EnantioselectiveConstructionofTricyclicPyrrolidine-FusedBenzo[b]thiophene1,1-DioxidesDerivativesviαCopper(I)-CatalyzedAsymmetric1,3-Dipolar Cycloaddition

Hua Deng, Fu-Sheng He, Cong-Shan Li, Wu-Lin Yang and Wei-Ping Deng^*

School of Pharmacy and Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China

Contents

1.	General information	1
2.	Table S1. Bases and solvents screening of the reaction conditions	2
3.	General procedure for the asymmetric 1,3-dipolar cycloaddition	2
4.	Gram scale procedure for the asymmetric cycloaddition of 1c to 2a	15
5.	Transformation of cycloadduct 3ca	16
6.	The absolute configuration determination of (15,35,3aR,8bR)-3aa	17
7.	References	19
8.	Chiral HPLC chromatograms	19
9.	¹ H NMR and ¹³ C NMR spectra	50

1. General information

¹H NMR spectrum were recorded on a Bruker DPX 400 MHz spectrometer in CDCl₃. Chemical shifts were reported in ppm with the internal TMS signal at 0.0 ppm as a standard. The spectrums are interpreted as: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = doubletdoublet of doublets, brs = broad singlet, coupling constant(s) J are reported in Hz and relative integrations are reported. ¹³C NMR (100 MHz) spectrums were recorded on a Bruker DPX 400 MHz spectrometer in CDCl₃. Chemical shifts were reported in ppm with the internal chloroform signal at 77.16 ppm as a standard. Optical rotations were measured on an AUTOPOL V. Diastereomeric ratios and enantiomeric excesses were determined from crude ¹H NMR spectroscopy interpretation or by analysis of HPLC traces, obtained by using chiralpak AS-H, AD-H, IA or chiralcel OD-H columns with *n*-hexane and *i*-propanol or ethanol as solvents. (Chiralpak AS-H, AD-H, IA and chiralcel OD-H columns were purchased from Daicel Chemical Industries, LTD.) Melting points were obtained in open capillary tubes using SGW X-4 micro melting point apparatus which were uncorrected. Mass spectrums were recorded on TOF mass Finigann MAT8401 spectrometer. Solvents were dried and distilled following usual protocols. Commercially available materials purchased from Adamas-beta, TCI or Energy Chemical and were used as received. Benzo[b] thiophene 1,1-dioxides 2 were prepared according to the literature procedure.1

CI N	CO ₂ Me + , S	L7 (11 n Cu(CH ₃ CN)₄BF base (20 mol ℃ 4 Å MS	nol %) F_4 (10 mol %) %), solvent S, rt OOO exo-3aa		PAr_2 $PAr_$
entry	solvent	base	yield $(\%)^b$	dr^c	ee (%) ^c
1^d	CH_2Cl_2	DIPEA	nr	nd	nd
2^d	CH_2Cl_2	DABCO	trace	nd	nd
3	CH_2Cl_2	DBU	88	9:1	97
4^e	CH_2Cl_2	TMG	90	7:1	97
5	CH ₂ Cl ₂	CS ₂ CO ₃	94	9:1	97
6^d	THF	CS_2CO_3	74	9:1	96
7^d	Toluene	CS_2CO_3	90	3:1	96
8^d	Et ₂ O	CS_2CO_3	45	3:1	90
9^d	CH ₃ CN	CS_2CO_3	54	8:1	96
10^e	CPME	CS_2CO_3	73	4:1	95
11^{e}	TBME	CS_2CO_3	66	3:1	77
12^d	CH ₃ Cl	CS_2CO_3	75	9:1	95
13^d	ClCH ₂ CH ₂ Cl	CS_2CO_3	74	7:1	97

2. Table S1. Bases and solvents screening of the reaction conditions^a

^{*a*}Unless otherwise stated, reactions were performed with **1a** (0.15 mmol), **2a** (0.10 mmol) in 1 mL of solvents (C = 0.1 M), under an N₂ atmosphere; nr = No reaction; nd = not detected; DIPEA = N,N-Diisopropylethylamine, DABCO = 1,4-Diazabicyclo[2.2.2]octane, DBU = 1,8-Diazabicyclo[5.4.0]undec-7-ene, TMG = Tetramethylguanidine, CPME = Cyclopentyl methyl ether, TBME = 'Butyl methyl ether. ^{*b*}Isolated yield. ^{*c*}The dr was determined by ¹H NMR spectroscopy or/and chiral HPLC analysis, the ee was determined by chiral HPLC analysis. ^{*d*}24 h. ^{*e*}10 h.

3. General procedure for the asymmetric 1,3-dipolar cycloaddition

At nitrogen atmosphere, $Cu(CH_3CN)_4BF_4$ (3.1 mg, 0.01 mmol) and L7 (13.0 mg, 0.011mmol) were dissolved in 2 mL CH₂Cl₂, and stirred at room temperature for about 1 h. Then, iminoester 1 (0.3 mmol) and Cs₂CO₃ (13.0 mg, 0.04 mmol) were added, the mixture was cooled to 0 C and benzo[*b*]thiophene 1,1-dioxide 2 (0.2 mmol) was added. Once starting material was consumed (monitored by TLC), the mixture was concentrated and the residue was purified by column chromatography (petroleum ether/ethyl acetate 15:1 to 6:1) on silica gel to afford the corresponding product **3**.

Methyl

(1S,3S,3aR,8bR)-3-(4-chlorophenyl)-2,3,3a,8b-tetrahydro-1H-benzo[4,5]thieno[2,3-c]pyrrole-

1-carboxylate 4,4-dioxide

White solid, yield: 70.1 mg, 93%; m.p.: 158-160 °C; $[\alpha]_D^{25} = -95.2$ (*c* 1.05, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, *J* = 7.8 Hz, 1H), 7.71-7.59 (m, 2H), 7.61-7.52 (m, 1H), 7.53-7.48 (m, 2H), 7.40-7.34 (m, 2H), 4.83 (d, *J* = 7.1 Hz, 1H), 4.49 (dd, *J* = 9.4, 7.2 Hz, 1H), 3.97 (d, *J* = 7.1 Hz, 1H), 3.93 (dd, *J* = 9.5, 7.1 Hz, 1H), 3.88 (s, 3H), 2.76 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 171.8, 138.7, 138.2, 136.7, 134.4, 134.2, 130.2, 129.1, 128.5, 127.4, 122.1, 70.3, 66.2, 62.2, 53.0, 49.0; HRMS (ESI, m/z) calcd for C₁₈H₁₆ClNO₄S [M+H]⁺: 378.0561, found: 378.0566; HPLC (Chiralcel OD-H, *n*-hexane/EtOH = 90/10, 0.8 mL/min, 220 nm) t_R = 33.95 min, 40.41 min, 45.16 min (minor diastereomer), 49.11 min (minor diastereomer).

Benzyl

(1*S*,3*S*,3a*R*,8b*R*)-3-(4-chlorophenyl)-2,3,3a,8b-tetrahydro-1*H*-benzo[4,5]thieno[2,3-*c*]pyrrole-1-carboxylate 4,4-dioxide

White solid, yield: 81.5 mg, 90%; m.p.: 78-80 °C; $[\alpha]_D^{25} = -10.1$ (*c* 0.95, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, *J* = 7.4 Hz, 1H), 7.60-7.47 (m, 5H), 7.46-7.32 (m, 7H), 5.34 (d, *J* = 12.1 Hz, 1H), 5.26 (d, *J* = 12.1 Hz, 1H), 4.84 (d, *J* = 6.9 Hz, 1H), 4.46 (dd, *J* = 9.4, 7.2 Hz, 1H), 4.00 (d, *J* = 7.1 Hz, 1H), 3.92 (dd, *J* = 9.4, 6.9 Hz, 1H), 2.78 (brs, 1H), 1.57 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.2, 138.7, 138.3, 136.6, 135.1, 134.4, 134.2, 130.2, 129.1, 129.0, 128.9, 128.7, 128.5, 127.4, 122.1, 70.5, 67.9, 66.3, 62.1, 49.1; HRMS (ESI, m/z) calcd for C₂₄H₂₀ClNO₄S [M+H]⁺: 454.0874, found: 454.0880; HPLC (Chiralcel OD-H, *n*-hexane/EtOH = 90/10, 0.8 mL/min, 220 nm) t_R = 33.41 min (minor diastereomer), 35.47 min (minor diastereomer), 38.01 min, 41.27 min.

'Butyl

(1S, 3S, 3aR, 8bR) - 3 - (4 - chlorophenyl) - 2, 3, 3a, 8b - tetrahydro - 1H - benzo[4, 5] thieno[2, 3-c] pyrrole - 1H - benzo[4, 5] - benzo

1-carboxylate 4,4-dioxide

White solid, yield: 78.8 mg, 94%; m.p.: 144-146 °C; $[\alpha]_D^{25} = -5.0$ (*c* 1.04, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, *J* = 7.8 Hz, 1H), 7.70-7.54 (m, 3H), 7.51 (d, *J* = 8.4 Hz, 2H), 7.37 (d, *J* = 8.5 Hz, 2H), 4.81-4.73 (m, 1H), 4.41 (dd, *J* = 9.5, 6.9 Hz, 1H), 3.92 (dd, *J* = 9.5, 7.4 Hz, 1H), 3.90-3.82 (m, 1H), 2.71 (brs, 1H), 1.57 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 170.6, 138.7, 138.2, 137.2, 134.3, 134.2, 130.1, 129.1, 128.6, 127.3, 122.1, 83.2, 70.4, 67.1, 62.5, 49.6, 28.2; HRMS (ESI, m/z) calcd for C₂₁H₂₂ClNO₄S [M+H]⁺: 420.1031, found: 420.1036; HPLC (Chiralpak AS-H, *n*-hexane/EtOH = 90/10, 0.8 mL/min, 220 nm) t_R = 22.40 min, 32.97 min (minor diastereomer), 40.85 min (minor diastereomer), 56.16 min.

Ethyl

(1*S*,3*S*,3a*R*,8b*R*)-3-(4-chlorophenyl)-2,3,3a,8b-tetrahydro-1*H*-benzo[4,5]thieno[2,3-*c*]pyrrole-1-carboxylate 4,4-dioxide

White solid, yield: 70.4 mg, 90%; m.p.: 142-144 °C; $[\alpha]_D^{25} = -12.5$ (*c* 0.96, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, *J* = 7.8 Hz, 1H), 7.70-7.54 (m, 3H), 7.51 (d, *J* = 8.4 Hz, 2H), 7.37 (d, *J* = 8.5 Hz, 2H), 4.83 (d, *J* = 7.1 Hz, 1H), 4.48 (dd, *J* = 9.4, 7.1 Hz, 1H), 4.34 (qd, *J* = 7.1, 1.5 Hz, 2H), 3.98-3.90 (m, 2H), 2.77 (brs, 1H), 1.37 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.4, 138.7, 138.3, 136.9, 134.4, 134.2, 130.2, 129.2, 128.6, 127.4, 122.1, 70.4, 66.4, 62.3, 62.2, 49.2, 14.4; HRMS (ESI, m/z) calcd for C₁₉H₁₈ClNO₄S [M+H]⁺: 392.0718, found: 392.0723; HPLC (Chiralcel OD-H, *n*-hexane/EtOH = 90/10, 0.8 mL/min, 220 nm) t_R = 22.49 min, 25.36 min, 30.45 min (minor diastereomer), 33.53 min (minor diastereomer).

'Butyl

(1*S*,3*S*,3a*R*,8b*R*)-3-(2-chlorophenyl)-2,3,3a,8b-tetrahydro-1*H*-benzo[4,5]thieno[2,3-*c*]pyrrole-1-carboxylate 4,4-dioxide

White solid, yield: 77.1 mg, 92%; m.p.: 130-132 °C; $[\alpha]_D^{25} = +45.3$ (*c* 0.91, CH₂Cl₂); ¹H NMR

(400 MHz, CDCl₃) δ 7.76 (d, *J* = 8.6 Hz, 2H), 7.67-7.60 (m, 1H), 7.60-7.51 (m, 2H), 7.41 (m, 1H), 7.36-7.27 (m, 2H), 5.27 (d, *J* = 5.1 Hz, 1H), 4.40 (dd, *J* = 9.0, 7.7 Hz, 1H), 4.17 (dd, *J* = 9.0, 5.1 Hz, 1H), 3.88 (d, *J* = 7.7 Hz, 1H), 3.06 (brs, 1H), 1.55 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 170.8, 138.4, 137.4, 136.7, 134.1, 133.3, 130.3, 130.1, 129.6, 129.5, 127.4, 127.4, 122.2, 82.9, 70.4, 67.5, 59.8, 49.0, 28.2; **HRMS** (ESI, m/z) calcd for C₂₁H₂₂ClNO₄S [M+H]⁺: 420.1031, found: 420.1036; **HPLC** (Chiralpak IA, *n*-hexane/EtOH = 90/10, 0.8 mL/min, 220 nm) t_R = 24.06 min, 27.65 min (minor diastereomer), 34.14 min, 40.05 min (minor diastereomer).

'Butyl

(1*S*,3*S*,3a*R*,8b*R*)-3-(3-chlorophenyl)-2,3,3a,8b-tetrahydro-1*H*-benzo[4,5]thieno[2,3-*c*]pyrrole-1-carboxylate 4,4-dioxide

White solid, yield: 82.9 mg, 99%; m.p.: 110-112 °C; $[\alpha]_D^{25} = +1.5$ (*c* 1.00, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, *J* = 7.8 Hz, 1H), 7.71-7.52 (m, 4H), 7.47-7.40 (m, 1H), 7.36-7.28 (m, 2H), 4.80 (d, *J* = 6.8 Hz, 1H), 4.42 (dd, *J* = 9.2, 7.1 Hz, 1H), 3.95 (dd, *J* = 9.4, 7.1 Hz, 1H), 3.86 (d, *J* = 6.9 Hz, 1H), 2.73 (brs, 1H), 1.57 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 170.5, 142.0, 138.6, 137.1, 134.9, 134.3, 130.3, 130.1, 128.5, 127.3, 127.2, 125.5, 122.1, 83.2, 70.4, 67.2, 62.4, 49.4, 28.2; HRMS (ESI, m/z) calcd for C₂₁H₂₂ClNO₄S [M+H]⁺: 420.1031, found: 420.1036; HPLC (Chiralpak AS-H, *n*-hexane/EtOH = 90/10, 0.8 mL/min, 220 nm) t_R = 24.05 min, 28.08 min (minor diastereomer), 33.47 min (minor diastereomer), 57.81 min.

^tButyl

(1*S*,3*S*,3a*R*,8b*R*)-3-(4-bromophenyl)-2,3,3a,8b-tetrahydro-1*H*-benzo[4,5]thieno[2,3-*c*]pyrrole -1-carboxylate 4,4-dioxide

White solid, yield: 78.7 mg, 85%; m.p.: 132-135 °C; $[\alpha]_D^{25} = -11.0$ (*c* 1.04, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, *J* = 7.8 Hz, 1H), 7.71-7.54 (m, 2H), 7.57-7.49 (m, 3H), 7.49-7.42 (m, 2H), 4.76 (t, *J* = 6.9 Hz, 1H), 4.40 (dd, *J* = 9.5, 6.9 Hz, 1H), 3.92 (dd, *J* = 9.5, 7.4 Hz, 1H),

3.89-3.82 (m, 1H), 2.76-2.68 (m, 1H), 1.57 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 170.6, 138.7, 138.7, 137.1, 134.3, 132.1, 130.1, 128.9, 127.3, 122.3, 122.1, 83.2, 70.4, 67.1, 62.5, 49.6, 28.2; HRMS (ESI, m/z) calcd for C₂₁H₂₂BrNO₄S [M+H]⁺: 464.0526, found: 464.0531; HPLC (Chiralpak AS-H, *n*-hexane/EtOH = 90/10, 1.0 mL/min, 220 nm) t_R = 21.11 min, 32.47 min (minor diastereomer), 38.22 min (minor diastereomer), 62.05 min.

'Butyl

(1*S*,3*S*,3a*R*,8b*R*)-3-(2-bromophenyl)-2,3,3a,8b-tetrahydro-1*H*-benzo[4,5]thieno[2,3-*c*]pyrrole -1-carboxylate 4,4-dioxide

White solid, yield: 80.6 mg, 87%; m.p.: 60-62 °C; $[\alpha]_D^{25} = +50.6$ (*c* 0.95, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.81-7.73 (m, 2H), 7.67-7.51 (m, 4H), 7.37 (td, *J* = 7.6, 1.0 Hz, 1H), 7.20 (td, *J* = 7.7, 1.6 Hz, 1H), 5.30 (d, *J* = 4.7 Hz, 1H), 4.45-4.37 (m, 1H), 4.16 (dd, *J* = 8.9, 4.7 Hz, 1H), 3.89 (d, *J* = 7.8 Hz, 1H), 3.05 (brs, 1H), 1.55 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 170.9, 139.2, 138.4, 136.8, 134.1, 133.6, 130.1, 129.9, 129.7, 128.0, 127.4, 123.4, 122.2, 82.8, 70.8, 67.6, 61.6, 48.7, 28.2; HRMS (ESI, m/z) calcd for C₂₁H₂₂BrNO₄S [M+H]⁺: 464.0526, found: 464.0531; HPLC (Chiralpak AD-H, *n*-hexane/*i*-propanol = 80/20, 0.8 mL/min, 220 nm) t_R =13.50 min, 16.33 min, 18.13 min (minor diastereomer), 19.58 min (minor diastereomer).

^tButyl

(1*S*,3*S*,3a*R*,8b*R*)-3-(*m*-tolyl)-2,3,3a,8b-tetrahydro-1*H*-benzo[4,5]thieno[2,3-*c*]pyrrole-1-carbo xylate 4,4-dioxide

White solid, yield: 75.8 mg, 95%; m.p.: 107-109 °C; $[\alpha]_D^{25} = +0.7$ (*c* 1.09, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, *J* = 7.7 Hz, 1H), 7.69-7.60 (m, 2H), 7.59-7.53 (m, 1H), 7.36-7.26 (m, 3H), 7.14 (d, *J* = 7.3 Hz, 1H), 4.76 (t, *J* = 7.4 Hz, 1H), 4.39 (dd, *J* = 9.6, 7.0 Hz, 1H), 4.01 (dd, *J* = 9.5, 7.4 Hz, 1H), 3.85 (t, *J* = 6.9 Hz, 1H), 2.79-2,68 (m, 1H), 2.38 (s, 3H), 1.57 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 170.8, 139.4, 138.9, 138.7, 137.2, 134.2, 130.0, 129.2, 128.9, 127.8, 127.2, 124.2, 122.1, 83.1, 70.4, 67.4, 63.3, 50.3, 28.2, 21.6; **HRMS** (ESI, m/z) calcd for C₂₂H₂₅NO4S $[M+H]^+$: 400.1577, found: 400.1583; **HPLC** (Chiralpak AS-H, *n*-hexane/EtOH = 90/10, 1.0 mL/min, 220 nm) t_R = 9.18 min (minor diastereomer), 15.09 min, 20.67 min (minor diastereomer), 41.76 min.

'Butyl

(1*S*,3*S*,3a*R*,8b*R*)-3-(*p*-tolyl)-2,3,3a,8b-tetrahydro-1*H*-benzo[4,5]thieno[2,3-*c*]pyrrole-1-carbox ylate 4,4-dioxide

White solid, yield: 75.8 mg, 95%; m.p.: 143-145 °C; $[\alpha]_D^{25} = -8.2$ (*c* 0.90, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, *J* = 7.8 Hz, 1H), 7.68-7.60 (m, 2H), 7.59-7.52 (m, 1H), 7.43 (d, *J* = 8.1 Hz, 2H), 7.21 (d, *J* = 7.9 Hz, 2H), 4.75 (d, *J* = 7.4 Hz, 1H), 4.39 (dd, *J* = 9.4, 7.0 Hz, 1H), 3.98 (dd, *J* = 9.5, 7.5 Hz, 1H), 3.85 (d, *J* = 6.9 Hz, 1H), 2.73 (brs, 1H), 2.36 (s, 3H), 1.57 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 170.8, 138.9, 138.1, 137.3, 136.4, 134.2, 130.0, 129.7, 127.2, 127.1, 122.1, 83.1, 70.4, 67.3, 63.2, 50.3, 28.2, 21.3; HRMS (ESI, m/z) calcd for C₂₂H₂₅NO₄S [M+H]⁺: 400.1577, found: 400.1583; HPLC (Chiralpak AS-H, *n*-hexane/EtOH = 90/10, 1.0 mL/min, 220 nm) t_R = 10.64 min (minor diastereomer), 17.31 min, 21.79 min (minor diastereomer), 63.66 min.

^tButyl

(1*S*,3*S*,3a*R*,8b*R*)-3-(*o*-tolyl)-2,3,3a,8b-tetrahydro-1*H*-benzo[4,5]thieno[2,3-*c*]pyrrole-1-carbox ylate 4,4-dioxide

White solid, yield: 71.9 mg, 90%; m.p.: 188-190 °C; $[\alpha]_D^{25} = +24.0$ (*c* 0.99, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, *J* = 7.7 Hz, 1H), 7.68-7.52 (m, 4H), 7.31-7.17 (m, 3H), 5.06 (d, *J* = 6.1 Hz, 1H), 4.45-4.33 (dd, *J* = 9.3, 6.2 Hz, 1H), 4.07 (dd, *J* = 9.3, 7.3 Hz, 1H), 3.86 (d, *J* = 7.4 Hz, 1H), 2.68 (brs, 1H), 2.49 (s, 3H), 1.56 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 170.8, 138.6, 137.9, 137.0, 136.8, 134.1, 131.1, 130.0, 128.2, 127.4, 126.7, 126.3, 122.1, 82.9, 70.9, 67.5, 58.9, 49.9, 28.2, 19.7; HRMS (ESI, m/z) calcd for C₂₂H₂₅NO₄S [M+H]⁺: 400.1577, found: 400.1583; HPLC (Chiralpak AD-H, *n*-hexane/*i*-propanol = 80/20, 0.8 mL/min, 220 nm) t_R = 12.74 min, 13.71 min, 17.91 min (minor diastereomer), 22.05 min (minor diastereomer).

^tButyl

(1*S*,3*S*,3a*R*,8b*R*)-3-(4-methoxyphenyl)-2,3,3a,8b-tetrahydro-1*H*-benzo[4,5]thieno[2,3-*c*]pyrro le-1-carboxylate 4,4-dioxide

White solid, yield: 77.2 mg, 93%; m.p.: 146-148 °C; $[\alpha]_D^{25} = -6.3$ (*c* 1.00, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, *J* = 7.8 Hz, 1H), 7.70-7.59 (m, 2H), 7.58-7.52 (m, 1H), 7.49-7.41 (m, 2H), 6.98-6.84 (m, 2H), 4.71 (d, *J* = 7.6 Hz, 1H), 4.39 (dd, *J* = 9.4, 7.0 Hz, 1H), 3.96 (dd, *J* = 9.5, 7.7 Hz, 1H), 3.84 (d, *J* = 6.9 Hz, 1H), 3.82 (s, 3H), 2.71 (brs, 1H), 1.57 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 170.8, 159.6, 138.9, 137.3, 134.2, 131.4, 130.0, 128.4, 127.2, 122.1, 114.4, 83.1, 70.4, 67.3, 63.0, 55.5, 50.2, 28.2; HRMS (ESI, m/z) calcd for C₂₂H₂₅NO₅S [M+H]⁺: 416.1526, found: 416.1532; HPLC (Chiralpak AD-H, *n*-hexane/*i*-propanol = 70/30, 0.8 mL/min, 220 nm) t_R = 17.66 min, 19.97 min, 25.67 min (minor diastereomer), 28.17 min (minor diastereomer).

^tButyl

(1*S*,3*S*,3a*R*,8b*R*)-3-(4-(tert-butyl)phenyl)-2,3,3a,8b-tetrahydro-1*H*-benzo[4,5]thieno[2,3-*c*]pyr role-1-carboxylate 4,4-dioxide

White solid, yield: 79.4 mg, 90%; m.p.: 158-159 °C; $[\alpha]_D^{25} = -20.2$ (*c* 1.06, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, *J* = 7.8 Hz, 1H), 7.69-7.60 (m, 2H), 7.58-7.52 (m, 1H), 7.49-7.40 (m, 4H), 4.77 (d, *J* = 7.4 Hz, 1H), 4.40 (dd, *J* = 9.5, 7.1 Hz, 1H), 4.01 (dd, *J* = 9.5, 7.5 Hz, 1H), 3.85 (d, *J* = 7.0 Hz, 1H), 2.74 (brs, 1H), 1.56 (s, 9H), 1.33 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 170.8, 151.3, 138.9, 137.3, 136.4, 134.2, 130.0, 127.2, 126.9, 126.0, 122.1, 83.1, 70.4, 67.4, 63.1, 50.3, 34.7, 31.5, 28.2; HRMS (ESI, m/z) calcd for C₂₅H₃₁NO₄S [M+H]⁺: 442.2047, found: 442.2052; HPLC (Chiralpak AS-H, *n*-hexane/EtOH = 90/10, 1.0 mL/min, 220 nm) t_R = 13.56 min, 35.64 min.

^tButyl

(1*S*,3*S*,3a*R*,8b*R*)-3-phenyl-2,3,3a,8b-tetrahydro-1*H*-benzo[4,5]thieno[2,3-*c*]pyrrole-1-carboxy late 4,4-dioxide

White solid, yield: 76.2 mg, 99%; m.p.: 142-143 °C; $[\alpha]_D^{25} = -1.5$ (*c* 0.95, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, *J* = 7.8 Hz, 1H), 7.70-7.59 (m, 2H), 7.59-7.51 (m, 3H), 7.44-7.37 (m, 2H), 7.36-7.30 (m, 1H), 4.80 (d, *J* = 7.2 Hz, 1H), 4.40 (dd, *J* = 9.4, 7.0 Hz, 1H), 4.00 (dd, *J* = 9.5, 7.3 Hz, 1H), 3.86 (d, *J* = 6.9 Hz, 1H), 2.76 (brs, 1H), 1.57 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 170.7, 139.5, 138.8, 137.2, 134.2, 130.0, 129.0, 128.4, 127.2, 127.2, 122.1, 83.1, 70.5, 67.3, 63.3, 50.1, 28.2; HRMS (ESI, m/z) calcd for C₂₁H₂₃NO₄S [M+H]⁺: 386.1421, found: 386.1426; HPLC (Chiralpak AS-H, *n*-hexane/EtOH = 90/10, 1.0 mL/min, 220 nm) t_R = 18.69 min, 22.48 min (minor diastereomer), 24.68 min (minor diastereomer), 49.48 min.

'Butyl

(1*S*,3*S*,3a*R*,8b*R*)-3-(naphthalen-1-yl)-2,3,3a,8b-tetrahydro-1*H*-benzo[4,5]thieno[2,3-*c*]pyrrole -1-carboxylate 4,4-dioxide

White solid, yield: 80.9 mg, 93%; m.p.: 154-156 °C; $[\alpha]_D^{25} = +20.1$ (*c* 1.00, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 8.34 (d, J = 8.4 Hz, 1H), 7.93-7.81 (m, 3H), 7.77 (d, J = 7.8 Hz, 1H), 7.71-7.46 (m, 6H), 5.64 (d, J = 5.4 Hz, 1H), 4.48 (dd, J = 9.0, 7.4 Hz, 1H), 4.30 (dd, J = 9.1, 5.5 Hz, 1H), 3.98 (d, J = 7.3 Hz, 1H), 2.92 (brs, 1H), 1.53 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 170.9, 138.5, 137.2, 135.4, 134.2, 134.1, 131.2, 130.0, 129.1, 129.0, 127.5, 126.8, 126.1, 125.4, 124.5, 123.5, 122.1, 82.8, 70.2, 67.6, 59.1, 49.2, 28.2; HRMS (ESI, m/z) calcd for C₂₅H₂₅NO4S [M+H]⁺: 436.1577, found: 436.1583; HPLC (Chiralpak AS-H, *n*-hexane/EtOH = 90/10, 1.2 mL/min, 220 nm) t_R = 15.46 min, 41.03 min.

'Butyl

(1*S*,3*S*,3a*R*,8b*R*)-3-(naphthalen-2-yl)-2,3,3a,8b-tetrahydro-1*H*-benzo[4,5]thieno[2,3-*c*]pyrrole -1-carboxylate 4,4-dioxide

White solid, yield: 82.6 mg, 95%; m.p.: 151-153 °C; $[\alpha]_D^{25} = -15.6$ (*c* 1.10, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 8.01 (s, 1H), 7.92-7.82 (m, 3H), 7.77 (d, J = 7.7 Hz, 1H), 7.71-7.62 (m, 3H), 7.60-7.54 (m, 1H), 7.53-7.45 (m, 2H), 4.99 (d, J = 7.2 Hz, 1H), 4.46 (dd, J = 9.5, 7.1 Hz, 1H), 4.10 (dd, J = 9.5, 7.2 Hz, 1H), 3.92 (d, J = 7.0 Hz, 1H), 2.88 (brs, 1H), 1.58 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 170.7, 138.9, 137.2, 136.9, 134.3, 133.4, 133.3, 130.1, 129.0, 128.2, 127.8, 127.3, 126.5, 126.4, 126.2, 124.9, 122.1, 83.1, 70.5, 67.3, 63.3, 50.0, 28.2; HRMS (ESI, m/z) calcd for C₂₅H₂₅NO₄S [M+H]⁺: 436.1577, found: 436.1583; HPLC (Chiralpak AD-H, *n*-hexane/*i*-propanol = 80/20, 0.8 mL/min, 220 nm) t_R = 32.00 min, 34.45 min, 38.18 min (minor diastereomer), 40.56 min (minor diastereomer).

^tButyl

(1*S*,3*R*,3a*R*,8b*R*)-3-(thiophen-2-yl)-2,3,3a,8b-tetrahydro-1*H*-benzo[4,5]thieno[2,3-*c*]pyrrole-1 -carboxylate 4,4-dioxide

White solid, yield: 68.0 mg, 87%; m.p.: 151-154 °C; $[\alpha]_D^{25} = -30.4$ (*c* 0.98, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, *J* = 7.8 Hz, 1H), 7.70-7.60 (m, 2H), 7.59-7.53 (m, 1H), 7.31-7.25 (m, 1H), 7.21-7.16 (m, 1H), 7.02 (dd, *J* = 5.1, 3.5 Hz, 1H), 5.02 (brs, 1H), 4.46 (dd, *J* = 9.4, 6.8 Hz, 1H), 4.05 (dd, *J* = 9.4, 7.2 Hz, 1H), 3.85 (d, *J* = 6.7 Hz, 1H), 2.88 (brs, 1H), 1.56 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 170.4, 143.1, 138.7, 137.3, 134.4, 130.1, 127.3, 127.2, 125.5, 125.5, 122.1, 83.2, 70.6, 67.4, 59.5, 49.8, 28.2; HRMS (ESI, m/z) calcd for C₁₉H₂₁NO₄S₂ [M+H]⁺: 392.0985, found: 392.0990; HPLC (Chiralpak AS-H, *n*-hexane/EtOH = 90/10, 1.0 mL/min, 220 nm) t_R = 27.38 min, 31.36 min (minor diastereomer), 34.00 min (minor diastereomer), 52.75 min.

^tButyl

(1*S*,3*S*,3a*R*,8b*R*)-3-(furan-2-yl)-2,3,3a,8b-tetrahydro-1*H*-benzo[4,5]thieno[2,3-*c*]pyrrole-1-ca rboxylate 4,4-dioxide

White solid, yield: 54.0 mg, 72%; m.p.: 163-165 °C; $[\alpha]_D^{25} = -22.7$ (*c* 1.13, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, *J* = 7.7 Hz, 1H), 7.70-7.63 (m, 1H), 7.62-7.52 (m, 2H), 7.44-7.40 (m, 1H), 6.43-6.35 (m, 2H), 4.87 (d, *J* = 6.0 Hz, 1H), 4.50 (dd, *J* = 9.3, 5.8 Hz, 1H), 4.18 (dd, *J* = 9.3, 6.0 Hz, 1H), 3.81 (d, *J* = 5.9 Hz, 1H), 2.88 (brs, 1H) 1.54 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 170.7, 151.7, 142.9, 138.6, 137.6, 134.4, 130.0, 127.1, 122.0, 110.8, 108.2, 83.1, 67.8, 67.6, 57.6, 50.1, 28.2; HRMS (ESI, m/z) calcd for C₁₉H₂₁NO₅S [M+H]⁺: 376.1213, found: 376.1218; HPLC (Chiralpak AS-H, *n*-hexane/EtOH = 90/10, 1.0 mL/min, 220 nm) t_R = 29.06 min, 50.07 min.

^tButyl

(1*S*,3*S*,3a*R*,8b*R*)-3-cyclohexyl-2,3,3a,8b-tetrahydro-1*H*-benzo[4,5]thieno[2,3-*c*]pyrrole-1-car boxylate 4,4-dioxide

White solid, yield: 66.5 mg, 85%; m.p.: 156-158 °C; $[\alpha]_D^{25} = -16.0$ (*c* 1.17, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.74-7.70 (m, 1H), 7.64-7.59 (m, 1H), 7.53 (m, 2H), 4.17 (dd, *J* = 9.7, 7.8 Hz, 1H), 3.74 (dd, *J* = 9.7, 6.6 Hz, 1H), 3.63 (d, *J* = 7.8 Hz, 1H), 3.55 (dd, *J* = 7.9, 6.6 Hz, 1H), 2.43 (brs, 1H), 1.98 (d, *J* = 12.4 Hz, 1H), 1.90-1.78 (m, 3H), 1.74-1.62 (m, 2H), 1.55 (s, 9H), 1.33-1.09 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ 171.0, 139.2, 136.7, 133.9, 129.9, 127.2, 122.0, 83.0, 67.7, 67.2, 65.2, 50.7, 42.1, 30.5, 30.0, 28.2, 26.4, 26.2, 26.0; HRMS (ESI, m/z) calcd for C₂₁H₂₉NO₄S [M+H]⁺: 392.1890, found: 392.1895; HPLC (Chiralpak AD-H, *n*-hexane/*i*-propanol = 80/20, 0.8 mL/min, 220 nm) t_R = 15.91 min, 16.97 min.

'Butyl

(1*S*,3*S*,3a*R*,8b*R*)-8-bromo-3-(4-chlorophenyl)-2,3,3a,8b-tetrahydro-1*H*-benzo[4,5]thieno[2,3*c*]pyrrole-1-carboxylate 4,4-dioxide

White solid, yield: 82.5 mg, 83%; m.p.: 167-170 °C; $[\alpha]_D^{25} = -35.1$ (*c* 0.90, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, *J* = 7.4 Hz, 1H), 7.69 (dd, *J* = 7.9, 0.9 Hz, 1H), 7.40 (t, *J* = 7.8 Hz, 1H), 7.36-7.29 (m, 4H), 4.60 (d, *J* = 3.0 Hz, 1H), 4.44 (dd, *J* = 8.3, 3.0 Hz, 1H), 4.27 (d, *J* = 8.0 Hz, 1H), 4.18 (t, *J* = 8.2 Hz, 1H), 2.84 (brs, 1H), 1.50 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 170.5, 140.4, 138.6, 137.8, 135.9, 134.3, 131.5, 129.3, 129.0, 122.5, 121.4, 83.1, 69.0, 68.6, 59.0, 53.1, 28.1; HRMS (ESI, m/z) calcd for C₂₁H₂₁BrClNO₄S [M+H]⁺: 498.0136, found: 498.0141; HPLC (Chiralpak AD-H, *n*-hexane/*i*-propanol = 80/20, 0.8 mL/min, 220 nm) t_R = 16.76 min, 17.96 min, 21.60 min (minor diastereomer), 22.83 min (minor diastereomer).

'Butyl

(1*S*,3*S*,3a*R*,8b*R*)-5-bromo-3-(4-chlorophenyl)-2,3,3a,8b-tetrahydro-1*H*-benzo[4,5]thieno[2,3*c*]pyrrole-1-carboxylate 4,4-dioxide

White solid, yield: 91.4 mg, 92%; m.p.: 208-210 °C; $[\alpha]_D^{25} = -6.6$ (*c* 1.01, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, *J* = 7.8 Hz, 1H), 7.59 (d, *J* = 7.8 Hz, 1H), 7.55-7.45 (m, 3H), 7.41-7.34 (m, 2H), 4.82 (d, *J* = 7.4 Hz, 1H), 4.35 (dd, *J* = 9.7, 7.2 Hz, 1H), 3.94 (dd, *J* = 9.7, 7.4 Hz, 1H), 3.82 (d, *J* = 7.1 Hz, 1H), 2.74 (brs, 1H), 1.56 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 170.3, 140.3, 138.0, 137.9, 135.1, 134.3, 134.3, 129.2, 128.6, 126.2, 116.8, 83.4, 71.0, 67.2, 62.8, 48.1, 28.2; HRMS (ESI, m/z) calcd for C₂₁H₂₁BrClNO₄S [M+H]⁺: 498.0136, found: 498.0141; HPLC (Chiralpak AD-H, *n*-hexane/*i*-propanol = 80/20, 0.8 mL/min, 220 nm) t_R = 22.82 min, 29.49 min.

^tButyl

(1*S*,3*S*,3a*R*,8b*R*)-7-bromo-3-(4-chlorophenyl)-2,3,3a,8b-tetrahydro-1*H*-benzo[4,5]thieno[2,3*c*]pyrrole-1-carboxylate 4,4-dioxide

White solid, yield: 93.4 mg, 94%; m.p.: 140-143 °C; $[\alpha]_D^{25} = -16.7$ (*c* 0.98, CH₂Cl₂); ¹H NMR

(400 MHz, CDCl₃) δ 7.84 (s, 1H), 7.69 (dd, J = 8.3, 1.2 Hz, 1H), 7.61 (d, J = 8.3 Hz, 1H), 7.49 (d, J = 8.4 Hz, 2H), 7.37 (d, J = 8.4 Hz, 2H), 4.77 (t, J = 7.3 Hz, 1H), 4.34 (dd, J = 9.4, 7.4 Hz, 1H), 3.92 (dd, J = 9.5, 7.4 Hz, 1H), 3.84 (t, J = 7.3 Hz, 1H), 2.76-2.68 (m, 1H), 1.59 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 170.2, 139.0, 137.9, 137.8, 134.3, 133.5, 130.7, 129.2, 129.0, 128.5, 123.5, 83.6, 70.6, 66.9, 62.4, 49.2, 28.3; **HRMS** (ESI, m/z) calcd for C₂₁H₂₁BrClNO₄S [M+H]⁺: 498.0136, found: 498.0141; **HPLC** (Chiralpak AD-H, *n*-hexane/*i*-propanol = 80/20, 0.8 mL/min, 220 nm) t_R = 28.15 min, 30.49 min.

'Butyl

(1*S*,3*S*,3a*R*,8b*R*)-7-chloro-3-(4-chlorophenyl)-2,3,3a,8b-tetrahydro-1*H*-benzo[4,5]thieno[2,3-*c*]pyrrole-1-carboxylate 4,4-dioxide

White solid, yield: 77.1 mg, 85%; m.p.: 126-128 °C; $[\alpha]_D^{25} = -13.4$ (*c* 0.91, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, *J* = 8.5 Hz, 2H), 7.56-7.46 (m, 3H), 7.40-7.34 (m, 2H), 4.77 (t, *J* = 7.5 Hz, 1H), 4.34 (dd, *J* = 9.5, 7.2 Hz, 1H), 3.93 (dd, *J* = 9.6, 7.5 Hz, 1H), 3.84 (t, *J* = 7.2 Hz, 1H), 2.76-2.67 (m, 1H), 1.59 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 170.2, 140.7, 139.0, 137.9, 137.3, 134.3, 130.7, 129.2, 128.5, 127.7, 123.4, 83.5, 70.7, 66.8, 62.4, 49.2, 28.2; HRMS (ESI, m/z) calcd for C₂₁H₂₁Cl₂NO₄S [M+H]⁺: 454.0641, found: 454.0647; HPLC (Chiralpak AS-H, *n*-hexane/EtOH = 90/10, 1.0 mL/min, 220 nm) t_R = 16.78 min, 42.65 min.

'Butyl

(1*S*,3*S*,3a*R*,8b*R*)-7-chloro-3-(4-chlorophenyl)-8b-methyl-2,3,3a,8b-tetrahydro-1*H*-benzo[4,5]t hieno[2,3-*c*]pyrrole-1-carboxylate 4,4-dioxide

White solid, yield: 79.4 mg, 85%; m.p.: 149-152 °C; $[\alpha]_D^{25} = -14.4$ (*c* 1.00, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, J = 1.8 Hz, 1H), 7.66 (d, J = 8.3 Hz, 1H), 7.56-7.48 (m, 3H), 7.41-7.35 (m, 2H), 4.71 (brs, 1H), 3.91 (brs, 1H), 3.50 (d, J = 7.7 Hz, 1H), 2.74 (brs, 1H), 1.65 (s, 3H), 1.61 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 168.8, 144.1, 140.7, 137.8, 136.6, 134.3, 130.6, 129.2, 128.5, 126.9, 123.3, 83.7, 78.1, 69.6, 61.0, 55.6, 28.3, 24.0; **HRMS** (ESI, m/z) calcd for $C_{22}H_{23}Cl_2NO_4S$ [M+H]⁺: 468.0798, found: 468.0803; **HPLC** (Chiralpak AD-H, *n*-hexane/*i*-propanol = 80/20, 0.8 mL/min, 220 nm) $t_R = 17.61 \text{ min}$, 20.11 min.

'Butyl

(1*S*,3*S*,3a*R*,8b*R*)-3-(4-bromophenyl)-7-chloro-8b-methyl-2,3,3a,8b-tetrahydro-1*H*-benzo[4,5] thieno[2,3-*c*]pyrrole-1-carboxylate 4,4-dioxide

White solid, yield: 87.9 mg, 86%; m.p.: 140-141 °C; $[\alpha]_D^{25} = -15.2$ (*c* 0.90, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, *J* = 1.6 Hz, 1H), 7.66 (d, *J* = 8.3 Hz, 1H), 7.58-7.51 (m, 3H), 7.45 (d, *J* = 8.3 Hz, 2H), 4.74-4.65 (m, 1H), 3.91 (d, *J* = 5.7 Hz, 1H), 3.49 (d, *J* = 7.7 Hz, 1H), 2.74 (brs, 1H), 1.64 (s, 3H), 1.61 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 168.8, 144.1, 140.7, 138.3, 136.5, 132.2, 130.6, 128.8, 126.9, 123.3, 122.4, 83.7, 78.0, 69.6, 61.0, 55.6, 28.3, 24.0; HRMS (ESI, m/z) calcd for C₂₂H₂₃BrClNO₄S [M+H]⁺: 512.0292, found: 512.0298; HPLC (Chiralpak AD-H, *n*-hexane/*i*-propanol = 80/20, 0.8 mL/min, 220 nm) t_R = 20.49 min, 24.37 min.

'Butyl

(1*S*,3*S*,3a*R*,8b*R*)-7-chloro-8b-methyl-3-(*p*-tolyl)-2,3,3a,8b-tetrahydro-1*H*-benzo[4,5]thieno[2, 3-*c*]pyrrole-1-carboxylate 4,4-dioxide

White solid, yield: 76.0 mg, 85%; m.p.: 145-147 °C; $[\alpha]_D^{25} = -5.4$ (*c* 1.08, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, J = 1.8 Hz, 1H), 7.66 (d, J = 8.4 Hz, 1H), 7.52 (dd, J = 8.3, 1.8 Hz, 1H), 7.42 (d, J = 8.2 Hz, 2H), 7.22 (d, J = 8.1 Hz, 2H), 4.74-4.66 (m, 1H), 3.89 (d, J = 8.2 Hz, 1H), 3.56 (d, J = 7.8 Hz, 1H), 2.85-2.78 (m, 1H), 2.37 (s, 3H), 1.65 (s, 3H), 1.61 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 168.9, 144.3, 140.6, 138.2, 136.8, 136.0, 130.5, 129.8, 126.9, 126.8, 123.2, 83.6, 78.2, 69.9, 61.7, 56.2, 28.3, 24.0, 21.3; HRMS (ESI, m/z) calcd for C₂₃H₂₆ClNO₄S [M+H]⁺: 448.1344, found: 448.1349; HPLC (Chiralpak AD-H, *n*-hexane/*i*-propanol = 80/20, 0.8 mL/min, 220 nm) t_R = 14.09 min, 17.68 min.

^tButyl

(1*S*,3*S*,3a*R*,8b*R*)-7-chloro-3-(4-methoxyphenyl)-8b-methyl-2,3,3a,8b-tetrahydro-1*H*-benzo[4, 5]thieno[2,3-*c*]pyrrole-1-carboxylate 4,4-dioxide

White solid, yield: 86.1 mg, 93%; m.p.: 167-168 °C; $[\alpha]_D^{25} = -11.4$ (*c* 1.06, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, *J* = 1.8 Hz, 1H), 7.65 (d, *J* = 8.3 Hz, 1H), 7.53 (dd, *J* = 8.3, 1.8 Hz, 1H), 7.45 (d, *J* = 8.7 Hz, 2H), 6.94 (d, *J* = 8.7 Hz, 2H), 4.70-4.62 (m, 1H), 3.89 (d, *J* = 8.7 Hz, 1H), 3.82 (s, 3H), 3.53 (d, *J* = 8.0 Hz, 1H), 2.81-2.73 (m, 1H), 1.65 (s, 3H), 1.61 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 168.9, 159.7, 144.4, 140.6, 136.8, 130.9, 130.5, 128.3, 126.8, 123.2, 114.4, 83.6, 78.2, 69.9, 61.6, 56.1, 55.5, 28.3, 24.1; HRMS (ESI, m/z) calcd for C₂₃H₂₆ClNO₅S [M+H]⁺: 464.1293, found: 464.1298; HPLC (Chiralpak AD-H, *n*-hexane/*i*-propanol = 80/20, 0.8 mL/min, 220 nm) t_R = 19.66 min, 25.39 min.

'Butyl

(1*S*,3*S*,3a*R*,8b*R*)-7-chloro-8b-methyl-3-phenyl-2,3,3a,8b-tetrahydro-1*H*-benzo[4,5]thieno[2,3*c*]pyrrole-1-carboxylate 4,4-dioxide

White solid, yield: 82.3 mg, 95%; m.p.: 179-182 °C; $[\alpha]_D^{25} = -11.7$ (*c* 0.89, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, J = 1.7 Hz, 1H), 7.66 (d, J = 8.3 Hz, 1H), 7.59-7.49 (m, 3H), 7.46-7.39 (m, 2H), 7.38-7.30 (m, 1H), 4.75 (dd, J = 9.6, 7.7 Hz, 1H), 3.91 (d, J = 9.5 Hz, 1H), 3.58 (d, J = 7.7 Hz, 1H), 2.83 (t, J = 9.6 Hz, 1H), 1.65 (s, 3H), 1.61 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 168.8, 144.2, 140.6, 139.1, 136.7, 130.5, 129.1, 128.4, 127.0, 126.8, 123.2, 83.6, 78.2, 69.9, 61.8, 56.0, 28.3, 24.0; HRMS (ESI, m/z) calcd for C₂₂H₂₄ClNO₄S [M+H]⁺: 434.1187, found: 434.1193; HPLC (Chiralpak AS-H, *n*-hexane/EtOH = 90/10, 1.0 mL/min, 220 nm) t_R = 11.27 min, 14.00 min.

4. Gram scale procedure for the 1,3-dipolar cycloaddition of 1c to 2a

Under a nitrogen atmosphere, Cu(CH₃CN)₄BF₄ (11.0 mg, 0.035 mmol) and L7 (45.4 mg, 0.0385 mmol) were dissolved in CH₂Cl₂ (40 mL), and stirred at room temperature for about 1 h. Then, glycine imine **1c** (1.345 g, 5.3 mmol) and Cs₂CO₃ (228 mg, 0.7 mmol) were added, the mixture was cooled to 0 $^{\circ}$ C and benzo[*b*]thiophene 1,1-dioxides **2a** (0.582 g, 3.5 mmol) was added. Once starting material was consumed (monitored by TLC), the mixture was filtered through celite and the filtrate was concentrated, then the residue was purified by column chromatography (petroleum ether/ethyl acetate 6:1) on silica gel to afford the corresponding product **3ca** in 90% yield.

5. Transformation of cycloadduct 3ca^{2,3}

To a solution of **3ca** (251.5 mg, 0.6 mmol) in dry Et_2O (8 mL) under nitrogen, LiAlH₄ (91.1 mg, 2.4 mmol) was added in small portions. The reaction mixture was stirred for 3 h at room temperature. To which water (0.4 mL) and 10% aqueous sodium hydroxide (0.6 mL) and more water (0.6 mL) carefully. The mixture was filtered over anhydrous Na₂SO₄, and the filtrate was concentrated. The residue was purified by column chromatography (petroleum ether/ethyl acetate 2:1) on silica gel to afford **4** in 71% yield.

((1S,3S,3aR,8bR)-3-(4-Chlorophenyl)-2,3,3a,8b-tetrahydro-1H-benzo[4,5]thieno[2,3-c]pyrrol-1-yl)methanol~(4)

White solid, yield: 135.1 mg, 71%; m.p.: 146-148 °C; $[\alpha]_D^{25} = -134.4$ (*c* 1.00, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.44 (d, J = 8.4 Hz, 2H), 7.33 (d, J = 8.4 Hz, 2H), 7.21-7.16 (m, 3H), 7.15-7.05 (m, 1H), 4.16 (d, J = 8.6 Hz, 1H), 4.10 (dd, J = 9.6, 5.1 Hz, 1H), 3.96 (dd, J = 11.0, 3.5 Hz, 1H), 3.88 (dd, J = 11.0, 3.8 Hz, 1H), 3.81-3.73 (m, 1H), 3.70-3.63 (m, 1H), 2.21 (brs, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 141.2, 140.1, 139.6, 133.7, 128.8, 128.3, 128.3, 124.9, 124.8, 122.6, 70.3, 66.2, 64.7, 58.9, 54.9; HRMS (ESI, m/z) calcd for C₁₇H₁₆ClNOS [M+H]⁺: 318.0714, found: 318.0719; HPLC (Chiralpak AD-H, *n*-hexane/*i*-propanol = 80/20, 0.8 mL/min, 220 nm) t_R = 10.00 min, 11.25 min, 17.62 min (minor diastereomer), 20.74 min (minor diastereomer).

At nitrogen atmosphere, to a solution of compound **4** (0.15 mmol, 47.6 mg) in anhydrous 1,2-dichloroethane (2.0 mL), anhydrous triethylamine (0.225 mmol, 22.8 mg) and triphosgene (0.18 mmol, 53.4 mg) was added. The reaction mixture was stirred at rt for 1 h and refluxed for 12 h. The reaction mixture was cooled to rt and added 5mL CH₂Cl₂, then pour into silica gel stirred for 4 h. The mixture was filtered over anhydrous Na₂SO₄ and evaporated under vacuum, the residue was subjected to the preparative thin later chromatography (petroleum ether/ethyl acetate 3:1) to afford the title compound **5** in 85% yield.

(5*S*,5a*R*,10b*R*,10c*S*)-5-(4-Chlorophenyl)-5,5a,10b,10c-tetrahydro-1*H*,3*H*-benzo[4',5']thieno[3 ',2':3,4]pyrrolo[1,2-*c*]oxazol-3-one (5)

White solid, yield: 43.7 mg, 85%; m.p.: 200-201 °C; $[\alpha]_D^{25} = -136.5$ (*c* 1.15, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.37 (d, *J* = 8.4 Hz, 2H), 7.32-7.15 (m, 4H), 7.16-7.07 (m, 2H), 4.72-4.63 (m, 2H), 4.59 (dd, *J* = 8.7, 5.5 Hz, 1H), 4.55-4.47 (m, 1H), 4.40 (dd, *J* = 8.6, 7.1 Hz, 1H), 4.05 (dd, *J* = 8.4, 7.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 155.3, 140.3, 137.4, 134.8, 133.4, 129.5, 129.4, 129.1, 125.4, 124.7, 122.9, 68.0, 67.1, 65.8, 61.6, 57.4; HRMS (ESI, m/z) calcd for C₁₈H₁₄ClNO₂S [M+H]⁺: 344.0507, found: 344.0512; HPLC (Chiralpak AD-H, *n*-hexane/*i*-propanol = 80/20, 0.8 mL/min, 220 nm) t_R = 26.76 min, 32.61 min.

6. The absolute configuration determination of (1S,3S,3aR,8bR)-3aa

Fig S1. X-ray structure of (1*S*,3*S*,3a*R*,8b*R*)-3aa

Crystal data and structure refinement for CCDC 1561030

(CCDC 1561030 contains the supplementary crystallographic data for this paper. These data can

be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html.)

Table S2. Crystal data and structure refinement for (1S,3S,3aR,8bR)-3aa

Identification code	cd1561030		
Empirical formula	C18 H16 Cl N O4 S		
Formula weight	377.83		
Temperature	293(2) K		
Wavelength	0.71073 Å		
Crystal system	Orthorhombic		
Space group	P 21 21 21		
Unit cell dimensions	a = 5.1621(6) Å	$\alpha = 90$ °.	
	b = 16.3247(18) Å	$\beta = 90$ °.	
	c = 20.251(2) Å	$\gamma = 90$ °.	
Volume	1706.5(3) Å ³		
Z	4		
Density (calculated)	1.471 Mg/m ³		
Absorption coefficient	0.370 mm ⁻¹		
F(000)	784		
Crystal size	0.200 x 0.150 x 0.110 mm ³		

Theta range for data collection	1.602 to 26.000 °.		
Index ranges	-6<=h<=6, -20<=k<=14, -24<=l<=24		
Reflections collected	10224		
Independent reflections	3354 [R(int) = 0.0342]		
Completeness to theta = 25.242°	100.0 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.7456 and 0.6588		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	3354 / 0 / 231		
Goodness-of-fit on F ²	1.035		
Final R indices [I>2sigma(I)]	R1 = 0.0420, wR2 = 0.1066		
R indices (all data)	R1 = 0.0476, wR2 = 0.1107		
Absolute structure parameter	0.05(4)		
Extinction coefficient	n/a		
Largest diff. peak and hole	0.379 and -0.292 e.Å ⁻³		

7. References

(1) (a) Madec, D.; Mingoia, F.; Macovei, C.; Maitro, G.; Giambastiani, G.; Poli, G. *Eur. J. Org. Chem.* 2005, *3*, 552. (b) Zhang, W.; Ma, T.; Li, S.; Yang, Y.; Guo, J.; Yu, W.; Kong, L. *Eur. J. Med. Chem.* 2017, *125*, 538. (c) Antonow, D.; Marrafa, T.; Dawood, I.; Ahmed, T.; Haque, M. R.; Thurston, D. E.; Zinzalla, G. *Chem. Commun.*, 2010, *46*, 2289.

(2) (a) Nandakumar, M.; Karunakaran, J.; Mohanakrishnan, A. K. *Org. Lett.* **2014**, *16*, 3068. (b) He, F.-S.; Jin, J.-H.; Yang, Z.-T.; Yu, X.; Fossey, J. S.; Wei-Ping Deng, W.-P. *ACS Catal.* **2016**, *6*, 652.

(3) Yang, X.; Cheng, F.; Kou, Y.-D.; Pang, S.; Shen, Y.-C.; Huang, Y.-Y.; Shibata, N. *Angew. Chem. Int. Ed.* **2017**, *56*,1510.

8. Chiral HPLC Chromatograms

^tBuO₂C H NH S H O (3na)

0`0

Β̈́r

9. ¹H NMR and ¹³C NMR spectra

¹H NMR spectrum of compound **3aa** (CDCl₃)

76 66 66 66 66 66 66 66 66 66 66 66 66 6	884 933 933 933 933 935 935 935 935 935 935	.76	00
	44444000000000	2	0

¹³C NMR spectrum of compound **3aa** (CDCl₃)

¹H NMR spectrum of compound **3ba** (CDCl₃)

 ^1H NMR spectrum of compound **3ca** (CDCl_3)

¹H NMR spectrum of compound **3da** (CDCl₃)

¹H NMR spectrum of compound **3ea** (CDCl₃)

¹H NMR spectrum of compound **3fa** (CDCl₃)

¹H NMR spectrum of compound **3ga** (CDCl₃)

¹H NMR spectrum of compound **3ha** (CDCl₃)

¹H NMR spectrum of compound **3ia** (CDCl₃)

¹H NMR spectrum of compound **3ja** (CDCl₃)

¹H NMR spectrum of compound **3ka** (CDCl₃)

¹H NMR spectrum of compound **3la** (CDCl₃)

¹H NMR spectrum of compound **3ma** (CDCl₃)

¹H NMR spectrum of compound **3na** (CDCl₃)

¹H NMR spectrum of compound **3oa** (CDCl₃)

¹H NMR spectrum of compound **3pa** (CDCl₃)

¹H NMR spectrum of compound **3qa** (CDCl₃)

¹H NMR spectrum of compound **3ra** (CDCl₃)

¹H NMR spectrum of compound **3sa** (CDCl₃)

¹H NMR spectrum of compound **3cb** (CDCl₃)

¹H NMR spectrum of compound **3cc** (CDCl₃)

¹H NMR spectrum of compound **3cd** (CDCl₃)

¹H NMR spectrum of compound **3ce**(CDCl₃)

¹H NMR spectrum of compound **3cf** (CDCl₃)

¹H NMR spectrum of compound **3gf** (CDCl₃)

¹H NMR spectrum of compound **3jf**(CDCl₃)

¹H NMR spectrum of compound **3lf** (CDCl₃)

¹H NMR spectrum of compound **3nf** (CDCl₃)

¹H NMR spectrum of compound **4** (CDCl₃)

^{13}C NMR spectrum of compound 4 (CDCl_3)

 ^1H NMR spectrum of compound $\boldsymbol{5}$ (CDCl_3)

---0.00

^{13}C NMR spectrum of compound 5 (CDCl_3)

-0.00