HRMS (ESI⁺): m/z calcd. for C₁₇H₁₄N₂O₂ [M+H]⁺ 279.1128; found 279.1131.

2-(2-isopropylquinolin-4-yl)ethan-1-ol (5ad)

White solid; m.p. = 142.6-145.1 °C; IR (KBr): 3723, 3432, 3271, 2927, 1648, 1592, 1518, 1415, 1349, 1280, 1224, 1115, 1047, 753 cm⁻¹; ¹H NMR (400 MHZ, CDCl₃): δ = 8.01 (dd, J = 7.8, 1.5 Hz, 1H), 7.88 (dt, J = 8.0, 0.9 Hz, 1H), 7.54 (td, J = 7.4, 1.4 Hz, 1H), 7.44 (ddd, J = 8.0, 7.2, 1.6 Hz, 1H), 6.96 (d, J = 0.8 Hz, 1H), 3.94 (td, J = 6.7, 4.1 Hz, 2H), 3.30 – 3.19 (m, 2H), 2.99 (p, J = 6.9 Hz, 1H), 1.27 (d, J = 6.9 Hz, 6H); ¹³C NMR (100 MHZ, CDCl₃): δ = 162.33, 148.29, 139.94, 128.58, 127.65, 126.12, 125.68, 125.42, 122.35, 77.43, 77.11, 76.80, 62.50, 37.81, 35.33, 22.32; HRMS (ESI⁺): m/z calcd. for C₁₄H₁₇NO [M+H]⁺ 216.1383; found 216.1380.

2-(2-methylquinolin-4-yl)ethan-1-ol (5ae)

White solid; m.p. = 140.2-142.0 °C; IR (KBr): 3791, 3725, 3436, 3263, 2939, 1646, 1598, 1517, 1453, 1402, 1233, 1133, 992 cm⁻¹; ¹H NMR (400 MHZ, CDCl₃): δ = 8.00 – 7.93 (m, 1H), 7.93 – 7.86 (m, 1H), 7.61 – 7.50 (m, 2H), 7.28 (s, 1H), 4.05 (td, *J* = 6.7, 4.2 Hz, 2H), 3.19 (dd, *J* = 7.2, 6.2 Hz, 2H), 2.59 (d, *J* = 0.7 Hz, 3H); ¹³C NMR (100 MHZ, CDCl₃): δ = 158.35, 146.95, 141.08, 128.75, 128.19, 127.24, 126.99, 124.99, 123.46, 77.39, 77.07, 76.75, 62.54, 35.67, 24.39; HRMS (ESI⁺): m/z calcd. for C₁₂H₁₃NO [M+H]⁺ 188.1070; found 188.1074.

2-(2-(furan-2-yl)quinolin-4-yl)ethan-1-ol (5af)

Yellow solid; m.p. = 173.7-175.6 °C; IR (KBr): 3436, 3243, 1647, 1528, 1112, 621 cm⁻¹; ¹H NMR (400 MHZ, CDCl₃): δ = 8.18 (dd, J = 8.0, 1.4 Hz, 1H), 8.04 (dd, J = 7.6, 1.6 Hz, 1H), 7.89 (d, J = 0.8 Hz, 1H), 7.71 (ddd, J = 8.1, 7.2, 1.6 Hz, 1H), 7.62 (td, J = 7.4, 1.4 Hz, 1H), 7.39 (dd, J = 2.1, 0.9 Hz, 1H), 6.98 (dd, J = 3.2, 1.0 Hz, 1H), 6.53 (dd, J = 3.3, 2.0 Hz, 1H), 4.07 (td, J = 6.7, 4.2 Hz, 2H), 3.25 (td, J = 6.5, 6.1, 0.9 Hz, 2H); ¹³C NMR (100 MHZ, CDCl₃): δ = 13C NMR (101 MHz,) δ 154.57, 152.13, 151.13, 145.61, 144.90, 131.35, 131.27, 129.05, 127.43, 124.48, 121.30, 113.89, 113.72, 77.67, 77.37, 77.05, 76.73, 62.52, 36.85; HRMS (ESI⁺): m/z calcd. for C₁₅H₁₃NO₂ [M+H]⁺ 240.1019; found 240.1023.

5-Phenyl-5-(phenylamino)pent-3-yn-1-ol (4a).

Yellow oil; ¹H NMR (400 MHz, DMSO-*d*₆): δ = 8.75 (d, *J* = 7.2 Hz, 2H, ArH), 7.36 (t, *J* = 7.6 Hz, 2H, ArH), 7.27 (t, *J* = 7.2 Hz, 1H, ArH), 7.05 (t, *J* = 7.6 Hz, 2H, ArH), 6.69 (d, *J* = 7.6 Hz, 2H, ArH), 6.55 (t, *J* = 7.2 Hz, 1H, ArH), 6.62 (d, *J* = 8.0 Hz, 1H, NH), 5.36 (d, *J* = 8.0 Hz, 1H, CH), 4.80 (t, *J* = 5.6 Hz, 1H, OH), 3.50-3.36 (m, 2H, CH₂), 2.36-2.32 (m, 2H, CH₂); ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 147.6, 141.3, 129.3, 129.1, 128.8, 127.8, 127.6, 117.0, 113.8, 82.3, 81.5, 60.3, 48.7, 23.2; HRMS (ESI⁺): m/z calcd. for C₁₇H₁₈NO [M+H]⁺ 252.1383; found 252.1386.

(4-(2-Hydroxyethyl)-2-phenylquinolin-3-yl)gold (10)

Yellow solid; m.p. = 215.2-216.7 °C; IR (KBr): 3434, 3287, 1640, 1519, 1464, 1402, 1242, 1044, 833, 694 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 8.19-8.13 (m, 2H), 8.09 (dd, *J* = 7.9, 1.3 Hz, 1H), 7.98 (dt, *J* = 7.7, 1.1 Hz, 1H), 7.58 (td, *J* = 7.5, 1.4 Hz, 1H), 7.50-7.42 (m, 1H), 7.42-7.30 (m, 3H), 3.92 (td, *J* = 6.8, 3.0 Hz, 2H), 3.25 (t, *J* = 6.8 Hz, 2H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 149.0, 140.4, 137.8, 131.0, 130.6, 130.3, 129.9, 128.6, 128.1, 127.8, 126.5, 122.1, 77.6, 62.3, 36.4; HRMS (ESI⁺): m/z calcd. for C₁₇H₁₅AuNO [M+H]⁺ 446.0814; found 446.0815.

3. Computational data

Computational methods:

DFT calculations were used to investigate the energetics of our proposed mechanism, the geometry optimizations and transitions state searches were performed on the B3LYP level with 6-31+G(d) basis set for C, H, N, O, Cl atoms and LanL2DZ with relativistic effective core potentials for gold.^[1] Single point calculations were performed at the M06 level with a mixed basis set of SDD for gold and 6-311+G(d,p) for all other atoms.^[2] Solvation energy corrections were calculated using SMD model and with THF as solvent. All calculations were performed with Gaussian 09 program packages.^[3] All transition states were confirmed by intrinsic reaction coordinate (IRC) toward a set of pre- and postreaction complexes.^[4] Computed structures are displayed with CYLview.

Optimized Geometries:

Propargyl amine 4a

E+zero-point Energies=		-787.300468 Hartree		
Free Energies=		-787.345096 Hartree		
Н	-3.86591	-1.56543	-3.66210	
С	-3.56745	-0.89501	-2.85370	
Н	-5.53052	-0.00621	-2.64260	
Н	-1.52119	-1.59259	-2.83744	
С	-4. 50043	-0.02181	-2.28065	
С	-2.24767	-0.90654	-2.39624	
Η	0.23185	-0.40288	-1.70497	
С	-4.10722	0.83752	-1.25169	
С	-1.84479	-0.04056	-1.36767	
Н	-4.82880	1.52525	-0.80623	
Н	2.20390	-0.88110	-0.86547	
С	-2.78348	0.82952	-0.79737	
С	-0.40821	-0.11857	-0.85528	
С	0.10598	1.18003	-0.32631	
Н	1.93312	4.50407	0.03155	
Н	4.25003	-1.83102	0.11725	
Н	-2.47873	1.51225	0.00032	
С	2.13225	-1.44578	0.06529	
Η	3.15246	3.21437	0.28265	
Ν	-0.32134	-1.18755	0.14238	
С	0.64774	2.04386	0.37313	
С	3.29586	-1.98484	0.62589	
С	2.38056	3.82716	0.78333	
С	0.88889	-1.63282	0.69757	
Н	-1.09952	-1.16548	0.80325	
Н	3.56423	5.19835	1.53192	
С	1.29096	2.91409	1.36147	
0	2.92090	4.55356	1.89081	
С	3.25075	-2.70849	1.82225	
Н	0.53588	3.54088	1.86403	
С	0.85006	-2.35608	1.90769	
Н	4.16421	-3.12062	2.25427	
Н	1.74449	2.27188	2.13561	
С	2.01666	-2.88770	2.45909	
Η	-0.11045	-2.50995	2.40956	
Н	1.95643	-3.44612	3.39535	

E+zero-point Energies=		-1383.051153 Hartree	
	Free Energies=	-1383.10	2447 Hartree
	Imaginary frequency:	-26.6 cm	-1
Н	-2.34005	-2.63537	-1.87084
Н	4.77895	-0.31503	-1.73738
Н	-0.76788	2.89935	-1.84400
Н	-4.78197	-2.68979	-1.43261
Н	2.43137	0.46843	-1.48102
0	-2.01468	5.15275	-0.98360
С	4.10096	-0.83836	-1.05434
С	-2.74206	-2.18454	-0.96169
Н	-2.27979	2.53022	-0.94987
Н	-1.89566	6.04267	-0.58683
С	2.79021	-0.39786	-0.91607
С	-4.11418	-2.21756	-0.71216
С	-1.22053	2.84186	-0.82714
Н	5. 57093	-2.29182	-0.43857
Н	-0.09878	-2.51534	-0.61956
С	4.54050	-1.95811	-0.33327
С	-1.24517	4.23906	-0.17652
Н	-0.20416	4.60400	-0.05799
Ν	-0. 47029	-1.64681	-0.24885
С	0.46543	-0.64200	-0.19762
С	1.87882	-1.08040	-0.10280
С	-1.87066	-1.57824	-0.03966
С	0.11343	0.73158	0.05384
С	-0.59041	1.86292	0.10913
С	-4.63758	-1.65243	0.45835
Н	-5. 71733	-1.66758	0.64192
С	3.64460	-2.64678	0.49835
С	2.31824	-2.22180	0.61354
Н	-1.67096	4.13579	0.83737
Н	3.99892	-3.51765	1.07233
Au	1.66121	2.45845	0.83992
С	-2.39281	-1.01504	1.13857
C1	3. 55324	3.85429	1.46049
Н	0.38830	0.30891	1.12996
Н	1.63068	-2.75300	1.27974
С	-3. 76826	-1.06097	1.38154
Η	-1.72553	-0.58923	1.88545
Н	-4.15764	-0.65660	2.31613

TS1

E+zero-point Energies=		-1383.094031 Hartree	
	Free Energies=	-1383.1	37506 Hartree
Н	-4.05531	0.45404	-2.36227
C1	3. 47493	-3.68503	-1.69698
Н	-1.62992	0.55683	-1.85100
С	-3.72177	0.90592	-1.42521
Н	-1.12107	-1.77411	-1.22995
Н	3. 78738	3.66109	-0.91065
С	-2.35565	0.94407	-1.13423
Н	-5.72095	1.44303	-0.78252
Н	1.42788	2.88090	-0.91287
Н	-1.50834	-4.30274	-0.77845
Au	1.70338	-2.26886	-0.79594
С	-4.65453	1.46701	-0.54559
С	3. 52415	2.73000	-0.40400
С	2.19552	2.29832	-0.39898
С	-0.67279	-1.73977	-0.22354
Н	5.55657	2.30450	0.20520
Н	0.02248	-4.49505	0.12180
С	4.51729	1.96784	0.22109
С	-1.90516	1.52969	0.06258
С	-1.04469	-4.22479	0.22404
С	0.09599	-0.67972	0.10100
С	1.84228	1.09099	0.23163
С	0. 43524	0.61709	0.20189
Ν	-0.52774	1.63644	0.34540
С	-4.20618	2.06657	0.63565
Н	-1.52800	-6.00060	0.90117
С	-1.16623	-2.79356	0.74224
С	4.17428	0.77567	0.86568
Н	-2.23868	-2.58876	0.91804
С	2.84504	0.34712	0.88141
С	-2.84428	2.09171	0.94577
0	-1.70907	-5.07674	1.16609
Н	-4.92240	2.50805	1.33332
Н	-0. 29150	2.32123	1.06788
Н	4. 93923	0.17777	1.36447
Н	2.57187	-0.56240	1.42273
Н	-0.65762	-2.69929	1.71239
Н	-2.50361	2.54476	1.88149

E+zero-point Energies=		-1383.049726 Hartree	
	Free Energies=	-1383.08	7945 Hartree
	Imaginary frequency:	-31.3 cm	-1
Н	2.09846	-0.09488	-3.90056
Н	4.17531	-1.39863	-3.54141
С	2.25322	-0.63218	-2.96750
С	3.40602	-1.36677	-2.76793
Н	0.18829	-0.70025	-2.38796
Н	0.24112	1.44738	-2.22847
С	1.20394	-0.63584	-1.98766
Н	2.52399	2.28560	-1.71028
Н	4. 43457	-2.78599	-1.47549
С	3. 53647	-2.17541	-1.61063
С	0.65885	1.22895	-1.23116
Н	1.20746	3.24261	-0.99362
С	1.74160	2.27078	-0.91106
С	1.39524	-1.40850	-0.79017
С	2.56577	-2.18579	-0.62163
C1	-3.31663	4.48687	0.16640
С	-0.32861	0.85260	-0.26599
Au	-1.77360	2.60333	-0.08066
Н	2.67475	-2.81416	0.26598
Н	-1.90559	-2.72489	0.24117
Ν	0.39177	-1.40927	0.13245
0	3.28885	3.40370	0.49303
С	-0.57887	-0.35926	0.28087
С	2.42607	2.24933	0.46603
Н	3.02549	1.31988	0.61204
С	-2.28596	-2.04031	1.00582
Н	0.51441	-2.00363	0.95489
Н	3.69918	3.44111	1.37904
С	-1.72201	-0.75440	1.13878
Н	1.66469	2.31558	1.28270
Н	-3.82241	-3. 41403	1.65610
С	-3.37376	-2.42793	1.79714
С	-2.25261	0.11712	2.10789
Н	-1.80309	1.10328	2.24664
С	-3.89610	-1.54576	2.75087
С	-3.33965	-0.27128	2.89511
Н	-4. 73901	-1.84851	3.37702
Н	-3.72476	0.42097	3.64548

TS2

9a

E+zero-point Energies= -1383.141347 Hartree

	Free Energies=	-1383.1	82605 Hartree
Н	2.46632	-2.38075	-3.37439
0	2.62460	-2.57550	-2.42891
Н	0.82851	-1.58046	-1.96705
Н	2.31917	-0. 59506	-1.81190
С	1.89095	-1.60500	-1.66329
Н	-5.06055	-0.37537	-1.31355
Н	2.19499	2.84169	-1.34324
Н	-2.70927	-1.10447	-1.02825
Н	4. 59383	2.65232	-0.75434
С	-4.34282	0.29705	-0.83884
Н	-5.78062	1.88929	-0.54280
Н	-0.05063	1.98605	-0.95411
С	-3.02007	-0.11991	-0.67201
С	-4.74533	1.56712	-0.41026
С	2.52448	2.13296	-0.57939
С	3.86035	2.01843	-0.25049
С	1.99084	-2.02114	-0.20136
Н	1.55367	-3.02731	-0.10647
Ν	0.26762	1.33336	-0.23053
С	-2.07392	0.72110	-0.05843
Н	3.05543	-2.10858	0.07049
С	-3.81314	2.41915	0.18986
С	1.57456	1.30934	0.06528
С	-0.66430	0.30407	0.14120
Н	-4.11731	3.40738	0.54269
С	-2.49055	2.00079	0.36189
С	4.30905	1.06993	0.72673
Н	5.37752	0.99999	0.94377
С	-0.19522	-0.91406	0.53371
Au	-1.46644	-2.72612	0.81956
Н	-1.77948	2.66010	0.86788
C1	-2.88258	-4.70275	1.19701
С	1.27177	-1.09917	0.81334
С	1.96047	0.32253	1.10941
С	3. 41968	0.26783	1.37549
Н	1.36089	-1.60801	1.78694
Н	3. 76291	-0. 44573	2.12886
Н	1.42461	0.61883	2.03973

E+ze	E+zero-point Energies= -1383.117269 H		269 Hartree
	Free Energies=	-1383.1612	251 Hartree
	Imaginary frequency:	-18.9 cm ⁻¹	
Н	2.43920	-1.84133	-3.40959
0	2.68406	-2.16469	-2.51814
Н	0.69819	-1.98997	-1.86570
Н	-4.39589	2.51717	-1.38861
Н	1.71410	-0.54480	-1.68250
С	1.70731	-1.63676	-1.60786
Н	1.73173	2.64988	-1.43506
Н	-6.01515	0.65442	-0.86977
Н	4. 15147	2.78363	-0.90020
С	-4.06347	1.58858	-0.88140
С	-4.97751	0.56681	-0.52142
Н	-2.04802	2.33061	-0.67868
С	2.16802	2.06544	-0.61988
С	-2.72068	1.47492	-0.51042
С	3. 50613	2.11173	-0.32798
С	2.01464	-2.07141	-0.18586
Н	1.65376	-3.10706	-0.07023
Н	3.10192	-2.05677	-0.02661
Ν	0.02584	1.08405	-0.22693
С	-4.57274	-0.46833	0.35927
С	1.29933	1.16074	0.08260
С	-2.24243	0.30133	0.14905
Н	-5.29640	-1.16025	0.83349
С	-0.77429	0.06663	0.27409
Н	5.18313	1.30879	0.82411
С	4.10127	1.25854	0.67341
С	-3.22020	-0. 57133	0.71607
С	-0.18735	-1.13906	0.70483
Au	-1.26299	-3.05428	1.02960
С	1.30670	-1.21171	0.90359
С	1.87008	0.26341	1.14438
С	3. 33829	0.37536	1.36300
Н	-2.92134	-1.29620	1.48814
Н	1.51439	-1.72873	1.85844
Н	3. 79370	-0.26491	2.12580
Н	1.36503	0.54195	2.09165

TS3

10a

E+zero-point Energies=		-1383.166702 Hartree	
	Free Energies=	-1383.2	19099 Hartree
Н	3.68843	0.22581	-3.76562
Н	5.04820	1.98073	-2.61995
С	3. 34111	0.66783	-2.82892
Н	1.50649	-0.46843	-2.81435
С	4.09667	1.65746	-2.19208
С	2.12672	0.25346	-2.27666
C1	2.72650	-4.58082	-1.69048
С	3.62063	2.24079	-1.00900
Au	1.34377	-2.61559	-1.15452
С	1.64844	0.81145	-1.07141
Н	4.20590	3.01728	-0.51103
С	2.40636	1.83098	-0.45922
С	-0.01619	-0.99328	-0.50937
С	0.37940	0.34616	-0.46861
С	-2.29873	-0.12414	0.07825
Н	-4.20758	-1.22871	0.31635
С	-1.33914	-1.38508	0.07261
Ν	-0.32304	1.30578	0.24030
Н	2.03218	2.28132	0.46181
С	-3.65060	-0.34974	0.65568
С	-1.56189	1.07101	0.61591
Н	-0.77880	-3.17690	1.12014
С	-4.21325	0.53048	1.52383
С	-1.20667	-2.19851	1.39546
С	-2.22551	1.96927	1.51022
Н	-5.21980	0.35639	1.91122
Н	-2.21227	-2.39340	1.80183
Н	-1.67294	2.84861	1.84723
С	-3.50185	1.71202	1.93981
Н	0.63817	-1.29823	2.08324
Н	-3.99171	2.40673	2.62641
С	-0.33315	-1.62298	2.50111
0	-1.01957	-0. 52655	3.12709
Н	-0.13249	-2.42219	3.23991
Н	-0.37663	-0.07238	3.70605

E+zero-point Energies=		1383.123288 Hartree	
	Free Energies=	1383.	181649 Hartree
	Imaginary frequency:	-46.2 ci	n^{-1}
Н	2.80369	-1.42464	-2.90083
Н	-3.95020	2.85291	-1.87959
Н	2.07075	-3.46817	-1.97262
0	2.85013	-1.53204	-1.93045
Н	0.83619	-2.18403	-1.91281
С	1.84325	-2.47769	-1.55307
Н	-1.55676	2.35509	-1.41991
С	-3.68638	2.16405	-1.07836
Н	-5.73140	1.68598	-0.56969
С	-2.34576	1.88688	-0.83976
С	-4.67953	1.49549	-0.35817
Н	2.19916	3.19702	-0.46379
Н	4.65312	2.85404	-0.01954
С	2.59548	2.25131	-0.09242
С	1.76937	-2.53201	-0.01563
С	3.94795	2.05326	0.15916
Ν	0.33616	1.46133	-0.03093
С	-1.97400	0.90932	0.09572
Au	-1.85209	-2.53280	0.21151
Н	1.10178	-3.35980	0.27946
С	1.66801	1.21010	0.16172
C1	-3.64384	-4.21787	0.61550
Н	2.77197	-2.70921	0.39783
С	-0.56006	0.51226	0.19460
С	-0.21032	-0.91226	0.24293
С	-4. 32195	0.56485	0.62558
С	1.20231	-1.17755	0.42883
С	4.38544	0.85044	0.74727
С	2.14100	-0.06565	0.59061
Н	5. 41733	0.76587	1.09633
С	-2.97115	0.28659	0.87174
Н	-5.08925	0.00496	1.16914
С	3. 50600	-0.19802	0.95364
Н	3.86986	-1.12991	1.39615
Н	0. 40089	-1.26078	1.44805
Н	-2.71009	-0.42956	1.66571

TS4

_	
-	9
ັ	а

E+zero-point Energies= -787.452450 Hartree

	Free Energies=	-787.48	36608 Hartree
Н	-1.33076	1.54020	-5.83945
Н	-1.39992	-2.82832	-1.66040
Н	-2.94815	-2.00006	-1.49263
С	-2.02791	-2.26516	-0.95112
Н	5.10583	1.96940	-0.58306
Н	2.61349	2.04090	-0.67503
Н	0.63186	-1.99637	-0.72178
Н	-3.97248	-0.43063	-0.40947
Н	-2.76407	-4.16683	-0.25505
С	4.52513	1.08975	-0.29382
С	-1.26998	-1.02638	-0.52512
С	3.12855	1.13302	-0.35684
С	0.11085	-1.07567	-0.44891
С	-3.31429	0.41756	-0.22909
Н	6.27185	-0.09536	0.20126
Н	-4.94102	1.79234	0.02989
С	-1.90657	0.22110	-0.22619
С	5.18313	-0.06628	0.13362
С	-3.85624	1.66207	0.03196
С	0.86651	0.07912	-0.10010
С	2.34965	0.01545	-0.01716
С	-2.39701	-3.22085	0.18739
С	-1.05743	1.34471	0.07284
С	-3.01795	2.76903	0.30839
Ν	0.30529	1.26145	0.12694
Н	-3. 45973	3.74750	0.51239
С	-1.64667	2.61247	0.33322
С	4.42495	-1.18959	0.52381
С	3.01296	-1.15161	0.43533
Н	-0.97607	3.44340	0.55779
Н	-1.49707	-3.44976	0.78835
Н	4.91680	-2.03703	1.01061
Н	2.42858	-1.97807	0.84919
0	-3. 41296	-2.61019	0.99484
Н	-3.60750	-3.22061	1.73378

3. Copies of ¹H NMR and ¹³C NMR Spectra

¹³C-NMR spectrum of **5a**

¹H-NMR spectrum of **5**c

¹³C-NMR spectrum of **5**c

¹H-NMR spectrum of **5**f

¹³C-NMR spectrum of **5g**

¹H-NMR spectrum of **5i**

¹³C-NMR spectrum of **5i**

¹³C-NMR spectrum of **5**k

¹³C-NMR spectrum of **5**l

¹³C-NMR spectrum of **5p**

•

¹³C-NMR spectrum of **5**q

¹³C-NMR spectrum of **5u**

4. References

- (1). Y. Zhao and D. G. Truhlar, *Theor Chem Acc*, 2008, 120, 215-241.
- (2). S. E. Wheeler and K. N. Houk, J Chem Theory Comput, 2010, 6, 395-404.
- (3). Y. Zhao and D. G. Truhlar, Accounts Chem Res, 2008, 41, 157-167.
- (4). a) Y. Zhao and D. G. Truhlar, *Phys Chem Chem Phys*, **2008**, *10*, 2813-2818; b) R. F. Ribeiro, A. V. Marenich, C. J. Cramer and D. G. Truhlar, *J Phys Chem B*, **2011**, *115*, 14556-14562.